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0. Introduction

A sequence of polynomials (pn(t))∞n=0 is said to be binomial if, for s, t ∈R, it satisfies the rule

pn(s + t) =
n∑

k=0

(
n

k

)
pk(t)pn−k(s),

or, equivalently,

p̃n(t + s) =
n∑

k=0

p̃k(t )̃pn−k(s),

where p̃n(t) = p̃n(t)/n!. This means that the family (̃pt)t∈R of sequences p̃t = (̃pn(t))∞n=0 is a group in the convolution
algebra of all complex sequences. For simplicity we limit ourselves to positive parameter t > 0, so that we will deal with
semigroups (̃pt)t>0 in the sequel.

A Sheffer (polynomial) sequence for a given binomial sequence (pn(t))n is another polynomial sequence (σn(t))n such
that, for all n ∈ N∪ {0},

σn(s + t) =
n∑

k=0

(
n

k

)
σk(s)pn−k(t).
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Putting σ̃n = σn/n!, one has

σ̃n(s + t) =
n∑

k=0

σ̃k(s)̃pn−k(t),

that is to say, σ̃s+t = σ̃s ∗ p̃t (s, t > 0), for the convolution in the algebra of complex sequences, where σ̃s(n) := σ̃n(s).
Binomial sequences and Sheffer sequences are important study objects in the umbral calculus, and most classical se-

quences in the theory of orthogonal polynomials are examples of Sheffer sequences; see [5,11]. Sheffer families associated
with the binomial sequence (tn)n are called Appell sequences, see [5, p. 8].

In [4], a continuous setting for the preceding notions is proposed, by introducing a metrizable complete locally convex
algebra U which contains the Mellin transforms of generating functions of Sheffer sequences; see [4, Introduction] for more
details. This algebra is formed by holomorphic functions on the right-hand half-plane, and is endowed with a convolution.
Binomial sequences correspond to semigroups in U , and in particular the fundamental sequence (tn)n of the umbral calculus
corresponds to the semigroup (γ t)t>0 in U given by γ t : z �→ t−zΓ (z), t > 0. Also, a Sheffer family is defined in [4] as a
family (Ft)t>0 ⊆ U for which there exists a semigroup ( f t)t>0 ⊆ U such that Fs+t = Fs ∗ f t , s, t > 0. It is shown in [4] that
the Hermite function and Lerch functions are Sheffer families with respect to the semigroup (γ t)t>0.

In the present paper we give more examples of Sheffer families associated with the semigroup (γ t)t>0. Such families
are, or are related with, the special functions which correspond to sequences of orthogonal polynomials of types Charlier,
Gegenbauer, Abel, Laguerre, Jacobi. This is done in Section 3. Previously to that section we discuss the derivation and trans-
lation semigroups in the algebra of continuous operators on U ; see Section 2. Such semigroups of operators are important
because they play the role of infinitesimal generators of remarkable semigroups in U . One is the Gamma semigroup (γ t)t>0,
another one is the Gaussian semigroup defined by the Gaussian function, which is also analyzed in Section 2. We include
Section 1 on preliminaries, where the definition and main properties of the algebra U are collected.

1. Preliminaries

Put C+ := {z ∈ C: 	z > 0}. Let Hol(C+) denote the usual topological algebra of holomorphic functions on C+ endowed
with the compact convergence topology τc . We define U as the space of functions F ∈ Hol(C+) such that

‖F‖a,b := sup
a�x�b

∞∫
−∞

∣∣F (x + iy)
∣∣dy, 0 < a � b,

endowed with the locally convex vector space topology generated by the system of norms {‖ · ‖a,b}a�b . Every function F ∈ U
can be represented as

F (z) = 1

2π i

∫
γa,b

F (w)

w − z
dw, 0 < a < 	z < b, (1.1)

where, for x > 0, γx is the vertical line x + iR parameterized from −∞ to ∞ and γa,b = {−γa} ∪ γb . This integral formula
allows us to prove that the space U is metrizable and complete, and that the inclusion mapping U ↪→ Hol(C+) is continuous
with dense range. Besides this, for

Uτ := {
G ∈ U : G = F (· + z); F ∈ U, z ∈C+}

,

we have that Uτ is a dense vector subspace of U , with the restrictions on iR of functions in Uτ lying in L1(iR).
The space U is moreover a commutative locally convex algebra in the sense defined in [1], with multiplication given by

the convolution

F ∗ G(z) := 1

2π i

∫
	w=c

F (z − w)G(w)dw,

for F , G ∈ U , z ∈ C+ and 0 < c < 	z, where the integral does not depend on c. Actually,

‖F ∗ G‖a,b � ‖F‖a−α,b−α‖G‖α,α

for every α, a, b such that 0 < α < a < b.
Recall that a character ϕ of the algebra U is a complex algebra homomorphism ϕ : U −→ C. It is shown in [4] that all

non-zero continuous characters of U are of the form ϕ = ϕλ,λ > 0, where

ϕλ(F ) := 1

2π i

∫
λ−z F (z)dz, F ∈ U, c > 0.
	z=c
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For F ∈ U and λ > 0, set F̂ (λ) := ϕλ(F ) and G(F ) := F̂ . Then F̂ is continuous on R+ := (0,∞) and

lim
λ→0+ λc f (λ) = 0, lim

λ→∞λc f (λ) = 0, for all c > 0.

Moreover, the correspondence F �→ G(F ) is injective. We call G(F ) the Gelfand transform of F .
We refer prospective readers to [4] for the above definitions and properties.

2. Semigroups associated with the space U

2.1. Semigroups of operators on U

We first give examples of semigroups living in the (locally convex) algebra B(U) of continuous linear operators on U .
They are related with generators of semigroups in the algebra U , as we will see in Section 2.2 below.

Fractional derivation semigroup. We build up this semigroup on the base of formula (1.1). In the sequel, we denote by log ζ

the analytic branch of the logarithm with argument arg ζ taking values in the interval [−π/2,3π/2). We put ζ s := es log ζ

for every ζ ∈C \ i(−∞,0) and s > 0. Let a,b be such that 0 < a < b. For F ∈ U and ν � 0 define

Dν F (z) = Γ (ν + 1)

2π i

( ∫
	w=b

F (w)

(w − z)ν+1
dw −

∫
	w=a

e2πνi F (w)

(w − z)ν+1
dw

)
(2.1)

whenever a < 	z < b. The above choice of the logarithm implies that the function w �→ F (w)(w − z)−(ν+1) is holomorphic
in the strip c < 	w < C for 0 < c < C < 	z or 0 < 	z < c < C , and then, applying [4, Proposition 1.2(i)] to F ∈ U , we get
that the definition of Dν F (z) is independent of a and b for fixed z ∈ C+ . It is a simple matter that Dν F is a holomorphic
function on C+ . Moreover, (1.1) implies that Dn F = (−1)n F (n) when ν = n = 0,1,2, . . . .

Proposition 2.1. Let ν � 0. Then Dν F ∈ U for every F ∈ U and the linear mapping Dν : U → U is continuous.

Proof. The case ν = 0 is clear by (1.1) since D0 is the identity operator. Let ν > 0, and take 0 < a < b. For z, w such that
a � 	z � b and 	w = a/2 or 	w = 2b we get |	(w − z)| � a

2 or |	(w − z)| � b, respectively. Then using the Fubini’s

rule, an elementary estimate gives us that ‖Dν F‖a,b � C (ν)

a,b Γ (ν + 1)‖F‖ a
2 ,2b for all F ∈ U , where Ca,b(ν) = ∫ ∞

−∞[((a2/4) +
y2)−(ν+1)/2 + (b2 + y2)−(ν+1)/2]dy. This implies the two assertions of the statement. �

By applying the residues theorem one finds

1

2π i

∫
	ζ=ρ

eτζ

ζ s+1
dζ = τ s+

Γ (s + 1)
, τ ∈R, s,ρ > 0 (2.2)

(see for instance [7, p. 329] for a quick calculation).
Take 0 < a < c < b and s, λ > 0. For 	w = a or 	w = b, put

L(w, λ, s) := 1

2π i

∫
	z=c

λ−z

(w − z)s+1
dz.

If 	w = a we get

L(w, λ, s) = λ−w

2π i

∫
	ζ=a−c

λζ

ζ s+1
dζ = λ−w

2π i
e−i(s+1)π

∫
	z=c−a

(λ−1)z

zs+1
dz = λ−w

Γ (s + 1)

(log λ−1)s+
ei(s+1)π

= − e−2sπ i

Γ (s + 1)
(log λ)sλ−wχ(0,1)(λ),

where we have used in the second equality that arg(ζ ) = arg(−ζ ) + π for all ζ ∈ C \ iR with 	ζ < 0.
Analogously, if 	w = b then

L(w, λ, s) = λ−w

2π i

∫
	ζ=b−c

λζ

ζ s+1
dζ = λ−w

Γ (s + 1)
(log λ)sχ(1,∞)(λ).
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Proposition 2.2. The family (Dν)ν>0 given by formula (2.1) is a strongly continuous semigroup in B(U). Moreover, each Dν is a
multiplier of U with symbol (log λ)ν ; that is,

D̂ν F (λ) = (logλ)ν F̂ (λ), F ∈ U, λ > 0.

Proof. First we show the formula of the symbol. So, let F ∈ U and c, s, λ > 0. By applying the remark prior to the proposition
one obtains

G
(

Ds F
) = D̂s F (λ) = 1

2π i

∫
	z=c

λ−z Ds F (z)dz

= Γ (s + 1)

2π i

( ∫
	w=b

L(w, λ, s)F (w)dw − e2π si
∫

	w=a

L(w, λ, s)F (w)dw

)

= (log λ)s
(
χ(1,∞)(λ)

∫
	w=b

λ−w F (w)
dw

2π i
+ χ(0,1)(λ)

∫
	w=a

λ−w F (w)
dw

2π i

)

= (log λ)s(χ(1,∞)(λ) + χ(0,1)(λ)
)

F̂ (λ) = (logλ)s F̂ (λ) = (log λ)sG(F )(λ)

for every F ∈ U . Then the semigroup property follows readily: for F ∈ U and s, t, λ > 0 we have G(Ds(Dt F ))(λ) =
(log λ)sG(Dt F )(λ) = (log λ)s+tG(F )(λ) = G(Ds+t F )(λ), whence Ds Dt = Ds+t on U , since the Gelfand transform G of U is
injective.

Finally, the semigroup (Ds)s>0 is strongly continuous, which is to say, the mappings s �→ Ds F , (0,∞) → U are continuous
for every F ∈ U . This is a simple consequence of the Fubini’s theorem and the dominated convergence theorem. �
Translation semigroup. For z ∈C+ , let T z : U → U be defined by

(T z F )(w) = F (w + z), w ∈C+.

Clearly, T z+w = T z ◦ T w , where the symbol ◦ means composition, and ‖T z F‖a,b = ‖F‖a+	z,b+	z for every z, w ∈ C+ and
for all b � a > 0. By [4, Proposition 1.3] Uτ is dense in U (see also Section 1 above), hence we have that limε→0+ Tε F = F
(F ∈ U ). Also, limy→0 Tiy F = F (F ∈ U ); see [4, Proof of Theorem 2.4]. Therefore the family (T z)	z�0 is a strongly con-
tinuous semigroup in B(U). Actually, since every F ∈ U is holomorphic in C+ , Morera’s theorem implies that (T z)	z>0 is
holomorphic.

Even though we are not concerned in this paper with any detailed analysis of infinitesimal generators of semigroups, it
seems appropriate at this place to describe the generator of the semigroup (Tt)t�0. By definition, the generator A of (Tt)t�0
is given by

A F := lim
t→0+

Tt F − F

t

in U , when the limit exists. A direct calculation tells us that A F (z) = F ′(z) for all F ∈ U and z ∈ C+ . In particular we have
that A is defined on all of U and it is continuous (recall Proposition 2.1). In fact, A = D := D1.

Proposition 2.3. The translation semigroup (T z)	z�0 ⊆ B(U) is strongly continuous on U and holomorphic in 	z > 0, and its in-
finitesimal generator coincides with the (continuous) derivation D = d/dz on U . Moreover, each Tt is a multiplier of U with symbol
given by

T̂t F (λ) = λt F̂ (λ), F ∈ U, t, λ > 0.

Proof. The only thing to prove is the identity involving the symbol. Take F ∈ U and λ, t > 0. Then for c > 0

T̂t F (λ) = 1

2π i

∫
	z=c

λ−z F (z + t)dz = 1

2π i

∫
	w=c+t

λtλ−w F (w)dw = λt F̂ (λ),

as we claimed. �
Remark 2.4. Despite that D = d/dz is a continuous operator on U one cannot deduce from this fact that the formal expres-
sion ezD has a sense as a convergent power series ezD ≡ ∑∞

n=0
zn Dn

n! in B(U) for all z ∈ C+ , since for arbitrary functions
F ∈ U the best estimate that one can get is ‖Dn F‖a,b � (n!/kn)Ca,b‖F‖ a ,2b,0 < k < 1, with k → 0 as a → 0, for every
2
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b � a > 0. Actually, if that series were convergent then the semigroup T (z) ≡ ezD would extend as a holomorphic func-
tion on the whole C. Hence, e−zD would exist as the inverse operator of T (z), for every z ∈ C+ . But then it should be
e−zD = T (· − z) for z ∈ C+ , which obviously is not defined on all of U . However, the semigroup (T z)	z>0 is locally equicon-
tinuous and therefore it admits a sort of exponential formula; see [10, Theorem 3.1].

On the other hand, the joint application of the description of symbols obtained in Proposition 2.2 and Proposition 2.3
gives us the equality(

d

dt
Tt F

)∧
(λ) = [

F ′(· + t)
]∧

(λ) = T̂t F ′(λ) = λt F̂ ′(λ) = λt(logλ) F̂ (λ) = (
T t D F

)∧
(λ),

for every F ∈ U and t, λ > 0. This corresponds to the fact that d
dt Tt = DTt = Tt D .

2.2. Semigroups in U

It is shown in [4, Proposition 3.1] that for α > 0 the function

γ t
α(z) := 1

α
t−z/αΓ (z/α), z ∈C+, t > 0, (2.3)

defines a continuous semigroup (γ t
α)t>0 in U with Gelfand transform

γ̂ t
α(λ) = e−tλα

(λ > 0), (2.4)

and generator Tα in the sense that

d

dt
γ t
α = −Tαγ t

α (t > 0). (2.5)

Note that (2.5) is coherent with (2.4) and the fact that the symbol of Tα is T̂α(λ) = λα , λ > 0 (Proposition 2.3). However,
it is not clear to us whether or not limt→0+ γ t

α ∗ F = F in U , for any F ∈ U .
In fact, the semigroup γ t

α corresponds to the fundamental semigroup of the umbral calculus n �→ tn/n! via the two
equalities

1

2π i

∫
	z=c

(
λα

)−z
t−zΓ (z)dz = e−tλ =

∞∑
n=0

tn

n!
(−λα

)n
, λ, t > 0; (2.6)

see [4, Introduction]. Variants of functions γ t
α provide continuous semigroups in the convolution Banach algebra L1(R); for

example, we have that the family (Γ t
α)t>0 defined by

Γ t
α(y) := 1

2πα
t−(t+iy)/αΓ

(
t + iy

α

)
, y ∈R, (2.7)

is such a semigroup; see [4, Remark 3.2].
Let us mention that the reflection formula, see below, of the Gamma function may be interpreted as a consequence of

the semigroup property of γ t := γ t
1 : Let b > 0. Putting t = 1/b in the convolution identity

γ t+1 = γ t ∗ γ 1, t > 0,

one gets(
b

b + 1

)p

Γ (p) = γ (b+1)/b(p) = γ 1 ∗ γ 1/b(p) = 1

2π i

∫
	q=c

Γ (p − q)Γ (p)bq dq (c > 	p > 0)

and then one can deduce the reflection property for the Gamma function,

Γ (z)Γ (1 − z) = π

sinπ z
(0 < 	z < 1),

as in [13, p. 251].
Another (continuous) semigroup in U related with the Gamma function is (βt)t>0, where

βt(z) := B(z, t + 1), z ∈C+, t > 0,

and B is the Beta function. Its Gelfand transform is given by β̂t(λ) = (1 − λ)t+ , λ > 0; see [4, Proposition 3.3].
There are indeed many other semigroups in U . Next we consider the example induced by the Gaussian function.
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Gaussian semigroup in U . Recall that gt(y) := e−y2/(4t)/
√

4πt , y ∈ R, t > 0, defines a bounded strongly continuous
C0-semigroup gt in L1(R). Moreover, for t > 0 the Fourier transform of gt is (F gt)(ξ) = e−tξ2

for every ξ ∈ R [12, p. 25].
Put

Gt(z) = 1√
4πt

ez2/(4t) (	z � 0; t > 0).

Then Gt ∈ U , Gt(iy) = gt(y) for y ∈R and, for every t, λ > 0,

Ĝt(λ) = 1

2π i

∫
	z=0

λ−zGt(z)dz = (
F gt)(logλ) = e−t(log λ)2

.

Take now F ∈ U . For z = x + iy ∈ C+ , set Fx(y) := F (x + iy). Then

F ∗ Gt(z) = 1

2π

∞∫
−∞

F
(
x + i(y − v)

)
Gt(iv)dv = (

Fx ∗ gt)(y).

By Proposition 2.3 the mapping (0,∞) → U , r �→ F (r + ·) is continuous, so we have that, for 0 < a < b, the fam-
ily (Fx)a�x�b is a compact subset of L1(R). A straightforward argument of compactness jointly with the uniform bound
supt>0 ‖gt‖1 < ∞ gives us that

lim
t→0+ sup

x∈[a,b]
∥∥Fx ∗ gt − Fx

∥∥
1 = 0,

and this means that limt→0+ ‖F ∗ Gt − F‖a,b = 0. Thus we have proved the following result.

Proposition 2.5. (Gt)t>0 is a strongly continuous semigroup in U with Gelfand transform

Ĝt(λ) = e−t(log λ)2
, t, λ > 0,

and infinitesimal generator −D2; that is, dGt

dt = −D2Gt (t > 0).

Proof. It only remains to prove the equality with derivatives. To see this, note that ∂ gt/∂t = ∂2 gt/∂ y2; see [12, p. 25] for
instance. Then, for t > 0, z = x + iy ∈ C+ and every F ∈ U ,

d

dt

(
Gt ∗ F

)
(z) = ∂

∂t

(
gt ∗ Fx

)
(y) = ∂2

∂ y2

(
gt ∗ Fx

)
(y) = ∂2

∂ y2

(
Gt ∗ F

)
(x + iy) = − d2

dz2

(
Gt ∗ F

)
(z). �

3. Sheffer and Appell families in U

We say that a family of functions (St)t>0 ⊆ U is a Sheffer family if there is a semigroup (F t)t>0 ⊆ U such that

Ss+t = F s ∗ St for all s, t > 0.

The above concept has been introduced in [4]. Each semigroup in U is a Sheffer family. A family of functions in U which
is Sheffer with respect to the semigroup (γ t)t>0 is called here an Appell family. In the umbral calculus, the Appell sequences
are the Sheffer sequences associated to the semigroup n �→ tn/n!. One has that a sequence (̃an(x))n is Appell if and only if
(d/dx)̃an(x) = ãn−1(x) for every n; see [5, p. 8]. All the examples of Appell families (At)t>0 ⊆ U which we give below are
such that there exist functions φ with At = φ ∗ γ t , t > 0. Thus, similarly to the discrete case, (d/dt)At = φ ∗ (d/dt)γ t =
φ ∗ (−T1γ

t) = −At+1, where we have used (2.5) in the second equality.
It is also to be noticed that our examples fit into the following general framework. Suppose that we have a function

F (n, t) with associated generating function

∞∑
n=0

F (n, t)

n! xn = ϕ(x)etψ(x), (3.1)

for some functions ϕ and ψ . Then it is to be expected that, under suitable conditions on ϕ and ψ , the Mellin transform

St(z) =
∞∫

λz−1ϕ(−λ)etψ(−λ) dλ,
0
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exists for every t,	z > 0, and, moreover, is an element of U . If this is the case, then (St)t>0 is in fact an Appell family. The
method has been illustrated in [4, Section 4] with two important examples of special functions F (n, t); namely, the Hermite
polynomials, and the Apostol–Bernoulli and Apostol–Euler polynomials defined by the Lerch function.

Next we show more examples of Appell families in U induced by classical special functions.

Charlier function. As above, let B denote the Beta function B(z, w) = Γ (z)Γ (w)/Γ (z + w), where z, w, z + w �= 0,1, . . . .
Let us consider the formula

(1 + x)−t = 1

2π i

∫
	z=c

x−z B(z, t − z)dz, (3.2)

where x, t > 0 and 0 < c < t; see [2, p. 85]. Incidentally, we notice that the formula can be immediately obtained from the
semigroup property of the function γ t : The identity γ 1+x(t) = γ x ∗ γ 1(t), for x, t > 0, means exactly that

(1 + x)−tΓ (t) = 1

2π i

∫
	z=c

x−zΓ (z)Γ (t − z)dz, t > c > 0, x > 0.

The function z �→ B(z, t − z) is not defined for all z ∈ C+ but only for z ∈ C+ such that 0 < 	z < t . Thus the function
does not belong to U . For our aims here, we modify the function x �→ (1 + x)−t , x ∈ (0,∞), to be x �→ e−tx(1 + x)−t .

Proposition 3.1. For s, t > 0 define

(γ B)s,t(z) := s−z

2π i

∫
	w=c

swΓ (z − w)B(w, t − w)dw,

where 0 < c < min{	z, t}. Then (γ B)s,t does not depend on c, and it is a double-parameter continuous semigroup in U ; that is,

(γ B)s+σ ,t+τ = (γ B)s,t ∗ (γ B)σ ,τ

for all s, σ , t, τ > 0. Moreover, its Gelfand transform is[
(γ B)s,t]∧(λ) = e−sλ(1 + λ)−t, λ > 0.

From here, the function (γ B)s,t , for fixed t, induces an Appell family in the parameter s:

(γ B)s+σ ,t = γ s ∗ (γ B)σ ,t (s,σ > 0).

Proof. It can be readily seen that (γ B)s,t ∈ U for all s, t > 0. Moreover, for λ > 0, and b, c, t such that t,b > c > 0, we have

[
(γ B)s,t]∧(λ) =

∫ ∫
	w=c,	z=b

λ−zsw−zΓ (z − w)B(w, t − w)
dz dw

(2π i)2

=
∫

	z=b−a

(λs)−zΓ (z)
dz

2π i

∫
	w=c

λ−w B(w, t − w)
dw

2π i

= e−sλ(1 + λ)−t

by (2.6) and (3.2). The above identity shows also that (γ B)s,t is independent of c, 0 < c < t . The continuity in s and t
follows readily.

Finally, the equality which gives the Gelfand transform implies immediately that (γ B)s+σ ,t = γ s ∗ (γ B)σ ,t for all s, σ > 0
and then (γ B)s,t is an Appell family in the parameter s. �
Corollary 3.2. The family ((γ B)t,t)t>0 is a continuous semigroup in U with symbol [(γ B)t,t]∧(λ) = e−tλ(1 + λ)−t , for every λ > 0
and t > 0.

Recall that the so-called Charlier polynomials Cn(t; s) are defined as the coefficients of the power series

ex(1 − s−1x
)t =

∞∑
n=0

Cn(t, s)

n! xn;

see [8, p. 177]. Thus we have
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e−x(1 + s−1x
)−t =

∞∑
n=0

Cn(−t; s)

n! (−1)nxn

and then it is natural to regard the Mellin transform, say C s,t , of the function x �→ e−x(1 + s−1x)−t as the continuous
counterpart of the Charlier polynomials (see Introduction). In fact, C s,t is a slight modification of the function (γ B)s,t :

For z ∈ C and s, t > 0,

C s,t(z) =
∞∫

0

xz−1e−x(1 + s−1x
)−t

dx = sz

∞∫
0

λz−1e−sλ(1 + λ)−t dλ = sz(γ B)s,t(z).

We are tempted to call

C s,t(z) := 1

2π i

∫
	w=c

swΓ (z − w)B(w, t − w)dw, 0 < c < 	z,

the Charlier function.

Gegenbauer function. Let Cν
z (ξ) be the Gegenbauer function given for ξ, z, ν ∈C by

Cν
z (ξ) = Γ (2ν + z)Γ ( 1

2 + ν)

Γ (2ν)Γ (z + 1)

[(
ξ2 − 1

)
/4

] 1
4 − ν

2 P
1
2 −ν

z+ν− 1
2
(ξ)

where P
1
2 −ν

z+ν− 1
2

is the generalized Legendre function, see [6, p. 66]. Then we have

(
1 + 2xξ + x2)−ν = 1

2π i

c+i∞∫
c−i∞

x−zΓ (z)Γ (1 − z)Cν−z(ξ)dz, (3.3)

for all x, ξ > 0, 0 < c < 1 and 	ν > c/2 [6, p. 67].
Put, for ξ, s, t > 0,

(bC)s,t(z, ξ) :=
∞∫

0

xz−1(1 + 2xξ + x2)−t
e−sx dx

(
z ∈C+)

.

Integrating by parts twice in the above integral it is readily seen that sup	z>0 |(bC)s,t(z, ξ)| < ∞, and therefore
(bC)s,t(·, ξ) ∈ U . Then, by (3.3) and keeping in mind that γ s(z) = ∫ ∞

0 xz−1e−sx dx, we obtain that

(bC)s,t(z, ξ) := s−z

2π i

∫
	w=c

swΓ (z − w)Γ (w)Γ (1 − w)Ct−w(ξ)dw

for every z ∈C+ , where 0 < c < min{1,	z}.
In conclusion, z �→ (bC)s,t(z, ξ) is, for fixed ξ , a continuous double-parametrized semigroup in U with symbol[

(bC)s,t(·, ξ)
]∧

(λ) = e−sλ(1 + 2λξ + λ2)−t
, λ > 0.

In particular, for fixed ξ and t , z �→ (bC)s,t(z, ξ) is an Appell function in U . Note that taking ξ = 1 we have Ct−z(1) =
B(z,2t − z) (compare (3.3) with (3.2)).

Abel function. Let a > 0. The Abel polynomials an(t) are defined as the coefficients of the generating function

et f −1(x) =
∞∑

n=0

an(t)

n! xn

where f −1 is the inverse function of the bijective function f defined by

f : y �→ yeay, [0,∞) → [0,∞);
see [11, p. 163]. The explicit expression of an(t) is

an(t) = t(t − an)n−1.
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Since

e−t f −1(x) =
∞∑

n=0

t(t + an)n−1 (−1)n

n! xn

we look for At(z) such that

e−t f −1(x) = 1

2π i

∫
	z=c

x−zΓ (z)At(z)dz

with t > 0 and c < t/a (see the Introduction). So it must be

Γ (z)At(z) :=
∞∫

0

xz−1e−t f −1(x) dx =
∞∫

0

(1 + ay)yz−1e−(t−az)y dy = Γ (z)

(t − az)z
+ a

Γ (z + 1)

(t − az)z+1
= tΓ (z)

(t − az)z+1

and therefore At(z) = t(t − az)−(z+1),0 < 	z < t/a. Thus we define the function (γ A)s,t given, for z ∈ C+ , by

(γ A)s,t(z) = t

2π i

∫
	w=c

s(z−w)Γ (z − w)Γ (w)(t − aw)−(w+1) dw,

with c < min{t/a,	z}. Integrating by parts twice in the integral
∫ ∞

0 λz−1e−sλe−t f −1(λ) dλ one gets that the function (γ A)s,t

belongs to U with symbol[
(γ A)s,t]∧(λ) = e−sλe−t f −1(λ), λ > 0.

This shows that z �→ (γ A)s,t(z) is an Appell family in U .
Similar assertions can be stated for polynomial sequences whose coefficients are the Stirling numbers of the first and

second kind, see [11, pp. 162, 163].

Laguerre function. For α > −1, the Laguerre polynomials L(α)
n (t) are defined by

L(α)
n (t) = ett−α

n!
dn

dtn

(
e−ttn+α

)
, n ∈N, t ∈R,

and its generating function is

(1 − x)−(α+1) exp

(
−t

x

1 − x

)
=

∞∑
n=0

L(α)
n (t)xn, |x| < 1, t ∈R; (3.4)

see [2, p. 283].
Replacing x with −x and putting s = α + 1 in (3.4) one encounters that the continuous version of (−1)n Ls−1

n (t) is

∞∫
0

xz−1(1 + x)−s exp

(
t

x

1 + x

)
dx =

1∫
0

yz−1(1 − y)s−z−1ety dy = B(z, s − z)1 F1(z, s, t)

where 1 F1(z, s, t) is the Kummer function [9, p. 274]. Note that this example includes, for t = 0, the situation referred to in
Proposition 3.1 and Corollary 3.2. For the present case t > 0, we leave the corresponding statements to the reader.

On the other hand, for s � 0, t > 0 and z ∈C+ one has

1∫
0

xz−1(1 − x)−s exp

(
−t

x

1 − x

)
dx =

∞∫
0

yz−1

(1 + y)s+z+1
e−ty dy = (γ B)t,s+z(z),

see Proposition 3.1. This implies that the function z �→ (γ B)t,s+z(z) is a double-parametrized continuous semigroup in U
with symbol λ �→ (1 − λ)−s+ exp(−t λ

1−λ
), λ > 0. Since β̂s(λ) = (1 − λ)−s+ , λ > 0, we obtain

(γ B)t,s+z(z) = (
w �→ (γ B)t,w(w)

) ∗ βs(z), t, s > 0, z ∈C+.

Jacobi function. The Jacobi polynomials P (α,β)
n (t) are defined by

P (α,β)
n (t) = (−1)n

n
(1 − t)−α(1 + t)−β dn

n

[
(1 − t)α+n(1 + t)β+n].
2 n! dt
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These polynomials and the hypergeometric function 3 F1 are related by the equality

(α + 1)n

n! 3 F1(−n, z,n + α + β + 1;α + 1; r)Γ (z) =
∞∫

0

P (α,β)
n (1 − 2rx)xz−1e−x dx

= r−z

∞∫
0

P (α,β)
n (1 − 2y)yz−1e−y/r dy, r > 0;

see [3, p. L38].
This entails that the mapping

z �→ (α + 1)n

n! t−z
3 F1

(−n, z,n + α + β + 1;α + 1; t−1)Γ (z)

is an Appell family in U with symbol P (α,β)
n (1 − 2λ)e−tλ , λ > 0. Thus one gets, for z ∈ C+ , s, t > 0 and 0 < c < 	z,(

t

s + t

)z

3 F1

(
−n, z,n + α + β + 1;α + 1; 1

s + t

)

= 1

2π i

∫
	w=c

(
t

s

)w

3 F1
(−n, w,n + α + β + 1;α + 1; s−1)Γ (z − w)dw.

Remark 3.3. Similar discussions can be done for the Meisner and Hahn polynomials, see [3, pp. L38, L39].
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