RECOUNTING BINOMIAL FIBONACCI IDENTITIES

Arthur T. Benjamin and Jeremy A. Rouse

In [4], Carlitz demonstrates

\[F_L \sum_{x_1=0}^{n} \sum_{x_2=0}^{n} \cdots \sum_{x_L=0}^{n} \frac{(n-x_L)}{x_1} \frac{(n-x_2)}{x_2} \cdots \frac{(n-x_{L-1})}{x_L} = F_{(n+1)L}, \quad (1) \]

by sophisticated matrix methods and Binet's formula. Nevertheless, the presence of binomial coefficients suggests that an elementary combinatorial proof should be possible. In this note, we present such a proof, leading to other Fibonacci identities.

\textbf{Proof:} Recall that for \(m \geq 1 \), \(F_m \) counts the ways to tile a length \(m-1 \) board with squares and dominoes (see [1], [2], [3]). Hence the right side of equation (1) counts the tilings of a \(n \times \infty \) grid with length \((n+1)L - 1 \).

Before explaining the left side of equation (1), we first demonstrate that any such tiling can be created in a unique way using \(n+1 \) superaxes of length \(L \). Given a tiled board of \((n+1)L - 1 \), with\(\text{cells} \) numbered 1 through \((n+1) L - 1 \), we break the tiling into \(n+1 \) superaxes \(S_1, S_2, \ldots, S_{n+1} \) by cutting the board after cells \(L, 2L, 3L, \ldots, nL \). See Figure 1.

Notice that a superaxis might begin or end with a \textit{half-domino}. For instance, if a domino is on cells \(L \) and \(L+1 \), then \(S_1 \) ends with a half-domino, and \(S_2 \) begins with a half-domino. A superaxis that begins with a half-domino is called \textit{open} on the left; otherwise it is \textit{closed} on the left.

\textbullet \ The superscript \(L \) is in final form and no version of it will be submitted for publication elsewhere.

the left. Likewise a supertile is either open or closed on the right. Naturally, S_1 must be closed on the left.

For convenience, we append a half-dominio to the last supertile so that S_{n+1} has length L, like all the other supertiles, and is open on the right. Notice that S_1, \ldots, S_{n+1} must obey the following "following" rule:

For $1 \leq i \leq n$, S_i is open on the right iff S_{i+1} is open on the left.

Given supertiles S_1, \ldots, S_{n+1}, we can extract subsequences O_1, \ldots, O_t and C_1, \ldots, C_{n+1-t} for some $0 \leq t \leq n$, where O_1, \ldots, O_t are open on the left, and C_1, \ldots, C_{n+1-t} are closed on the left. By the "following" rule, there are exactly $t+1$ supertiles that are open on the right, necessarily including S_{n+1-t}. Conversely, given $0 \leq t \leq n$ and O_1, \ldots, O_t, C_1, \ldots, C_{n+1-t}, there is a unique way to reconstruct the sequence S_1, \ldots, S_{n+1} that preserves the relative order of the O's and C's. Specifically, we must have $S_1 = C_1$, and for $1 \leq i \leq n$, if S_i is closed on the right then S_{i+1} is the lowest numbered unused C_j; else S_{i+1} is the lowest numbered unused O_j.

To summarize, $F_{(n+1)L}$ counts the ways to create, for all $0 \leq t \leq n$, length L supertiles O_1, \ldots, O_t, open on the left, and length L supertiles C_1, \ldots, C_{n+1-t} closed on the left, where C_{n+1-t} is open on the right and exactly t of the other supertiles are open on the right. It remains to show that the left side of equation (1) counts the ways that such a collection of supertiles can be constructed.

Given $0 \leq t \leq n$, we begin by tiling C_{n+1-t}. Since it must end with a half-dominio and has $L-1$ free cells, it can be tiled F_L ways. Now for any non-negative integers x_1, \ldots, x_{L-1}, we prove that the remaining supertiles can be created $\binom{n-x_1}{x_1} \binom{n-x_1}{x_1} \cdots \binom{n-x_1}{x_1}$ ways, where $x_L = t$ and for $1 \leq i \leq L-1$, exactly x_i of these n supertiles have a domino beginning at its i^{th} cell.

Since t of the supertiles (excluding C_{n+1-t}) must be open on the right, $x_L = t$ of these n supertiles have half-dominos beginning at their L^{th} cells. Now there are $\binom{n-t}{x_1}$ ways to pick x_1 supertiles among $\{C_1, \ldots, C_{n-1}\}$ to begin with a domino. (The remaining $n-t-x_1$ O_j's (other than C_{n+1-t}) begin with a square and all of the O_j's begin with a half-dominio.) Next there are $\binom{n-x_2}{x_2}$ ways to pick x_2 supertiles to have a domino covering the second and third cell among those not chosen in the last step to have a domino covering the first and second cell. The unchosen $n-x_1-x_2$ supertiles have a square on the second cell. Continuing in this fashion, there are $\binom{n-x_i}{x_i}$ ways to pick which supertiles have a domino beginning at the i^{th} cell for $1 \leq i \leq L$. Hence O_1, \ldots, O_t and $C_1, \ldots, C_{n-t}, C_{n+1-t}$ can be
created in exactly $F_k\binom{n-x}{x_1}\binom{n-x-1}{x_2}\cdots\binom{n-x-L+1}{x_L}$ ways. Summing over all values of x_i gives us the left side of equation (1).

By counting our tilings in a slightly different way, we combinatorially obtain another identity presented in [4]:

$$\sum_{i \geq 0} \sum_{j \geq 0} \binom{i+j}{i} \binom{n-j-i}{j} F_{L-1}^j F_{L+1}^{n-2j-i} = F_{(n+1)L}. \quad (2)$$

Proof: $F_{(n+1)L}$ counts the ways to create super tiles S_1, \ldots, S_{n+1} subject to the same conditions as before. This time, we classify super tiles in four ways, depending on whether they are closed on the left only, right only, both, or neither. If, for some $0 \leq j \leq \left\lfloor \frac{n}{2} \right\rfloor$, S_1, \ldots, S_{n+1} contains exactly j super tiles R_1, \ldots, R_j closed on the right only, then there must be exactly $j+1$ super tiles L_1, \ldots, L_{j+1} closed on the left only. Subsequently, S_1, \ldots, S_{n+1} has subsequence $L_1, R_1, L_2, R_2, \ldots, L_j, R_j, L_{j+1}$. For example, see Figure 2. Since each of the super tiles above has length L with one half-domino and $L - 1$ free cells, this subsequence can be tiled $(F_L)^{2j+1}$ ways.

![Figure 2](image)

FIGURE 2. When this length 19 board (plus half-domino) is split after every 4 cells, we create 5 super tiles that are closed, respectively, on both sides, left side, neither side, right side, and left side.

Now suppose S_1, \ldots, S_{n+1} is to have exactly i super tiles that are open at both ends, where $0 \leq i \leq n - 2j$. We first place these super tiles, like i identical balls to be placed in $j+1$ distinct buckets, between any L_k and R_k or after L_{j+1}. Since there are $\binom{n-b-1}{a}$ ways to place a identical balls into b distinct buckets, there are $\binom{i+j}{i}$ ways to do this. Once placed, since each has $L - 2$ free cells, they can be tiled $(F_{L-1})^i$ ways.

Finally, the remaining $n - 2j - i$ super tiles that are closed on both ends can be placed into $j + 1$ different buckets (before L_1 or between any R_k and L_{k+1}) in $\binom{n-2j-i}{n-j-i} = \binom{n-j-i}{j}$ ways. Once placed, they can be tiled $(F_{L+1})^{n-2j-i}$ ways.

Consequently, the number of legal ways to choose super tiles S_1, \ldots, S_{n+1} with exactly j super tiles closed on the right only and i super tiles open on both ends is $\binom{i+j}{i} \binom{n-j-i}{j} F_{L-1}^j F_{L+1}^{n-2j-i}$. (Notice that the second binomial coefficient causes this quantity to be zero whenever $n-j-i < j$, i.e., when $2j+i > n$.) Summing over all i and j proves equation (2).
Notice that both equations (1) and (2) imply that for all \(n \geq 1 \), \(F_L \) divides \(F_{nL} \). However, a more direct combinatorial proof is possible, without invoking supertiles. Specifically, we have:

\[
F_L \sum_{j=1}^{n} (F_{L-1})^{j-1} F_{(n-j)L+1} = F_{nL}.
\]

Proof: The right side counts the ways to tile a board of length \(nL - 1 \). The left side of (3) counts this by conditioning on the first \(j \), \(1 \leq j \leq n \), for which the tiling has a square or domino ending at cell \(jL - 1 \). Such a tiling consists of \(j - 1 \) tilings of length \(L - 2 \), each followed by a domino. This is followed by a tiling of the next \(L - 1 \) cells (cells \((j-1)L+1 \) through \(jL-1 \)), followed by a tiling of the remaining \(nL - jL \) cells. This can be accomplished \((F_{L-1})^{j-1}F_L F_{(n-j)L+1} \) ways, and the identity follows.

The authors gratefully acknowledge the assistance of Jennifer J. Quinn. This research was supported by The Reed Institute for Decision Science and the Beckman Research Foundation.

REFERENCES

AMS Classification Numbers: 05A19, 11B39