Troisième Rencontre Internationale sur les Polynômes à Valeurs Entières

RENCONTRE ORGANISÉE PAR :
Sabine Evrard

29 novembre-3 décembre 2010

Farid Bencherif

Sur une propriété des polynômes de Nörlund

<http://acirm.cedram.org/item?id=ACIRM_2010__2_2_71_0>

Centre international de rencontres mathématiques
U.M.S. 822 C.N.R.S./S.M.F.
Luminy (Marseille) FRANCE

cedram

Texte mis en ligne dans le cadre du
Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/
Sur une propriété des polynômes de Nörlund

Farid Bencherif

Résumé

In this paper, we prove a remarkable property of the coefficients of Nörlund’s polynomials obtained mainly from a result of J.-L. Chabert.

1. Introduction

1.1. Polynômes de Nörlund.

Les polynômes de Nörlund $B_n^{(x)}$ ([16], chapitre 6) et $b_n^{(x)}$ sont définis par

\[
\sum_{n=0}^{\infty} B_n^{(x)} \frac{z^n}{n!} = \left(\frac{z}{e^z - 1} \right)^x \quad \text{et} \quad \sum_{n=0}^{\infty} b_n^{(x)} z^n = \left(\frac{z}{\ln(1 + z)} \right)^x.
\]

Les polynômes de Nörlund $B_n^{(x)}$ sont aussi appelés nombres généralisés de Bernoulli d’ordre x; $B_n^{(1)} = B_n$ est le n-ième nombre ordinaire de Bernoulli; $b_n^{(1)} = b_n$ est appelé n-ième nombre de Bernoulli de seconde espèce et aussi n-ième nombre de Cauchy. Il est bien connu et facile à prouver que

\[
B_{2n+1} = 0 \quad \text{pour} \quad n \geq 1.
\]

On a

\[
B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_4 = -\frac{1}{30}, B_6 = \frac{1}{42},
\]

et

\[
b_0 = 1, b_1 = \frac{1}{2}, b_2 = -\frac{1}{12}, b_3 = \frac{1}{24}, b_4 = -\frac{19}{720}, b_5 = \frac{3}{160}.
\]

Mots clés. Bernoulli numbers.
Pour $n \geq 1$, $B_n^{(x)}$ et $b_n^{(x)}$ sont des polynômes en x de degré n à coefficients rationnels et de coefficients dominants respectifs $(\frac{1}{2})^n$ et $\frac{1}{n!}$. On a

\[
\begin{aligned}
B_0^{(x)} &= 1 \\
B_1^{(x)} &= -\frac{1}{2}x \\
B_2^{(x)} &= -\frac{1}{2}x^2 - \frac{1}{12}x \\
B_3^{(x)} &= -\frac{1}{2}x^3 + \frac{1}{3}x^2 \\
B_4^{(x)} &= -\frac{1}{2}x^4 - \frac{1}{8}x^3 + \frac{1}{48}x^2 + \frac{1}{120}x \\
B_5^{(x)} &= -\frac{1}{2}x^5 + \frac{5}{48}x^4 - \frac{5}{96}x^3 - \frac{1}{48}x^2
\end{aligned}
\]

Les nombres de Stirling de première espèce $s(n,k)$ et de deuxième espèce $S(n,k)$ sont définis par ([8], [11]) :

\[
\sum_{n=0}^{\infty} s(n,k) \frac{x^n}{n!} = \left(\ln(1+x)\right)^k \quad \text{et} \quad \sum_{n=0}^{\infty} S(n,k) \frac{x^n}{n!} = \left(e^x - 1\right)^k.
\]

Il est bien connu que, pour k fixé, $s(n,n-k)$ et $S(n+k,n)$ sont des polynômes en n qui s’expriment à l’aide des polynômes de Nörlund ([4], [10], [15]) :

\[
s(n,n-k) = \binom{n-1}{k} B_k^{(n)} \quad \text{et} \quad S(n+k,n) = \binom{n+k}{k} B_k^{(-n)}.
\]

Pour n et $k \geq 0$, posons

\[
T_n(x) = \binom{x-1}{n} B_n^{(x)}.
\]

$T_n(x)$ est un polynôme de degré $2n$, appelé polynôme de Stirling par D.S. Mitrinović et R.S. Mitrinović. On déduit de (1.4) et (1.5) les relations

\[
s(n,n-k) = T_k(n) \quad (\text{pour } n \geq k) \quad \text{et} \quad S(n+k,n) = (-1)^k T_k(-n).
\]

Il est facile de constater à l’aide des relations (1.3) et (1.1) que

\[
s(n,n-k) = k \binom{n}{k} b_k^{(k-n)}.
\]

On déduit alors de (1.4) et (1.7) la relation suivante

\[
(n-x)B_n^{(x)} = -n! x b_n^{(n-x)}.
\]

1.2. Les suites d’entiers (M_n), (d_n) et (m_n).

Nous allons définir trois suites d’entiers (M_n), (d_n) et (m_n) attachées respectivement aux suites de polynômes $(b_n^{(x)})$ et $(B_n^{(x)})$ et $(T_n(x))$.

- La suite des nombres de Minkowski, répertoriée A053657 dans [17], est la suite d’entiers $(M_n)_{n \geq 0}$ définie par

\[
M_n := \prod_{p \text{ premier}} p^{\left\lfloor \frac{n}{p-1} \right\rfloor + \left\lfloor \frac{n}{p^2(p-1)} \right\rfloor + \left\lfloor \frac{n}{p^3(p-1)} \right\rfloor + \cdots}
\]

Remarquons que, si $p > n + 1$, le facteur correspond dans le produit (1.9) vaut 0, et donc M_n est en fait un produit fini. La suite d’entiers

\[
(M_n)_{n \geq 0} = (1, 2, 24, 48, 5760, 11520, 2903040, 5806080, 1393459200, \ldots)
\]
intervient dans de nombreuses situations (cf. [12], [6], [7]). Les deux propriétés suivantes faciles à prouver nous seront utiles :

\begin{equation}
(n+1)! \mid M_n \text{ et } M_{2n+1} = 2M_{2n}
\end{equation}

- La suite d'entiers \((d_n)_{n \geq 0} = \left(\frac{M_n}{n!} \right)_{n \geq 0} \) est répertoriée A001898 dans [17] :

\[
(d_n)_{n \geq 0} = (1, 2, 12, 8, 240, 96, 4032, 1152, 34560, 7680, 101376...).
\]

De (1.10), on déduit que

\begin{equation}
\frac{d_{2n}}{d_{2n+1}} = \frac{2n+1}{2}.
\end{equation}

- La suite d'entiers \((m_n)_{n \geq 0} = \left(\frac{M_n}{n!} \right)_{n \geq 0} \), répertoriée A163176 dans [17], a été mise en évidence par D.S. Mitrinović et R.S. Mitrinović dans [14] :

\[
(m_n)_{n \geq 0} = (1, 1, 4, 2, 48, 16, 576, 144, 3840, 768, 9216...).
\]

Le résultat suivant est essentiel dans la démonstration du théorème principal qui suit. Rappelons qu'un polynôme non nul de \(\mathbb{Z}[x] \) est dit primitif si le pgcd de l'ensemble de ses coefficients vaut 1.

Lemme 1. Pour tout entier \(n \geq 0 \),

\begin{equation}
M_n b_n^{(x)}\text{ est un polynôme primitif de } \mathbb{Z}[x]
\end{equation}

\begin{equation}
d_n B_n^{(x)}\text{ est un polynôme primitif de } \mathbb{Z}[x].
\end{equation}

Démonstration. Dans [6], J.-L. Chabert prouve que \((-1)^n M_n b_n^{(x)}\) est un polynôme primitif de \(\mathbb{Z}[x] \). On en déduit (1.12) ainsi que la primitivité du polynôme \(M_n x b_n^{(n-x)} \) de \(\mathbb{Z}[x] \). Remarquons alors qu'avec (1.8), on a

\[
d_n(n-x)B_n^{(x)} = -M_n x b_n^{(n-x)}.
\]

Par suite, \(d_n(n-x)B_n^{(x)}\) est aussi un polynôme primitif de \(\mathbb{Z}[x] \); la relation (1.13) en résulte. On peut aussi obtenir la relation (1.13) directement d’après un résultat d’Adelberg ([1], Corollary 3).

1.3. Le résultat principal.

Théorème 2. Avec \(M_n := \prod_{p \text{ premier}} p^{\left\lfloor \frac{n}{p-1} \right\rfloor + \left\lfloor \frac{n}{p^2-1} \right\rfloor + \left\lfloor \frac{n}{p^3-1} \right\rfloor + \ldots} \) et \(d_n = \frac{M_n}{n!} \), on a, pour \(n \geq 3 \) :

\begin{equation}
B_{2n}^{(x)} = \frac{x}{d_{2n}} \left(\alpha_{2n-1}^n x^{2n-1} + \alpha_{2n-2}^n x^{2n-2} + \ldots + \alpha_1^nx + \alpha_0^n \right)
\end{equation}

\begin{equation}
B_{2n+1}^{(x)} = -\frac{x^2}{d_{2n+1}} \left(\beta_{2n-1}^n x^{2n-1} + \beta_{2n-2}^n x^{2n-2} + \ldots + \beta_1^nx + \beta_0^n \right)
\end{equation}

\[
\sum_{k=0}^{2n-1} \alpha_k^nx^k \text{ et } \sum_{k=0}^{2n-1} \beta_k^nx^k \text{ étant des polynômes primitifs de } \mathbb{Z}[x] \text{ avec}
\]

\[
\alpha_{2n-1}^n = 2n+1, \quad \alpha_{2n-2}^n = 2n-1, \quad \alpha_{2n-3}^n = 2n-3, \quad \alpha_1^n = 1, \quad \alpha_0^n = 1.
\]

Ainsi, on a pour \(n = 3 \)

\[
d_6 B_6^{(x)} = x(63x^5 - 315x^4 + 91x^2 - 42x - 16)
\]

\[
d_7 B_7^{(x)} = -x^2(9x^5 - 63x^4 + 105x^3 + 7x^2 - 42x - 16)
\]

\[
\frac{\alpha_3}{\beta_3} = 7, \quad \frac{\alpha_2}{\beta_2} = 5, \quad \frac{\alpha_1}{\beta_1} = 3, \quad \frac{\alpha_0}{\beta_0} = 1.
\]

et pour \(n = 4 \)

\[
d_8 B_8^{(x)} = x(135x^7 - 1260x^6 + 1350x^5 - 840x^4 - 2345x^3 - 540x^2 + 404x + 144)
\]

\[
d_9 B_9^{(x)} = -x^2(15x^7 - 180x^6 + 630x^5 - 448x^4 - 665x^3 + 100x^2 + 404x + 144)
\]
Remarque 3. Pour $n \geq 1$, on a $P_{2n+1}^{(1)} = B_{2n+1} = 0$. On en déduit que le polynôme $\beta_{2n-1}^{n}x^{2n-1} + \beta_{2n-2}^{n}x^{2n-2} + \beta_{2n-3}^{n}x^{2n-3} + \cdots + \beta_{1}^{n}x + \beta_{0}^{n}$ est divisible par $x - 1$ dans $\mathbb{Z}[x]$. Avec les notations du théorème 2, on peut écrire pour $n \geq 1$

$$B_{2n}^{(x)} = \frac{1}{(2n+1)m_{2n}}xP_{2n}(x)$$

et

$$B_{2n+1}^{(x)} = \frac{x^2(x - 1)}{(2n + 2)m_{2n+1}}P_{2n+1}(x),$$

où

$$P_{2n}(x) = \alpha_{2n-1}^{n}x^{2n-1} + \alpha_{2n-2}^{n}x^{2n-2} + \alpha_{2n-3}^{n}x^{2n-3} + \cdots + \alpha_{1}^{n}x + \alpha_{0}^{n}$$

et

$$(x - 1)P_{2n+1}(x) = -(\beta_{2n-1}^{n}x^{2n-1} + \beta_{2n-2}^{n}x^{2n-2} + \beta_{2n-3}^{n}x^{2n-3} + \cdots + \beta_{1}^{n}x + \beta_{0}^{n}),$$

les polynômes $P_{2n}(x)$ et $P_{2n+1}(x)$ étant des polynômes primitifs de $\mathbb{Z}[x]$ vérifiant

$$P_{2n}(0) = \alpha_{0}^{n} = \beta_{0}^{n} = P_{2n+1}(0).$$

1.4. Propriété des polynômes de Stirling.

D.S. Mitrinović et R.S. Mitrinović [14] ont déterminé les polynômes de Stirling $T_n(x)$ pour $n \in \{1, 9\}$ et ont trouvés :

$$T_1(x) = -\left(\frac{x}{2}\right)$$

$$T_2(x) = \frac{1}{4}\left(\frac{x}{3}\right)P_2(x)$$

$$T_3(x) = \frac{1}{2}\left(\frac{x}{4}\right)x(x - 1)P_3(x)$$

$$T_4(x) = \frac{1}{48}\left(\frac{x}{5}\right)P_4(x)$$

$$T_5(x) = \frac{1}{16}\left(\frac{x}{6}\right)x(x - 1)P_5(x)$$

$$T_6(x) = \frac{1}{576}\left(\frac{x}{7}\right)P_6(x)$$

$$T_7(x) = \frac{1}{144}\left(\frac{x}{8}\right)x(x - 1)P_7(x)$$

$$T_8(x) = \frac{1}{3840}\left(\frac{x}{9}\right)P_8(x)$$

$$T_9(x) = \frac{1}{768}\left(\frac{x}{10}\right)x(x - 1)P_9(x)$$

où

$$P_2(x) = 3x - 1$$

$$P_3(x) = -1$$

$$P_4(x) = 15x^3 - 30x^2 + 5x + 2$$

$$P_5(x) = -3x^3 + 7x + 2$$

$$P_6(x) = 63x^5 - 315x^4 + 315x^3 + 91x^2 - 42x - 16$$

$$P_7(x) = -9x^4 + 54x^3 - 51x^2 - 58x - 16$$

$$P_8(x) = 135x^7 - 1260x^6 + 3150x^5 - 840x^4 - 2345x^3 - 540x^2 + 404x + 144$$

$$P_9(x) = -15x^6 + 165x^5 - 465x^4 - 17x^3 + 648x^2 + 548x + 144.$$

Ils ont constaté que les $P_n(x)$ sont des polynômes primitifs de $\mathbb{Z}[x]$ vérifiant :

$$P_2(0) = P_3(0), \quad P_4(0) = P_5(0), \quad P_6(0) = P_7(0), \quad P_8(0) = P_9(0).$$
Ils ont alors posé la question de savoir si cette propriété est vérifiée de manière générale pour le couple de polynômes \((P_{2k}(n), P_{2k+1}(n))\) associé au couple de nombres de Stirling \((s(n, n - 2k), s(n, n - (2k + 1)))\) pour tout \(k \geq 1\) ([14], page 4). Le corollaire suivant répond positivement à cette question.

Corollaire 4. Pour tout entier \(k \geq 1\), il existe deux polynômes primitifs de \(\mathbb{Z}[x]\), \(P_{2k}(x)\) et \(P_{2k+1}(x)\) tels que

\[
(1.16) \quad s(n, n - 2k) = \frac{1}{m_{2k}} \binom{n}{2k+1} P_{2k}(n) \quad (n \geq 2k)
\]

\[
(1.17) \quad s(n, n - 2k - 1) = \frac{1}{m_{2k+1}} \binom{n}{2k+2} n(n-1) P_{2k+1}(n) \quad (n \geq 2k + 1),
\]

\[
(1.18) \quad P_{2k}(0) = P_{2k+1}(0).
\]

Démonstration. D'après (1.6), pour \(k \geq 1\), on a :

\[
s(n, n - 2k) = T_{2k}(n) \text{ si } n \geq 2k \text{ et } s(n, n - 2k - 1) = T_{2k+1}(n) \text{ si } n \geq 2k + 1.
\]

Compte tenu de la relation (1.5) et de la remarque 3, on a

\[
T_{2k}(n) = \binom{n-1}{2k} B_{2k}(n) = \frac{n}{2k} \binom{n}{2k+1} m_{2k} P_{2k}(n) = \frac{1}{m_{2k}} \binom{n}{2k+1} P_{2k}(n)
\]

et

\[
T_{2k+1}(n) = \binom{n-1}{2k+1} B_{2k+1}(n) = \frac{n^2(n-1)}{(2k+2)m_{2k+1}} P_{2k+1}(n) = \frac{1}{m_{2k+1}} \binom{n}{2k+2} n(n-1) P_{2k+1}(n)
\]

où \(P_{2k}(x)\) et \(P_{2k+1}(x)\) sont primitifs dans \(\mathbb{Z}[x]\) et vérifient \(P_{2k}(0) = P_{2k+1}(0)\). □

2. Démonstration du théorème principal

Plusieurs auteurs se sont intéressés aux coefficients du polynôme \(B_n^{(x)}\) ([5], [9], [13]). Dans [13], (Theorem 1 et Theorem 2), G. D. Liu et H. M. Srivastava ont prouvé la formule explicite donnée dans le lemme suivant :

Lemme 5. Pour \(n \geq 1\), \(B_n^{(x)}\) est un polynôme de degré \(n\), de terme constant nul et, pour \(1 \leq k \leq n\), le coefficient de \(x^k\) est égal à :

\[
[x^k] B_n^{(x)} = (-1)^{n-k} n! \sum_{i_1 + i_2 + \cdots + i_k = n \atop i_j \geq 1 \text{ pour } j = 1, \ldots, k} \frac{B_{i_1} \ldots B_{i_k}}{(i_1 \ldots i_k) i_1! \ldots i_k!}.
\]

A l’aide de ce lemme, on obtient aisément les relations suivantes.
Lemme 6. Pour $n \geq 2$, on a

\[
\begin{align*}
[x^n] B_n^{(x)} &= (-1)^n \frac{n!}{2^n} \\
[x^{n-1}] B_n^{(x)} &= (-1)^{n-1} \frac{n!}{3^n} \\
[x^{n-2}] B_n^{(x)} &= (-1)^{n-2} \frac{n!}{4^n} \\
[x] B_n^{(x)} &= (-1)^{n-1} \frac{n!}{n^n} \\
[x^2] B_{2n}^{(x)} &= \frac{1}{2} \sum_{1 \leq i \leq n-1} \binom{2n}{2i} B_{2i} B_{2n-2i} \\
[x^2] B_{2n+1}^{(x)} &= \frac{(2n+1) B_{2n}}{4n} \\
[x^3] B_{2n+1}^{(x)} &= -\frac{2n+1}{4} \sum_{1 \leq i \leq n-1} \binom{2n}{2i} B_{2i} B_{2n-2i}
\end{align*}
\]

On sait que d’après les lemmes 1 et 5 que $d_n B_n^{(x)}$ est un polynôme primitif de $\mathbb{Z}[x]$, de terme constant nul. De plus d’après la relation (1.2) et le lemme 6, on a $[x] B_{2n+1}^{(x)} = \frac{B_{2n+1}}{2n+1} = 0$ pour $n \geq 1$. Le polynôme $d_{2n+1} B_{2n+1}^{(x)}$ est donc divisible par x^n, pour $n \geq 1$. Ainsi se trouvent justifiées les écritures (1.14) et (1.15) ainsi que la primitivité dans $\mathbb{Z}[x]$ des polynômes $\sum_{k=0}^{2n-1} \alpha_k x^k$ et $\sum_{k=0}^{2n-1} \beta_k x^k$. Les relations (2) du théorème 2 découle alors de la relation (1.11) et des relations suivantes déduites du lemme 6 :

\[
\begin{align*}
\alpha_{2n-1} &= d_2 \left[x^{2n} \right] B_{2n}^{(x)} \quad \text{et} \quad \beta_{2n-1} = d_{2n} \left[x^{2n+1} \right] B_{2n+1}^{(x)} \\
\alpha_{2n-2} &= d_2 \left[x^{2n-1} \right] B_{2n}^{(x)} \quad \text{et} \quad \beta_{2n-2} = d_{2n+1} \left[x^{2n} \right] B_{2n+1}^{(x)} \\
\alpha_{2n-3} &= d_2 \left[x^{2n-2} \right] B_{2n}^{(x)} \quad \text{et} \quad \beta_{2n-3} = d_{2n+1} \left[x^{2n-1} \right] B_{2n+1}^{(x)} \\
\alpha_1 &= d_2 \left[x^{2n} \right] B_{2n}^{(x)} \quad \text{et} \quad \beta_1 = d_{2n+1} \left[x^{2n+1} \right] B_{2n+1}^{(x)} \\
\alpha_0 &= d_2 \left[x^n \right] B_{2n}^{(x)} \quad \text{et} \quad \beta_0 = d_{2n+1} \left[x^2 \right] B_{2n+1}^{(x)}
\end{align*}
\]

La preuve du théorème 2 est complète.

Références

Sur une propriété des polynômes de Nörlund

USTHB, Fac. Math., P.B. 32, El Alia, 16111, Algiers, Algeria. • fbencherif@usthb.dz