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Brownian motion

Brownian motion plays a central role in

probability theory,
the theory of stochastic processes,
physics,
economics and finance,
. . .
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Definition of Brownian motion

A stochastic process W = (Wt)t≥0 is called (standard)
Brownian motion or a Wiener process if the
following conditions are satisfied:

W0 = 0 (the process starts at zero );

it has stationary, independent increments ;

for every t > 0, Wt has a Gaussian N (0, t)
distribution ;

it has continuous sample paths (no “jumps”).
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Figure 1.3.1
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A brief history of Brownian motion

Brownian motion is named after the biologist Robert
Brown whose research dates to the 1820s.

Early in the last century, Louis Bachelier (1900),
Albert Einstein (1905) and Norbert Wiener (1923)
began developing the mathematical theory of Brownian
motion.

The construction of Bachelier (1900) was erroneous
but captured many of the essential properties of the
process. Wiener (1923) was the first to put Brownian
motion on a firm mathematical basis.

Brownian motion – p. 5



Distribution a of Brownian motion

The finite-dimensional distributions of Brownian motion
are multivariate Gaussian ;

➥ W is a Gaussian process.

Brownian motion has independent Gaussian
increments.
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Distribution a of Brownian motion

The random variables

Wt − Ws and Wt−s

have a Gaussian N (0, t − s) distribution for s < t.

➥ This follows from the stationarity of the increments.

➥ Wt − Ws has the same distribution as
Wt−s − W0 = Wt−s which is normal with zero mean and
variance t − s.
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Distribution a of Brownian motion

The variance of Wt −Ws is proportional to the length of
the interval [s, t].

➥ The larger the interval, the larger the fluctuations of
Brownian motion on this interval.
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Figure 1.3.2
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Remark

The distribution identity

Wt − Ws =
d

Wt−s

does not imply pathwise identity: in general,

Wt(ω) − Ws(ω) 6= Wt−s(ω) .

Brownian motion – p. 10



Brownian motion vs. Poisson process

The definitions of Brownian motion and the Poisson
process coincide insofar that they are processes with
stationary, independent increments.

The crucial difference is the kind of distribution of the
increments.

The requirement of the Poisson distribution makes the
sample path pure jumps functions, whereas the
Gaussian assumption makes the sample paths
continuous.
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Expectation and covariance functions
of Brownian motion

The Brownian motion has expectation function

µW (t) = E(Wt) = 0 t ≥ 0 .

Since the increments Ws − W0 = Ws and Wt − Ws are
independent for s < t, it has covariance function

covW (s, t) = E
[

[(Wt − Ws) + Ws] Ws

]

= E
[

(Wt − Ws) Ws] + E
[

(Ws)
2
]

0 ≤ s < t

= E(Wt − Ws) E(Ws) + s

= 0 + s = s .
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An alternative definition of Brownian motion

Since a Gaussian process is characterized by its
expectation and covariance functions, we can give an
alternative definition.

Brownian motion is a Gaussian process with

µW (t) = E(Wt) = 0

and
covW (s, t) = min(s, t) .

➥ What can we say about variance?
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Path properties

➥ In what follows, we fix one sample path Wt(ω), t ≥ 0
(which is a function of t), and consider its properties.

From the definition of Brownian motion, we know that
its sample paths are continuous.

Brownian paths are extremely irregular : they
oscillate wildly.

➥ The main reason is that the increments of W are
independent. In particular, increments of Brownian
motion on adjacent intervals are independent
whatever the length of the intervals.

➥ The continuity of the paths is rather surprisingly!
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Question

How irregular is a Brownian sample path?

➥ In order to answer this question, we need to introduce
a class of stochastic processes which contains
Brownian motion as a special case.
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Self-similar stochastic processes

A stochastic process X = (Xt)t≥0 is H-self-similar , for
some H > 0, if its finite-dimensional distributions
satisfy the condition

(THXt1 , . . . , THXtn) =
d

(XT t1 , . . . , XT tn) , (1)

for every T > 0, any choice of ti ≥ 0, i = 1, . . . , n, and
n ≥ 1.
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Remark

➥ Note that self-similarity is a distributional, not a
pathwise property.

➥ In (1), one must not replace “=
d

” with “=”.

Roughly speaking, self-similarity means that the
properly scaled patterns of a sample path in any small
or large time interval have similar shape, but they are
not identical.
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Non-Differentiability

The sample paths of a self-similar process are
nowhere differentiable.
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Non-Differentiability

Brownian motion is 1
2
-self-similar :

(T 1/2Wt1 , . . . , T 1/2Wtn) =
d

(WT t1 , . . . , WT tn) , (2)

for every T > 0, any choice of ti ≥ 0, i = 1, . . . , n, and
n ≥ 1.

➥ Its sample paths are nowhere differentiable.
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Self-similarity

The left-hand side of (2) are Gaussian vectors,
therefore in order to check the distributional identity it
suffices to verify that they have the same expectation
and covariance matrix.
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Differentiability of a function

The graph of a differentiable function is smooth.

If the limit

f ′(x0) = lim
∆x→0

f(x0 + ∆x) − f(x0)

∆x

exists and is finite for some x0 ∈ (0, t), say, then we may
write for small ∆x

f(x0 + ∆x) = f(x0) + f ′(x0)∆x + h(x0, ∆x)∆x ,

where h(x0, ∆x) → 0 as ∆x → 0.
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Differentiability of a function

Hence, in a small neighborhood of x0, the function f is
roughly linear (as a function of ∆x). This explains its
smoothness.

Alternatively, differentiability of f at x0 implies that there
exists a unique tangent to the curve of the function at this
point.
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Figure 1.3.3
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Question

How is the graph of a nowhere differentiable function?

➥ The graph of such a function changes its shape in the
neighborhood of any point in a completely
non-predictable manner.

➥ It is very difficult to imagine a nowhere differentiable
function, nevertheless, Brownian motion is considered
as a very good approximation to many real-life
phenomena.
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Self-Similarity

The self-similarity property of Brownian motion has an
interesting consequence for the simulation of its
sample paths.

In order to simulate a path on [0, T ] it suffices to
simulate one path on [0, 1], then scale the time interval
by the factor T and the sample path by the factor T 1/2.
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Non-Differentiability

The existence of nowhere differentiable continuous
functions was discovered in the 19th century.

One such function was constructed by Weierstrass. It was
considered as a curiosity, far away from any practical
application.

Brownian motion is a process with nowhere differentiable
sample paths. Currently it is considered as one of those
processes which have a multitude of applications in very
different fields.

➥ One of them is stochastic calculus and it is used, in
particular, in mathematical finance.
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Unbounded Variation

A further indication of the irregularity of Brownian sample
paths is the concept of unbounded variation.

Brownian sample paths do not have bounded variation
on any finite interval [0, T ].

This means that

sup
τ

n
∑

i=1

∣

∣Wti(ω) − Wti−1
(ω)

∣

∣ = ∞

where the supremum is taken over all possible
partitions τ : 0 = t0 < t1 < · · · < tn = T of [0, T ].
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Supremum

The notation
sup

n
an = a

means the supremum of a sequence of real numbers an.

If a ∈ R, a ≥ an for all n and for every ε > 0 there exists a k
such that a − ε < ak.

If a = ∞, then for every M > 0 there exists a k such that
ak > M .

For a finite index set I,

sup
n∈I

an = max
n∈I

an .
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Observation

The unbounded variation and non-differentiability of
Brownian motion sample paths are major reasons for
the failure of classical integration methods, when
applied to these paths, and for the introduction of
stochastic calculus.
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Processes derived from Brownian motion

Various Gaussian and non-Gaussian stochastic
processes of practical relevance can be derived from
Brownian motion.

We introduce some of those processes which will find
further interesting applications in finance.

As before, W = (Wt)t≥0 denotes Brownian motion.
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Brownian bridge

Consider the process

Xt = Wt − t W1 0 ≤ t ≤ 1 .

Obviously,
X0 = W0 − 0 · W1 = 0

and
X1 = W1 − 1 · W1 = 0 .

➥ For this simple reason, the process X is called
(standard ) Brownian bridge or tied down Brownian
motion.
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Figure 1.3.4
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Brownian bridge

Using the formula for linear transformations of
Gaussian random vectors, one can show that the
finite-dimensional distributions of X are Gaussian.

(Exercise)
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Linear transformation of Gaussian
random vectors

Let X = (X1, . . . , Xn) have a Gaussian N (µ, Σ) distribution
and A be an m × n matrix.

Then AX
′ has a Gaussian N (A µ′, A Σ A′).

Note that µ ∈ R
n and Σ is an n × n matrix.
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Distribution, Expectation and Covariance
of the Brownian bridge

The Brownian bridge X is a Gaussian process.

One can easily calculate the expectation and
covariance functions of the Brownian bridge:

µX(t) = E(Xt) = 0 t ∈ [0, 1]

and

covX(s, t) = min(s, t) − s · t s, t ∈ [0, 1] .

Since X is Gaussian, the Brownian bridge is
characterized by these two functions.
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Brownian motion with drift

Let us consider the process

Xt = µ t + σ Wt t ≥ 0 ,

for constants σ > 0 and µ ∈ R.

X is a Gaussian process, with expectation and
covariance

µX(t) = E(Xt) = µ t t ≥ 0

and
covX(s, t) = σ2 min(s, t) s, t ≥ 0 ,

respectively.
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The drift

The expectation function µX(t) = µ t essentially
determines the characteristic shape of the sample
paths.

The term µ t is the deterministic drift of the process
X.

Therefore X is called Brownian motion with (linear)
drift.
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Figure 1.3.6
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Prices of risky assets

With the fundamental discovery of Bachelier (1900) that
prices of risky assets (stock indices, exchange rates, share
prices, etc.) can be well described by Brownian motion, a
new area of applications of stochastic processes was born.

However, Brownian motion, as a Gaussian process, may
assume negative values, which is not a very desirable
property of a price.
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Geometric Brownian motion

Consider the process

Xt = eµ t+σWt t ≥ 0 ,

i.e. it is the exponential of Brownian motion with drift.

The process X is called geometric Brownian motion.

➥ X is not a Gaussian process.
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Expectation of a lognormal random variable

Let Z ∼ N (0, 1), then

E
[

eλ Z
]

= eλ2/2 λ ∈ R . (3)
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Proof

E
[

eλ Z
]

=
1

(2 π)1/2

∫ +∞

−∞

eλ ze−z2/2 dz

= eλ2/2 1

(2 π)1/2

∫ +∞

−∞

e−(z−λ)2/2 dz

= eλ2/2 .

Here we used the fact that 1
(2 π)1/2

e−(z−λ)2 is the density of a

Gaussian N (λ, 1) random variable.
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Expectation function of geometric
Brownian motion

From (3) and the self-similarity of Brownian motion, it
follows that

µX(t) = eµ t
E

[

eσ Wt
]

= eµ t
E

[

eσt1/2W1

]

= e(µ+1/2σ2)t .

(4)
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Covariance function of geometric
Brownian motion

For s ≤ t, Wt − Ws and Ws are independent, and
Wt − Ws =

d
Wt−s.

Hence

covX(s, t) = e(µ+1/2 σ2)(s+t)
(

eσ2s − 1
)

. (5)
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Proof

covX(s, t) = E [XsXt] − E [Xs] E [Xt]

= eµ(s+t)
E

[

eσ(Ws+Wt)
]

− e(µ+1/2 σ2)(s+t)

= eµ(s+t)
E

[

eσ[(Wt−Ws)+2Ws]
]

− e(µ+1/2 σ2)(s+t)

= eµ(s+t)
E

[

eσ(Wt−Ws)
]

E
[

e2σWs
]

− e(µ+1/2 σ2)(s+t)

= e(µ+1/2 σ2)(s+t)
(

eσ2s − 1
)

.
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Variance function of geometric
Brownian motion

In particular, geometric Brownian motion has variance
function

σ2
X(t) = covX(t, t) = e(2µ+σ2)t

(

eσ2t − 1
)

. (6)
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Figure 1.3.9
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