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Some identities for determinants of structured matrices
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Abstract

In this paper we establish several relations between the determinants of the fol-

lowing structured matrices: Hankel matrices, symmetric Toeplitz + Hankel matrices

and Toeplitz matrices. Using known results for the asymptotic behavior of Toeplitz

determinants, these identities are used in order to obtain Fisher-Hartwig type results

on the asymptotics of certain skewsymmetric Toeplitz determinants and certain Hankel

determinants.

1 Introduction

In this paper we prove identities that involve the determinants of several types of structured
matrices such as Hankel matrices, symmetric Toeplitz + Hankel matrices and skewsymmetric
Toeplitz matrices. After having established these identities we show how they can be used
in order to obtain asymptotic formulas for these determinants.

Let us first recall the underlying notation. Given a sequence {an}∞n=−∞
of complex

numbers, we associate the formal Fourier series

a(t) =

∞
∑

n=−∞

ant
n, t ∈ T. (1.1)
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The N × N Toeplitz and Hankel matrices with the (Fourier) symbol a are defined by

TN (a) = (aj−k)
N−1
j,k=0 , HN(a) = (aj+k+1)

N−1
j,k=0 . (1.2)

Usually a represents an L1-function defined on the unit circle, in which case the numbers an

are the Fourier coefficients,

an =
1

2π

∫ π

−π

a(eiθ)e−inθ dθ, n ∈ Z. (1.3)

To a given symbol a we associate the symbol ã(t) := a(t−1). The symbol a is called even
(odd) if ã(t) = ±a(t), i.e., a−n = ±an.

For our purposes it is important to define another type of Hankel matrix. Given a function
b ∈ L1[−1, 1] with moments defined by

bn =
1

π

∫ 1

−1

b(x)(2x)n−1 dx, n ≥ 1, (1.4)

the N × N Hankel matrices generated by the (moment) symbol b are defined by

HN [b] = (b1+j+k)
N−1
j,k=0 . (1.5)

We indicate the difference in the definition by using the notation HN(·) and HN [·]. The
function b is called even if b(x) = b(−x).

Our motivation to prove in the following sections identities for the above mentioned
determinants comes from several problems. The best known problem, called the Fisher-
Hartwig conjecture, concerns the asymptotics of the determinants of Toeplitz matrices for
singular symbols. One would like to be able to compute the asymptotics of the determinant
of TN(a) when the symbol a has jump discontinuities, zeros, or other singularities of a certain
form. A history of this problem and many known results and applications can be found in
[4] or [5]. In section five of this paper we prove some Fisher-Hartwig type results for certain
skewsymmetric Toeplitz matrices.

Another interesting problem is to compute asymptotically the determinants of the ma-
trices

TN(a) + HN(a)

where the symbol a also has singularities. The interest in these asymptotics, especially in
the case where a is even, arose in random matrix theory (see [1] and the references therein).
The determination of these asymptotics will be done in a forthcoming paper [2].

Finally, Hankel matrices defined by the moments of a function given on a line segment
play an important role in orthogonal polynomial theory and again in random matrix theory.
We refer the reader to [10] for orthogonal polynomial connections and to [8] for a general
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account of random matrix theory. In section five we prove two results for the asymptotics
of the determinants of the Hankel moment matrices. These results allow the function b to
have jump discontinuities, but require the function to be even.

The paper is organized as follows. Sections 2, 3, and 4 contain all the linear algebra
type results which prove the exact identities for the various types of matrices and are self-
contained. The asymptotic results are contained in section 5 and use the results of the
previous sections and some already known results for Toeplitz matrices.

2 Hankel determinants versus symmetric Toeplitz +

Hankel determinants

We begin with a preliminary result which will allow us to show the relationship with sym-
metric Toeplitz plus Hankel matrices and the Hankel moment matrices.

Proposition 2.1 Let {an}∞n=−∞
be a sequence of complex numbers such that an = a−n and

let {bn}∞n=1 be a sequence defined by

bn =
n−1
∑

k=0

(

n − 1

k

)

(a1−n+2k + a2−n+2k). (2.6)

Define the one-sided infinite matrices

A = (aj−k + aj+k+1)
∞

j,k=0 , B = (bj+k+1)
∞

j,k=0 , (2.7)

and the upper triangular one-sided infinite matrix

D =











ξ(0, 0) ξ(1, 1) ξ(2, 2) . . .
ξ(1, 0) ξ(2, 1) . . .

ξ(2, 0)

0
. . .











where ξ(n, k) =

(

n

[k
2
]

)

. (2.8)

Then B = DT AD.

Proof. The assertion is equivalent to the statement that for all n, m ≥ 0 the following
identity holds:

bn+m+1 =

n
∑

j=0

m
∑

k=0

(an−j−m+k + an−j+m−k+1)ξ(n, j)ξ(m, k), (2.9)
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where bn+m+1 is given by

bn+m+1 =

n+m
∑

r=0

(

n + m

r

)

(a2r−n−m + a2r−n−m+1). (2.10)

In order to prove this identity it is sufficient to prove that for each s ≥ 0 the terms as = a−s

occur as many times in (2.9) as in (2.10). In fact, as and a−s occurs in (2.9) exactly
N1 + N2 + N3 times if s ≥ 1 and N1 = N2 times if s = 0, where

N1 =
∑

0≤j≤n

0≤k≤m

j−k=n−m−s

(

n

[ j
2
]

)(

m

[k
2
]

)

=
∑

0≤j≤n

m+1≤k≤2m+1

j+k=n+m−s+1

(

n

[ j
2
]

)(

m

[k
2
]

)

,

N2 =
∑

0≤j≤n

0≤k≤m

j−k=n−m+s

(

n

[ j
2
]

)(

m

[k
2
]

)

=
∑

n+1≤j≤2n+1

0≤k≤m

j+k=n+m−s+1

(

n

[ j
2
]

)(

m

[k
2
]

)

,

N3 =
∑

0≤j≤n

0≤k≤m

j+k=n+m+1−s

(

n

[ j
2
]

)(

m

[k
2
]

)

.

In the expression for N1 we have made a change of variables k 7→ 2m + 1 − k and in N2 a
change of variables j 7→ 2n + 1 − j. Hence it follows that

N1 + N2 + N3 =
∑

j,k≥0

j+k=n+m+1−s

(

n

[ j
2
]

)(

m

[k
2
]

)

.

Moreover, N1 = N2 = N1+N2+N3

2
for s = 0 since then N3 = 0.

On the other hand, as and a−s occurs in (2.10) exactly M1 + M2 times if s ≥ 1 and
M1 = M2 times if s = 0, where

M1 =

(

n + m

[n+m+s
2

]

)

, M2 =

(

n + m

[n+m−s
2

]

)

.

Thus we are done as soon as we have shown that M1 + M2 = N1 + N2 + N3 for each s ≥ 0.
We distinguish two cases. If n + m + 1 − s is even, then we substitute j 7→ 2j, k 7→ 2k,

and j 7→ 2j + 1, k 7→ 2k + 1 in the above expression for N1 + N2 + N3 and arrive at

N1 + N2 + N3 =
∑

j,k≥0

2j+2k=n+m+1−s

(

n

j

)(

m

k

)

+
∑

j,k≥0

2j+2k=n+m−1−s

(

n

j

)(

m

k

)

.

=

(

n + m
n+m+1−s

2

)

+

(

n + m
n+m−1−s

2

)

= M1 + M2.
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If n + m + 1 − s is odd, then we substitute j 7→ 2j, k 7→ 2k + 1, and j 7→ 2j + 1, k 7→ 2k in
the expression for N1 + N2 + N3 and obtain

N1 + N2 + N3 = 2
∑

j,k≥0

2j+2k=n+m−s

(

n

j

)(

m

k

)

= 2

(

n + m
n+m−s

2

)

= M1 + M2,

which also completes the proof. ✷

Theorem 2.2 Let {an}∞n=−∞
and {bn}∞n=1 fulfill the assumptions of the previous proposition.

For N ≥ 1 define the matrices

AN = (aj−k + aj+k+1)
N−1
j,k=0 , BN = (bj+k+1)

N−1
j,k=0 . (2.11)

Then det AN = det BN .

Proof. AN and BN are the N ×N sections of the infinite matrices A and B of the previous
proposition. Let DN be the N×N sections of the infinite matrix D. Because of the triangular
structure of D, it follows that BN = DT

NANDN . Noting that the entries on the diagonal of
D are equal to ξ(n, 0) = 1, we obtain the desired assertion. ✷

The previous theorem shows the connection between the determinants of a symmetric
Toeplitz + Hankel matrix on the one hand and a Hankel determinant on the other hand.
We now express this relationship by using the standard notation for these matrices.

Theorem 2.3 Let a ∈ L1(T) be an even function, and define b ∈ L1[−1, 1] by

b(cos θ) = a(eiθ)

√

1 + cos θ

1 − cos θ
. (2.12)

Then det(TN(a) + HN(a)) = det HN [b].

Proof. The moments of b are given by

bn =
1

π

∫ 1

−1

b(x)(2x)n−1 dx

=
1

π

∫ π

0

a(eiθ)(1 + cos θ)(2 cos θ)n−1 dθ

=
1

2π

∫ π

−π

a(eiθ)(1 + e−iθ)(eiθ + e−iθ)n−1 dθ

5



=
1

2π

∫ π

−π

a(eiθ)

(

n−1
∑

k=0

(ei(n−1−2k)θ + ei(n−2−2k)θ)

(

n − 1

k

)

)

dθ

=
n−1
∑

k=0

(

n − 1

k

)

(a−n+1+2k + a−n+2+2k) .

Here we have made a change of variables x = cos θ and written (eiθ + e−iθ)n−1 using the
binomial formula. With regard to (2.6) and Theorem 2.2 this completes the proof. ✷

In regard to relation (2.12) we remark that b ∈ L1[−1, 1] in and only if a(eiθ)(1+cos θ) ∈
L1(T).

Thus at this point we have shown that if a and b satisfy the relation (2.12), then

det HN [b] = det(TN (a) + HN(a)).

But actually more can be done in the case that the symbol a satisfies a quarter wave symme-
try property. Then, in fact, certain Hankel moment determinants can be written as Toeplitz
determinants. The symbol b(x) ∈ L1[−1, 1] of these Hankel determinants is of the form

b(x) = b0(x)

√

1 + x

1 − x
(2.13)

where b0(−x) = b0(x) for all x ∈ [−1, 1].
We first begin with the following auxiliary result. In what follows, let WN stand for the

matrix acting on CN by

WN : (x0, x1, . . . , xN−1) 7→ (xN−1, . . . , x1, x0),

and let IN denote the N × N identity matrix.

Proposition 2.4 Let a ∈ L1(T) and assume that a(−t) = a(t−1) = a(t). Define

d(eiθ) = a(eiθ/2). (2.14)

Then det(TN(a) + HN(a)) = det TN(d).

Proof. Note first that d(t) is well defined since a(t) = a(−t). Moreover, a2n+1 = 0 and
a2n = dn. By rearranging rows and columns of TN(a) + HN(a) in an obvious way, it is easily
seen that this matrix is similar to

(

(a2j−2k)
N1−1
j,k=0 0

0 (a2j−2k)
N2−1
j,k=0

)

+

(

0 (a2j+2k+2)
N1−1,N2−1
j=0, k=0

(a2j+2k+2)
N2−1,N1−1
j=0, k=0 0

)
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where N1 =
[

N+1
2

]

and N2 =
[

N−1
2

]

. This matrix equals

(

TN1
(d) HN1,N2

(d)
HN2,N1

(d) TN2
(d)

)

,

where HN1,N2
(d) and HN2,N1

(d) are Hankel matrices of size N1 × N2 and N2 × N1, respec-
tively. Multiplying the last matrix from the left and the right with the diagonal matrix
diag (WN1

, IN2
) we obtain the matrix TN(d). Notice in this connection that dn = d−n since

a(t−1) = a(t). ✷

Corollary 2.5 Let b ∈ L1[−1, 1] and suppose (2.13) holds with b0(−x) = b0(x) for all
x ∈ [−1, 1]. Define the function

d(eiθ) = b0(cos
θ

2
). (2.15)

Then det HN [b] = det TN (d).

Proof. Since b0(x) = b0(−x) it follows from definition (2.12) that a(−t) = a(t−1) =
a(t). Now we can apply Theorem 2.3 and Proposition 2.4 in order to obtain the identity
det HN [b] = det(TN(a) + HN(a)) = det TN (d). ✷

Concerning the previous corollary, we wish to emphasize that the function d is even, and
hence the matrices TN(d) are symmetric.

3 Symmetric Toeplitz + Hankel determinants versus

skewsymmetric Toeplitz determinants

The main result of this section has been established in [7, Lemma 18] and proved in [6,
Lemma 1] and [9, Proof of Thm. 7.1(a)]. We give a slightly simplified and self-contained
proof here.

Theorem 3.1 Let {an}∞n=−∞
be a sequence of complex numbers such that a−n = an. Let cn

be defined by

cn =
n
∑

k=−n+1

ak for n > 0, (3.16)

and put c0 = 0 and c−n = −cn. Then det T2N(c) = (det(TN(a) + HN(a)))2.

7



Proof. First of all we multiply the matrix T2N(c) from the left and right with diag (WN , IN).
We obtain the matrix

(

TN(c̃) HN(c̃)
HN(c) TN (c)

)

=

(

−TN (c) −HN(c)
HN(c) TN (c)

)

by observing that c̃ = −c. Next we claim that
(

TN (1 − t) 0
TN(t) IN

)(

−TN (c) −HN(c)
HN(c) TN (c)

)(

TN(1 − t−1) TN(t−1)
0 IN

)

=

(

IN 0
0 TN (1 + t)

)(

XN −TN (a) − HN(a)
TN(a) + HN(a) 0

)(

IN 0
0 TN (1 + t−1)

)

with a certain matrix XN . If we take the determinant of this equation, we obtain the desired
determinant identity.

In order to proof the above matrix identity it suffices to show that the following three
equations hold:

TN(c) − TN(t)TN (c)TN(t−1) + HN(c)TN(t−1) − TN (t)HN(c) = 0, (3.17)

−TN (t)TN(c)TN (1 − t−1) + HN(c)TN(1 − t−1) = TN(1 + t) (TN(a) + HN(a)) , (3.18)

TN(1 − t)TN(c)TN(t−1) + TN(1 − t)HN(c) = (TN(a) + HN (a))TN (1 + t−1). (3.19)

Notice that (3.19) can be obtained from (3.18) by passing to the transpose. Moreover, by
employing (3.17) equation (3.18) reduces to

TN(1 − t) (TN(c) + HN(c)) = TN(1 + t) (TN(a) + HN(a)) . (3.20)

Let us first prove (3.17). We introduce the N × 1 column vectors e0 = (1, 0, 0, . . . , 0)T

and γN = (0, c1, c2, . . . , cN−1)
T . Then

TN(c) − TN (t)TN(c)TN(t−1) = γNeT
0 − e0γ

T
N = TN(t)HN(c) − HN(c)TN(t−1),

whence indeed (3.17) follows.
Next we remark that from the definition of the sequences {an}∞n=−∞

and {cn}∞n=−∞
it

follows that cn − cn−1 = an + an−1 for all n ∈ Z. Introducing the column vectors γ̂N =
(c1, . . . , cN)T , αN = (a0, . . . , aN−1)

T and α̂N = (a1, . . . , aN)T , it can be readily verified that

TN (1 − t)TN (c) = (cj−k − cj−k−1)
N−1
j,k=0 − e0γ̂

T
N ,

TN(1 + t)TN(a) = (aj−k + aj−k−1)
N−1
j,k=0 − e0α̂

T
N ,

TN (1 − t)HN (c) = (cj+k+1 − cj+k)
N−1
j,k=0 + e0γ

T
N ,

TN(1 + t)HN(a) = (aj+k+1 + aj+k)
N−1
j,k=0 − e0α

T
N .
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Using the above relation cn − cn−1 = an + an−1, it follows that

TN (1 − t)TN (c) − TN (1 + t)TN(a) = −e0γ̂
T
N + e0α̂

T
N

TN(1 + t)HN (a) − TN (1 − t)HN(c) = −e0α
T
N − e0γ

T
N .

Since γ̂N − γN = α̂N + αN by the same relation, this implies equation (3.20). ✷

The results of this theorem are not easy to rephrase by using the classical notation for
Toeplitz and Hankel matrices. Consider, for instance, the simplest case where a(t) ≡ 1. Then
cn = sign(n) which are not the Fourier coefficients of an L1-function. For more information
on how one can nevertheless express the relationship between the symbols a and c, and how
the asymptotics for certain of the above determinants can be determined we refer to [2].

4 Hankel determinants versus skewsymmetric Toeplitz

determinants

The results of the previous two sections allow us to establish an identity between Hankel
determinants and determinants of skewsymmetric Toeplitz matrices. The next theorem is
an additional needed ingredient for the identity.

Theorem 4.1 Let {cn}∞n=−∞
be a sequence of complex numbers such that c−n = −cn for all

n ∈ Z. Define numbers {bn}∞n=1 by

bn =

[n
2 ]
∑

k=0

{(

n − 1

k

)

−
(

n − 1

k − 1

)}

cn−2k. (4.21)

Moreover, define the matrices

BN = (bj+k+1)
N−1
j,k=0 , C2N = (cj−k)

2N−1
j,k=0 .

Then det C2N = (det BN)2.

Proof. In formula (3.16) the numbers cn are defined in terms of the numbers a−n+1, . . . , an.
By a simple inspection of this formula, it is easy to see that for any given sequence {cn}∞n=−∞

there exists a sequence {an}∞n=−∞
such that (3.16) and an = a−n holds for all positive n.

Now let us define the numbers bn not by (4.21) but by (2.6). Then with BN and C2N

defined as above it follows from Theorem 2.2 and Theorem 3.1 that det C2N = (det BN )2. It
remains to show that (4.21) holds.

9



Indeed, we have that

[n
2 ]
∑

k=0

{(

n − 1

k

)

−
(

n − 1

k − 1

)}

cn−2k =

[n
2 ]
∑

k=0

{(

n − 1

k

)

−
(

n − 1

k − 1

)} n−2k
∑

j=−n+2k+1

aj

=
∑

−n+2k+1≤j≤n−2k

0≤2k≤n

{(

n − 1

k

)

−
(

n − 1

k − 1

)}

aj

=
n
∑

j=−n+1

min{[n−j

2 ],[n+j−1

2 ]}
∑

k=0

{(

n − 1

k

)

−
(

n − 1

k − 1

)}

aj

=

n
∑

j=−n+1

(

n − 1

min
{[

n−j
2

]

,
[

n+j−1
2

]}

)

aj

=

n
∑

j=−n+1

(

n − 1
[

n−j
2

]

)

aj =

n−1
∑

k=0

(

n − 1

k

)

(a2k+1−n + a2k+2−n).

By formula (2.6) this is equal to bn. ✷

We again express the above relationship in terms of the standard notation.

Theorem 4.2 Let b ∈ L1[−1, 1] and define c ∈ L1(T) by

c(eiθ) = i sign(θ) b(cos θ), −π < θ < π. (4.22)

Then det T2N (c) = (det HN [b])2.

Proof. Obviously, c(e−iθ) = −c(eiθ). Hence c−n = −cn. It is sufficient to verify formula
(4.21) for the Fourier coefficients and moments. First of all,

cn =
1

π

∫ π

0

b(cos θ) sin(nθ) dθ.

Hence

bn =
1

π

∫ π

0

b(cos θ)







[n
2 ]
∑

k=0

{(

n − 1

k

)

−
(

n − 1

k − 1

)}

sin((n − 2k)θ)






dθ.

The expression in the big braces equals (by a change of variables k 7→ n − k in the second
part of the sum)

[n
2 ]
∑

k=0

(

n − 1

k

)

sin((n − 2k)θ) −
n
∑

k=n−[n
2 ]

(

n − 1

n − k − 1

)

sin((2k − n)θ)

10



=
n−1
∑

k=0

(

n − 1

k

)

sin((n − 2k)θ) = (2 cos θ)n−1 sin θ.

Hence

bn =
1

π

∫ π

0

b(cos θ)(2 cos θ)n−1 sin θ dθ.

Now it is easy to see that bn are the moments of the function b. ✷

Regarding relation (4.22) we remark that c ∈ L1(T) if and only if b(x)/
√

1 − x2 ∈
L1[−1, 1].

At this point we have three main identities for Hankel moment determinants, one which
follows from Theorem 2.3, one which follows from Corollary 2.5 and finally one which follows
from the previous theorem. If we desire to find the asymptotics of the determinants of
the Hankel moment matrices it is clear that the corresponding asymptotics for Toeplitz
matrices need to be derived. In particular, in light of Theorem 4.2 and formula (4.22), it is
desirable to compute the asymptotics of the Toeplitz determinant det T2N (c), where c satisfies
c(e−iθ) = −c(eiθ) and accordingly implies that the Toeplitz matrices are skewsymmetric.
Note from this it follows that det T2N+1(c) = 0 for all N . However, this implies that a single
asymptotic formula for the determinants, such as the one given in the classical Szegö limit
theorem, or the more general Fisher-Hartwig formulas would not make sense here. In the
following section we nevertheless compute the asymptotics of such Toeplitz determinants in
some cases and raise a conjecture about more general cases.

5 Asymptotics of certain skewsymmetric Toeplitz de-

terminants and Hankel determinants

Our goal of this section is to consider Toeplitz determinants with generating function c(eiθ) =
χ(eiθ)a(eiθ) where a is an even functions and

χ(eiθ) = i sign(θ), −π < θ < π. (5.23)

Let tβ(eiθ) stand for the function

tβ(eiθ) = eiβ(θ−π), 0 < θ < 2π. (5.24)

This function has a single jump at t = 1 whose size is determined by the parameter β.
In the following proposition we assume that a is not necessarily an even function but

satisfies instead a rotation symmetry condition.
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Proposition 5.1 Assume that a ∈ L1(T) satisfies the relation a(−t) = a(t) for t ∈ T.
Define the functions

d(eiθ) = a(eiθ/2), d1(e
iθ) = t−1/2(e

iθ)d(eiθ), d2(e
iθ) = t1/2(e

iθ)d(eiθ).

Then det T2N (a) = (det TN (d))2 and det T2N(χa) = det TN(d1) det TN(d2).

Proof. From the assumptions a(t) = a(−t) it follows that the Fourier coefficients a2n+1 are
zero. Hence T2N (a) has a checkered pattern, and rearranging rows and columns it is easily
seen that T2N (a) is similar to the matrix diag (TN(d), TN(d)).

The Fourier coefficients c2n of c(t) = χ(t)a(t) are equal to zero. By rearranging the rows
and columns of T2N (χa) in the same way as above it becomes apparent that T2N (χa) is
similar to a matrix

(

0 D2

D1 0

)

where D1 =
(

c2(j−k)+1

)N−1

j,k=0
and D2 =

(

c2(j−k)−1

)N−1

j,k=0
.

From the identity

χ(eiθ) = t−1/2(e
iθ)t1/2(e

i(θ−π)) = −t1/2(e
iθ)t−1/2(e

i(θ−π)) (5.25)

it follows that d1(e
iθ) = e−iθ/2c(eiθ/2) and d2(e

iθ) = −eiθ/2c(eiθ/2). Hence D1 = TN(d1) and
D2 = −TN (d2). Since det T2N(c) = (−1)N det D1 det D2, this completes the proof. ✷

Hence we have reduced the computation of det T2N (χa) to the Toeplitz determinants
TN(d1) and TN (d2), for which in the case of piecewise continuous functions it is possible to
apply the Fisher-Hartwig conjecture under certain assumptions.

The following result, which is taken from [5], makes this explicit. Therein G(·) is the
Barnes G-function [11], d0,± are the Wiener-Hopf factors of the function d0,

d0,±(eiθ) = exp

(

∞
∑

k=1

[log d0]±ke
±ikθ

)

, (5.26)

and

d±(eiθ) = d0,±(eiθ)

R
∏

r=1

(

1 − e±i(θ−θr)
)±βr

(5.27)

are the generalized Wiener-Hopf factors of d.

Proposition 5.2 Let

d(eiθ) = d0(e
iθ)

R
∏

r=1

tβr
(ei(θ−θr)), (5.28)

12



where d0 is an infinitely differentiable nonvanishing function with winding number zero,
θ1, . . . , θR ∈ (0, 2π) are distinct numbers, and β1, . . . , βR are complex parameters satisfy-
ing |Re βr| < 1/2 for all r = 1, . . . , R. Then

det TN (t−1/2d)

det TN (d)
∼ N−1/4G(1/2)G(3/2)d+(1)−1/2d−(1)1/2, N → ∞,

det TN(t1/2d)

det TN(d)
∼ N−1/4G(1/2)G(3/2)d+(1)1/2d−(1)−1/2, N → ∞.

Moreover,

det TN(d) ∼ F NNΩE, N → ∞, (5.29)

where F = exp
(

1
2π

∫ 2π

0
log d0(e

iθ) dθ
)

, Ω = −
R
∑

r=1

β2
r , and E is another constant.

(The constant E is quite complicated, so in the interest of brevity, we omit the exact formula
from this paper and refer to [3, 4, 5] for an explicit representation.)

The previous propositions yield the following results. We keep the same notation.

Corollary 5.3 Let d be a function of the form (5.28) and assume that the same conditions
as above are fulfilled. Let a(eiθ) = d(e2iθ). Then

det T2N (χa)

det T2N (a)
∼ N−1/2G2(1/2)G2(3/2), N → ∞, (5.30)

and

det T2N(a) ∼ F 2NN2ΩE2, N → ∞. (5.31)

The following corollary gives an asymptotic formula for the determinants of Hankel mo-
ment matrices in the special case where the symbol is even.

Corollary 5.4 Let b ∈ L1[−1, 1] such that b(−x) = b(x). Define d(eiθ) = b(cos(θ/2)) and
suppose that d is of the form (5.28). Then

det HN [b] ∼ F NNΩ−1/4G(1/2)G(3/2)E, N → ∞. (5.32)

Proof. Define a(eiθ) = b(cos θ). Then Theorem 4.2 implies that (det HN [b])2 = det TN (χa).
Since b(x) = b(−x) the function is well defined and a(eiθ) = d(e2iθ). Now the formula follows
from Corollary 5.3 and by taking square roots. ✷

The interesting point in Corollary 5.3 is that the asymptotic limit of (5.30) does not
depend on the underlying function a. We remark that we have proved this limit relation
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for certain piecewise continuous functions a subject to the condition a(−t) = a(t). Our
primary goal was however to determine the limit for certain functions a satisfying the relation
a(t−1) = a(t). Our conjecture is that the asymptotic limit is given by the above expression
in general also for those functions.

In order to support this hypothesis we resort to the generalization of the Fisher-Hartwig
conjecture, which has not yet been proved, but is strongly suggested by examples. Since
det T2N+1(χa) = 0 for all N (under the assumption a(t−1) = a(t)), the asymptotics of
TN(χa) can only be described by the generalized but not the original conjecture. The crucial
observation is that one has several possibilities for representing χa in a form like (5.28).
Indeed, from (5.25) it follows that

χ(eiθ)a(eiθ) = t−1/2(e
iθ)t1/2(e

i(θ−π))a(eiθ) = −t1/2(e
iθ)t−1/2(e

i(θ−π))a(eiθ),

tacitly assuming that a admits also representation of the form (5.28) with appropriate prop-
erties.

Then the generalized conjecture predicts [3, 5] that

det TN(χa) ∼ det TN (t−1/2(e
iθ)) det TN(t1/2(e

i(θ−π))) det TN(a)E1

+(−1)N det TN (t1/2(e
iθ)) detTN (t−1/2(e

i(θ−π))) detTN (a)E2,

where E1 and E2 are the “correlation” constants

E1 = E(t−1/2(e
iθ), t1/2(e

i(θ−π)))E(t−1/2(e
iθ), a)E(t1/2(e

i(θ−π)), a)

E2 = E(t1/2(e
iθ), t−1/2(e

i(θ−π)))E(t1/2(e
iθ), a)E(t−1/2(e

i(θ−π)), a)

with E(·, ·) defined by

E(b, c) = exp

(

lim
r→1−0

∞
∑

k=1

(

k[log hrb+]k[log hrc−]−k + k[log hrb−]−k[log hrc+]k

)

)

,

hrb± and hrc± denoting the harmonic extensions of the Wiener-Hopf factors of b± and c±.
From all this it follows that

det T2N(χa)

det T2N (a)
∼ (2N)−1/2G2(1/2)G2(3/2)(E1 + E2),

where a straightforward computation of the constants gives

E1 = 2−1/2

(

a+(−1)a−(1)

a−(−1)a+(1)

)1/2

,

E2 = 2−1/2

(

a+(−1)a−(1)

a−(−1)a+(1)

)−1/2

.
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The assumption that a(t−1) = a(t) implies that a−(t) = γa+(t−1) with a certain constant
γ 6= 0. Hence

E1 = E2 = 2−1/2,

which leads to the conjecture that

det T2N(χa)

det T2N (a)
∼ N−1/2G2(1/2)G2(3/2), N → ∞. (5.33)

Using Theorem 4.2 we arrive at a conjecture for the Hankel moment matrices:

det HN [b]
√

det T2N (a)
∼ N−1/4G(1/2)G(3/2), N → ∞, (5.34)

where a(eiθ) = b(cos θ). We remark that this formula is in accordance with Corollary 5.4.
We end this section by noting one other result that follows from our identities and

Corollary 2.5. This result applies to Hankel moment matrices with a special case of Jacobi

weights and computes the asymptotics for det HN [b] where b is of the form b0(x)
√

1+x
1−x

with

an even function b0.

Corollary 5.5 Suppose b ∈ L1[−1, 1] is of the above form with an even function b0. Let
d(eiθ) = b0(cos(θ/2)) and suppose the d is of the form (5.28). Then

det HN [b] ∼ F NNΩE, N → ∞.
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[10] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc., Colloquium Publications, Prov-
idence, R.I., 1978.

[11] E.T. Whittaker, G.N. Watson, A course of modern analysis, 4th ed., Cambridge Univ.
Press, London, New York, 1952.

16


