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Abstract

Wiener used the Poisson kernel for the Hermite polynomials to deal with the classical Fourier transform. Askey,
Atakishiyev and Suslov used this approach to obtain a g-Fourier transform by using the continuous g-Hermite
polynomials. Rahman and Suslov extended this result by taking the Askey—Wilson polynomials, considered to be the
most general continuous classical orthogonal polynomials. The theory of g-Fourier transformation is further extended
here by considering a nonsymmetric version of the Poisson kernel with Askey—Wilson polynomials. This approach
enables us to obtain some new results, for example, the complex and real orthogonalities of these kernels.
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1. Introduction

Two of the most frequently used formulas in the area of integral transforms are the classical
Fourier transform

) = \/%tr g (y)dy i= F[g](x) (L1)
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and the corresponding formal inversion formula

1 ® —ixy . -1
o0 =7 |~ empeari=Frirs0 (12)
There are many excellent references on Fourier transforms (see e.g., Titchmarsh’s classic book
[207), but, for our purposes the most important reference is Wiener [21], who looked at the Fourier
transform from the point of view of classical orthogonal polynomials on R, in particular, the
Hermite polynomials H,(x).

An elementary result in nonrelativistic quantum mechanics is that the normalized wave function
of the Hamiltonian operator for the harmonic oscillator is the Hermite function

¥,(x) = 2"n! /1) 12 H,(x)e "2, (1.3)

see, e.g., Landau and Liftschitz [ 13, p. 70]. The bilinear generating function (the Poisson kernel) for
these functions is

K(s3) = T C0,00%0)

n

dxyt — (x* + yH({ + tz)} (1.4)

= [Tf(l - t2)]—1/2 exp[ 2(1 . t2)

which is better known as Mehler’s formula; see [19-21].
We make two important observations. First, the kernel K,(x, y) as given by the function on the
right of the second equality in (1.4) has the property

ixy

lim K,(x, y) = Ki(x, y) =

t—i A/ 2TC ’
which, of course, is the kernel of the integral transform (1.1). In fact, K,(x, y) is analytic everywhere
on the unit circle in the complex z-plane except at t = + 1. We shall set

'%/t(xa Y) = K,(X, y)|t=e“
i(m/2—1)/2 (a2 2
€ [ 2xy — (x> +y )cosri|, (1.6)

——exp |1 -
/27 sin T 2sint

0 < 17 < m, and define a generalized Fourier transform by the formula

1.5)

Sfx):= J_OO HA(x, y)g(y)dy. (1.7)

The corresponding formal inversion formula is

o) = | A xS0, 18)

where * indicates the complex conjugate. For a sketch of the proof of (1.8) see [17].
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The second observation is that the wave functions in (1.3) are the eigenfunctions of the Fourier
operators in (1.1) and (1.7):

[e0)

) = | Al W), (1.9
where 0 < 7 < 1t for (1.7) and, t = n/2 for (1.1).

Our primary interest in this paper is a general g-analogue of (1.9) as well as of (1.7). As was
explained in [17], a g-analogue of a formula contains a parameter ¢, usually complex and |g| < 1,
such that the limit of the new formula as g — 1 is the given formula. For example, a g-analogue of
a complex number a is (1 — ¢°)/(1 — gq) since
a=lim =4

-1 1 — (¢
the branch of ¢* chosen here is the one that gives lim,..; ¢ = 1.

There is a great deal of interest these days in g-analogues of important classical formulas.
Sometimes the interest is nothing more than a curiosity, but in view of some recent developments in
the generalizations of the classical harmonic oscillator problem (see, e.g., [4, 5, 8,9, 14]) the interest
in a g-version of the Fourier transform is much more than an academic curiosity. The question
appears in a very natural way in the g-oscillator problem.

As was shown in [2] it is Wiener’s treatment of the Fourier integrals that contains the key to
a meaningful g-extension. Just as the Hermite polynomials are associated with the wave functions
for the harmonic oscillator, the continuous g-Hermite polynomials,

: (95 Dn .
Hy(x|g)= § — 22 ¢itn=200  » — cos, 1.10
&9 kgo (@ D@5 Dn—x (1.10)

are associated with the g-wave functions for the g-harmonic oscillator, namely,

P.(x1q) = [(¢""'; @)w/2n1 2/ po(X) Hu(x| q), (1.11)
where "
po(¥) =41 —x* T 1 —22x* —1)¢* +g*), O0<g< 1. (1.12)
k=1

The g-shifted factorials in (1.10) and (1.11) are defined by
@qo=1 (@g.=0-a(—-aqg)..(1—-ag"""), n=12,..,
(@ @ = lim (4, 9)s, g < 1.

n=—o0

(1.13)

The g-annihilation operator b and the g-creation operator b™ that satisfy the commutation rule
bb* —q 'b*b =1 (1.14)

were introduced explicitly in [8]. They act on the g-wave function (1.11) in the following manner:

1— q—n 1/2
bW,,(xlq)=<1_q_1> ¥, 1(xlg)

(1.15)

—-n—1

+ 1—¢ 12
b™¥.(xlq) = Tog T ¥u+1(x19),
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see [2,8]. One also has the orthogonality property

f (x| @Palx10) dx = S (1.16)

-1

see, €.8., [3,11]. The important difference between this formula and the corresponding formula for
the Hermite functions (1.3), namely,

foo Vu(x)P(x)dx = 0, 1, (1.17)

-0

is that one is over the finite interval (— 1, 1) while the other is over the whole real line. So the use of
(1.11) as an analogue of (1.3) has the advantage of orthogonality over a finite interval. This
automatically ensures completeness of the system {¥,(x|g)}:Z o, see [19, Theorem, 3.1.5]. Further-
more, we need not be tied to the g-analogues of the Hermite polynomials only, but can consider
other generalizations of these polynomials, e.g., the g-ultraspherical [3], the continuous g-Jacobi
[6,15] or even the most general, the Askey—Wilson, polynomials [6], all of which are orthogonal
on (— 1,1). Following this direction, the ideas presented in [2] were extended in [17] to the case of
the Askey—Wilson polynomials using the explicit formula for the Poisson kernel derived in [18]. As
in [2] this led to a singular integral transformation, thus extending the results corresponding to the
continuous g-Hermite polynomials.

The purpose of this paper is to do even more: to apply the ideas of Wiener’s treatment of the
Fourier integrals to the case of a nonsymmetric extension of the Poisson kernel for the
Askey—Wilson polynomials derived here. This paper is organized as follows. In Section 2 we
introduce the Askey—Wilson polynomials and then state our result for the corresponding Poisson
kernel in Section 3. In Sections 4—6 we derive an explicit formula for this kernel which reveals the
structure of the poles. The orthogonality property of these kernels is then proved in Sections 7-12.
Finally, we introduce a new integral transformation and prove its inversion formula in Section 13.
We close this paper by displaying some special cases of the kernel and a continuous orthogonality
relation for the simplest of them, in Section 14.

2. The Askey-Wilson polynomials

We shall assume that a,b,c,d and g are real parameters such that 0 <g¢ <1 and
max(|al, |b|,|c|,|d|) < 1. The Askey—Wilson polynomials [6] are defined by

Pn(X) = pu(x; a, b, c,d)

q~", abcdg" 1, ac', ae ¢

n=0,1, ...,x =cos 0,0 < 8 < . This definition differs slightly from the one given in [6], but, for
our purposes, this is the more convenient one. The symbol on the right-hand side is the r = 3 case
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of the basic hypergeometric series ,; ;¢, defined by

ag, az, ... ,ar+1.
r+1¢r|: q,z

bi,bs, ... b,
_ v (al,az,---,am;q)kzk
k=0 (qsbls 7br; q)k ’
with
(a1’a27 e 5 Ay q)k = H (a17 q)k> see [11]

ji=1

The orthogonality property satisfied by p,(x; a, b, ¢, d) is

1
f PP = By

_ (g, ab, ac, ad, bc, bd, cd; q),

B 2n(abed; q) o ’

(1 — abcdg® ™ ")(abcdq ™', ab, ac, ad; q), _,,

(1 — abedq™")(g, cd, bd, bc; g), ’

h(x, 1’ - 1: ql/Z’ - ql/z)
h(x;a, b, c,d)

ho

hn=h0

(1 =),

p(x)=p(x;a,b,c,d) =

and
h(x;ay,a,, ... ,a) = [] h(x;a)),
j=1

h(x;a) = [] (1 — 2axq" + a*q*").

n=0

3. The Poisson kernel and a nonsymmetric extension

The Poisson kernel for the Askey—~Wilson polynomials is defined by
Pi(x, y) = hoKi(x, y),
with
& (1 —abcdq? ') (abcdq ™1, ab, ac, ad; q),
KD = 2 ™0 — abeda™ M@, od, ba, bc; ),

X pn(X; a, b, ¢, d) p.(y; a, b, c, d).

a-2ntn

29

2.2)

(2.3)

2.4)

(2.5)

2.6)

2.7)

2.8)

(2.9)

(3.2)

The series on the right-hand side of (3.2) converges for |¢| < 1 and |x| < 1, |y| < 1. In [10], Gasper
and Rahman found an explicit representation of K, (x, y) in the special case ad = bc, and proved its
positivity when a = ¢*>* V4, b = aq*/%, ¢ = — ¢fI2* 14 d = cq'/?, o, f > — 1 (this corresponds to
Askey and Wilson’s continuous g-Jacobi polynomials [6]). Rahman and Verma [18] found an
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expression for the most general kernel (without the condition ad = bd) which was reproduced in
[17] since the original expression in [18] has many misprints.

In this paper we shall consider a nonsymmetric extension of the bilinear generating function (3.2)
by replacing p,(y; a, b, ¢, d) by p.(y; «, B, 7, 6) such that

ay = ac, o = bd, max(|a|, |B],]yl,]0]) < 1. (3.3)
For ease of notation we shall use the labels A and u to refer to the parameter-quartets (a, b, ¢, d) and
(%, B, y, 0), respectively. Thus h§ means the same as hq in (2.5), but
(4, o, oy, ad, By, B0, ¥3; q)w (3.4)

2n(afyé; @) ’ '
with similar meanings for h} and h%. Also, we shall use the notations

hf .=

Pr(x) = pa(x; a, b, ¢, d),

(3.5)

Pu(y) = pu(y; 0, B, 7, 6),
and

¢ = (abed)'2. (3.6)
The extension of (3.1) and (3.2) that we have in mind is

PlH(x, y) = h§KH(x, y), 3.7
where

KP#0e ) = 0)" 3 WEpipi0) (38)
We shall prove in the following sections that

Ki#(x, y) = K{P(x, y) + KiP(x, y) + K2 (x, y), (39
where

K{P(x, )

(— gte, afc/b, aPd/b, ae®, e /b; q)o,
(— t/e, ac, ad, afe'®/b, afcde™*/b; q)o,

=(1—1t?%

o i (&, e9"%, — eq''?, — ¢/ad; q)
k=0 (g, be, — qte, — qe/t; q)
y i (g% —e& ad,ae*, ae™, afe'®/b, afe /b, ocﬂcdg’“’/b; |
So (g, — adq' /e, aB, ad, a/d, apd/b, afc/b, e~ /b; q),
oy L0 %) (5q "/, "~ /uB, bg" /2B, 4" O
m=0 (1 — 3q~"/2)(g, B3, cd, a8/o%; q)m
y (6e'?, 6%, de®® de™; q), (@)"’
(¢ 'e7/u, " '€l /u, bq' 'e T /up, bq" ~'e/af; q)m \ 20

X W5 (O‘ﬁbc‘l g lemi cem 0, dq"‘e"w,a—ﬂ I=mg=if qul’g§5 4@ aei"), : (3.10)
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K?(x, y)

(e, — ¢/ad, t, — te/ad, afc/b, afd/b, ae®, 2~ /b; )
(— ¢, be, t/ad, — ¢/t, ac, ad, aPe®®/b, afcde™/b; q)o

> (—t,1q"?, — tq"?, t/ad; gk
k

X
vZo (a4, qt*, — tefad, — qt/e; q)

y i (—eq~*t, —¢, ad, ae', ae ™', afe®®/b, afe™ /b, afcde " */b; q), |
1=0 (q’ adql _k/ta (Xﬂ, (Xé, a/aa O(ﬁC/b, aﬁd/b’ £2e_i0/b; q)l

y i (1 —8q>™ /) (8q "/, q* ~'/aB, bg ~*/afc, 47" Pm
m=0 (1 - 5q_l/a) (q’ ﬁéy Cd) qé/aa q)m

y (9e'?, 6e 1%, de', de~?; g),, beg\"
(" 'e ™/, q" '€ /o, bg" '™ /u, bg" " e*/af; g

x g W~ O‘ﬁCd g e i ce 0, dqme-—io’%gql—me-ie, cdq',a—ﬁ;q, aei® ),

b b ab
and
KP(x, y)

(%067, ce™, de ™, aBe/bsq).,
~ (ac, be, cd, af, adft, bedt/y; q)w

y (cte®®, cote’®/y, bete™fy, bete ™ /y; @)
(e—liﬂ, ctei(9+¢)/,y’ Ctei(ﬂ*d))/,}); q)oo

y i (t, —¢/ad, — te/ad, bedtfy, cte’®* Py, cte'®™Pfy; q),
xZo (g, qt/ad, cte, cote’®fy, bere® [y, bete ™ [y; gl

—k 1/2 172
q -, — t: tq [ tq

X4¢3|: 2 1—k ,q,4:|
qt*, —tefad, —adq" ~“/e

X (ctg*e’®* )y, ctqei® 9y, ae®, ce®’ de'’; g),
I1=0 th 6107 Cétq elo/% aﬂelo/ba qezw’ qa q)

I} be
x gW (bc tq*~ 1 —tq,b—tq bg~'e', 5e, e "¢ ¢ 'B "")
Y By T T ay

+ idem (6; — 0),

31

(3.11)

(3.12)

where idem (x; 4) means the same expression as the preceding one with « and J interchanged (see
[11]), with a similar meaning for idem (6; —6). In (3.10)-(3.12), x =cosf, 0 <0 < m,
y=cos®,0< ¢ <m and the W-series are special cases of the very-well-poised , ., W, series
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defined by
r+1Wr(a; b1>b27 9br—2;q, Z)
1/2 1/2
a,qa’", —qa ,blasz'“abr—Z
=r r >4, s B
+1¢ |:a1/25 _a1/2, aQ/bDQQ/bz, 7aq/br—2 1 Z:| (3 3)

see [11] for further details.

Looking at the horrendous expressions in (3.10)—(3.12), one might feel somewhat skeptical about
their usefulness but, as we shell see later, the main purpose of these formulas is to isolate the poles of
K}*(x, y), as a function of t, which are practically all we need for our subsequent analysis.

4. The g-integral representations

To prove (3.9)—(3.12) we will use, following the method of [18], the g-integral representation of
the Askey—Wilson polynomials [11, Exercise 7.34]:

(ad; q),
x re_% (duc”, duc™®, ¢°u/q; q)
qevja  (dau/q, dbu/q, dcu/q; q)o

pa(x; a,b, ¢, d) = [AO)] "

(9/% @)
7 n 4.
x (Szu/q; q)n (adu/q) dqua ( 1)

where
A0) = A(6;a,b,c,d)

= 19029 g ap,ac, bes )b d)p(s; 0, b, d), 2

and the g-integral is defined by
b b a
[[rdu= [ radu- [ rwdm

[

4.3)
| fwdu=att =g T flama”
m=0
for any function f such that the series on the right-hand side of (4.3) converge.
By using the symmetry property of the Askey—Wilson polynomials (2.1), see [6] and [11], and
the g-integral representation (4.1), we obtain
™ (bue®, bue ™', e2u/q; q)
Kl,u X, =B 0’ J‘ d u > > s Yl
HoN=BO.9 | . Y Gaujq, beulg, bdujg: g).
J w o (pee?, yoe T, e20/g; g)o
X dgv
ae/y (vaw/q, yBv/q, ov/q; q)
x W s(¢?/q; ad, q/u, 4/v; g, beuvt/q?), 4.4
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where the 4 and u parameters are related by (3.3) and, of course, & = abced = afyd. Also,
2 1— q)2
B— 1 —- q (
O
x h(x; b)h(y; y)p* () p*(9), 4.5)
where p*(x) = p(x; a, b, ¢, d) and p*(y) = p(y; o, B, 7, 9).
Crucial to our calculations is the following formula for the ¢W s series in (4.4) which was
obtained in [18]:
eW s(¢%/q; ad, q/u, q/v; 4, beuvt/q?)

PPN Gl LTI y (e, 69"%, —eq'?, —¢/ad; gk ,
(—t/e Do Zo (g, be, — qte, — ge/t; q)x

~k 2 2
q ", —¢ad, e“uv/q*
s [ — adg" /e, us/g, ve*/q’ T q}
(82, - 8/ad’ ta - ts/ada q)oo e ( - t, tql/z’ - tql/za t/ad’ q)k k
(— & b, t/ad, —e/t; 9wy S5 (q, qt7, — te/ad, — qt/e; qk

-k 2 2
—eq "/t, — e, ad, e*uv/q*
< ods [ adq" 1, ue*/q, ve*/q "1

(g, ¢, ac, ad, cd, af, ad, Bo; q)s

(€%, ad, betu/q, betv/q, uve?/q%; @) o
(be, ad/t, ue?/q, ve*/q, beuvt/q®; q)o

2 (t, —¢fad, — et/ad, beuvt/q®; q)
x=o (4, qt/ad, bctu/q, betv/q; q)

-k 12 12

q 5 — £, tq s T tq

X ; . 4.
493 [qtz, — et/ad, — adq* ~¥/¢’ K q:| (4.6)

The contribution of the first term in (4.6) to K/ #(x, y) is

X

K(x, y) = BO, $)(1 — ¢ )(( L q)’

2 (e, 6q'?, —eq'?, —¢jad; g}
=0 (q, be, — qte, — qe/t; q)

k —k

X
k

Z , — & ad; q) g
(q, —adg e q) L

4.7)

where

Ul=

‘9

J‘ ae” du (bue®®, bue ™, ue?q' 1; q)o
ge'®/b (ba“/q, bC“/q, bdu/qa q)oo

©7 (yvel?, yue T, ve?q' Y, uve?/q; q).
x qu 2 1—2. .
e (you/q, yBv/q, yov/q, uve*q ~?; q)

(4.8)
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Likewise, the contribution of the second term in (4.6) is
(%, — ¢/ad, t, — te/ad; q)o,
(— & be, t/ad, — ¢/t; q)o
y i (—t, tq”z, —1q"*,t/ad; g}

o (g, qt?, — tefad, — qt/e; q)

S (—eq Mt, —ead qh ,

qU 49

L adg g 1O “9
Finally, the last term on the right-hand side of (4.6) gives
(€%, ad; 9)
(be, adft; q)o
y ;\‘E (t, — &/ad, — te/ad; @)
k=0 (9, gt/ad; q):

—k’ 1t 1/2, — tglr?
X o [q 1 1 aq|Ve (4.10)

K{?(x, y) = B(6, ¢)

X

K(x,y) = B0, ¢)

qt?, — tefad, — adq' ~¥/e’ &
where .
v qu“"/b u(buei", bue™ bctug* ™ q)o
“ Jew " (baufq, beu/q, bdu/g; q)..
ge /v i¢ —i¢ k—1 2/,2,
Xf (VUC » YUC > bcwq » UVE /q > q)oo (411)

v — .
(yoww/q, yBv/q, 70v/q, beuvtg*~%; q),

qe/y

5. Computation of K{V(x, y) and K{?(x, y)

Using [11, (2.10.19)], we get
J 171 (yve'?, yve ™', ve?q' !, uve/q; ) a0

2 ,01-2.

sy (Yav/q, vBu/q, yov/q, uve’q' "% @) ?

— 40 =9 (4 48, a5, 85 @) h(: ) 0 ()

2iy
(ae™?, ae ™™, aPu/q; q);
(2B, ad, #/; q);
x §W (89~ /a; 6¢¥%, de ™, Bou/q, q* ~!/aB, q7"; q, q*/xdu). (5.1)
Substituting (5.1) in (4.8) we get
U, =M(q, af, ad, B6; g)au h(y; v)p“(y)w
2iy (B, ad, ¢/&; g)
_ 2m—1 ! id —i¢ 1-1
X TS T B g T e G2
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where
1= g gy [ _(bue bue ™", ue’q 7!, apu/g; q)
" ge’/b (bcu/q’ bduqm_ 1, o‘ﬁuql_m_ 1’ abu/q, q)oo ?

= gm0 prayn =D o

9 (9,€°*, qe~**, apdq'/b, afcq'~"/b, cdq™, q's’e” /b, aPe”*/b; g)w
(cei", dq’”e“’, ocﬁq’_"’ei"/b, ce_“’, dq"'e‘“’, aﬁql—me—ie/b, ae_“’, aﬁcdq’e‘“’/b; q)w

x gW o (afcdq' ™ e~ /b, ce™, dqme ™, afiq'~"e /b, cdq', af/ab; q, ac®), (5.3)
by [11, (2.10.19)]. Simplifying the coefficients, we obtain from (5.2), (5.3) and (4.5)

U — B710.9)(Pe/b, apd/b, ae®, e’ /b g).,
"' (ac, ad, afe®/b, aBcde ™ ®/b; q),,

(e, ae ™', 0fe’/b, afe /b, afcde~/b; q),
(2B, a8, @/8, afd/b, afc/b, e%e~/b; q);
y i (1 —8q*™ /o) (6q ™"/, " ~'/ap, bg* ~}Jafc,q7"; @m
oo (1 — 8q~"/0) (g, B3, cd, 46/%; q)m
y (6e'?, de ™%, de'® de™; g),,
(q"~'e™"/u, q" "'e"/u, bq' 'e”/ap, bg" 'e"/ap; )

x gWo(afcdg' " te /b, ce ™, dq™e ™, afg' " ™e /b, cdq', afi/ab; q, ac®®). (5.4)

(beg/ad)”

Use of (5.4) in (4.7) and (4.9) then gives (3.10) and (3.11).

6. Computation of K*(x, y)

In order to compute K3 (x, y), we have to express V; of (4.11) in a form that is real in both 6 and
¢. First of all, by [11, (2.10.19)]

1) = f ™ (yue'd, yoe'®, betvg Y, uve?/q; q)w i
T Jaeey  (yaw/q, yBo/q, yov/q, beuvtg* =% q), *

1—
=252 (95,56, B3 D))

(betg*e ™ /y, ue?e ™ /vq; @)
(beutq*~"e [y, e2e 7 /y; @)

x gW(e2e ™ /yg; e ™1, Be ™1, Se ™%, q/u, adq*/t; q, beutq* = '€ /y). (6.1)
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Using Bailey’s transformation formula [11, (2.10.1)] for a very-well poised g¢; series we find that

) = q(lzi; 9

(betg*e® [y, betg*e ™ fy, aPu/q, bedutq = fy; @)
(beutg*~ e[y, beutg*~re ™ [y, bedtqfy; @Yo
x §W ;(bcdtg = fy; 8¢, de ™, adtq*/ad, betg* /oy, q/u; q, afu/q). (6.2)

Now we break up the g, series in (6.2) into two balanced nonterminating 4¢3 series by use of [ 11,
(2.10.10)]:

I{u) =

(q, %9, Bd; @) h(y; ¥) p*(¥)

(e, ae ™', B, aPu/q, betq*/yd, bedutq ™ y; @)
(0/8, beutq '€ [y, beutg* e T /y; @)
betg* joy, 6e'?, de ™', Bou/q
><4¢)3|: 48/, B3, bedutgt= 1y ; 4, q | + 1dem(e; 8). 6.3)
Use of (6.3) in (4.11) now gives
_q9( -9
k 2 y
y i (betg*/ay, 5€¥, de ™, q);
1=0 (g B, qé/a; q)
2" (bue®®, bue ™, betug* ™, bedtug T v @)w
X — b =
s (bcu/q, beutq*™ e [y, beutg* e T /y, Boug'™; g)u
(aﬂu/q, oPu/q; @)w
™ (@bu/q, bdu/g; 9).o
+ idem(o; 9). (6-4)

Observe that the two g-integrals on the right-hand side of (6.4) differ only in that o and ¢ are
interchanged. So we need to transform only one of them. By using the definition (4.3) we obtain

b (bue®® bue ™, betug* L, bedtugt Ty @)
ge'/b (bcu/q7 bcutqk_ ! id)/’})a bcutqk_ le_id)/‘y? ﬁéuql_ 1; q)oo
(05.5“/61, 0Ppu/q; 4w
(abu/q, bdu/q; q)o
q(1 —q) 2 (BO/b; q)
5 (@ Deoh(x; b)p’(x )(c&eioqk/v; 2
(ctq kei® cotgret®ly, ae ™1, ce 1, de , afei’/b; g) o,
(ctq*e’®* Py, c1q O ¢’/y e 2% )
ctq e“‘“@/y ctq kel®=9) )y 5Bq'e®/b, ac®, ce®®, de'
X 6¢s i0 k+1gi6 i0 i0 >4, 4
qe?®, ctq*e®, cotq /7> 2pe*/b, 5pe/b
—idem (6; — 6). (6.5)

i¢ —i¢ k B
(@ @) h(ys y)ph(y) B2 " PO, betq [y01g).
(/65 q)
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Using (6.5) and (4.5) in (6.4) we find that
(xe™, ae ¢, bet /76, cte®®, cote’/y; q)u
(ac, ad, cd, af, 0, 2/5; q) o
o (ae™, ce ™™, de™™, ufe'?/b; q)., (cte'®* Py, ctel® D fy; g)
(€2, cte'®* D)y, cte’® P fy; q)u (bet/yd, cre®, cote’[y; qh
y {2 (betq®/ay, €', de ™™, Boe/b; q);,
Zo (g, qd/0, B6, corg*e/y; q);

< o ctgke'® 9y, ctqtei®= )y, ﬁéq’ei"/.b, ae®, ce'?, de »
6%'5 quiO’ ctqkeiﬂ, Cétqk+lei6/,y, aﬂelo/b’ 5ﬁei9/b > 4>

Vk=B—1(0a¢){

+ idem(0; — 0)} + idem(o; 9). (6.6)

Changing the order of summation one can rewrite the sum over [ in (6.6) in the following form:
2 (ctge TPy, ctg*el®”Vfy, ae®, ce®, de; q),
S (g, e, crg*e”, ape’’/b, cotg*e/y; g,
betg*/ay, de', de %, 6Bq'e?/b
493 k+1.i0 49 )
qo/x, Bo, cotq” " 'e'/y

where the 4¢3 function is now balanced. The two 4¢5 series that arise from (6.6) in this way can be
combined into a single g¢- series by [11, I11.36]. Substituting this result in (4.10) we get (3.12).

7. Multiplication law for the kernels

It follows from (2.4), (3.7) and (3.8) that

1
j PHE(x, ) PEF(p, X' ) p*(y)dy = Pip*(x, X'), (7.1)
-1

when max(|A|, |ul, |A'], |t], [t']) <1 where A= (ab,c,d), A =(a,b,c,d"),u=(p,7J), and
|A] < 1 means |al, |b|, |c|, |d| are all numerically less than 1. The corresponding formula for the

kernels K*(x, y) is

1
f Ki4(x, y)KE*(y, x)p*(y) dy

-1
2n(0fy5; 9) ,
= = K& (x, x)). (7.2)
(g, 2B, xy, %8, By, BO, 783 @)oo
In the next sections we will consider an analytic continuation of (7.2) when the parameters t and
t’ go to the unit circle and tt' approaches 1, in order to obtain the orthogonality relation for the
kernels K}*#(x, y).
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8. Computation of K{#(x, y)
Setting t = 1 in (3.10) and (3.11) we can see that K{V(x, y) = 0 = K{®(x, y). So, from (3.9), (3.12)
and (4.10) we find that
Ki#(x, y) = KP(x, )
(% 9w
= B(# -1 .
( 9¢)(bc; q)oo VOlt—l (8 1)
However, from (4.11) we have
T (yve', yoe T, bev/g; g)u
Voli=1= . qu ;
ge't/y (V“U/q, yﬁv/qs Vév/q, q)oo
y J“‘e‘w/v (bue'®, bue ™', uve?/q?; q) )
qe’/y (bau/q9 bdu/qa bcuv/qz; q)oo !
and, therefore, one can evaluate these g-integrals by [11, (2.10.18) and (2.10.19)], thus getting

(8.2)

(1—q3°q° A
Voli=1 = —4—byh(x; byh(x; c)h(y; a) h(y; y)p”(x)p*(y)

(q, g, ad, c* /2, c6e™/y, cde ™[y, bce "¢ [y, cde ™[y, Be'?; q)w

(e Ty, ce® ]y ce® )y ce 010/ 2561957 g)
¢35 _..C ol C . bc cd .
xgWo|——e ¢ - eld _ei07i0 seid —_ -4 e‘¢>. 8.3
’ 7<qu y Y By Bvqﬁ (8.3
Substituting (8.3) in (8.1) we obtain

Ki*(x, y)

(abed, ¢*/v%; )
(ac, be, cd, af, 2, B6; q)
y (ce'?, ce ™, cde™fy, cde Oy, ae'®, ae T, bee ¥y, cde 0y, Bel?; @)w
(et 1)y, ce® 70 y, ce'? 0y, ce Ty, c2Be T y?; g)

2
x gW (C—-‘% e=i6; S g0mio, Cemio—is go-is 2¢ <A ﬁeiq’)
qv s 7 By By
_ (abcd, cd/By; q)w
~ (ac, be, cd, af, ad, Bbc/y; 4).
 ee®, ce™, Bec®ly, Bee )y, ae?, ae ™™, beetfy, bee™%/y; g)
(ce®® ™y, ce® ™My, e Ty, ce T fy; ).
Bbc

. ) ) .. bc cd
x gWo| Z=; be®, be 1 Bei¢ pe~i¢ —. ,——-) 8.4
8 7< v B B > q By (8.4)

by using [11, I11.23].
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All of our calculations so far have been done on the basis of only two conditions (3.3) connecting
the A- and u-parameters. We shall now impose a third condition:

pv = bc. (8.5)
This still leaves us with enough freedom to compute K{-#(x, y) without hitting any singularities
while enabling us to simplify (8.4) enormously. Our final result is

(abed; g)w
(xB, ac, ad, be, bd, cd; q),
(et ae™, Be?, e, ce, ce™ ", de®, de” ", (B/b)*; 4).o
(B™ /b, pe®~2/b, e /b, fo 7 ¥jbig)
where, it has been assumed that || < |b| and ay = ac, 6 = bd, By = bc.

We would like to point out that it is possible to derive (8.6) directly from (3.12) by using [11,
11.24].

Ki*(x,y) =

(8.6)

9. Relation of special K{ #(x, y) with the continuous g-Hermite polynomials

The Poisson kernel for the continuous g-Hermite polynomials is, see [3],

ngo H,(cos 0 q)H,(cos ¢|q) .

2.
_ ("% 9w
(rei®F 9 1ei@=9) 1l =0) 1o =10+ 9). g

n

|r] < 1. (9.1)

So the right-hand side of (8.6) coincides with it (up to a factor independent of r) if we identify r with
B/b. The g-Hermite polynomials are orthogonal on the compact interval [— 1, 1] and so are
complete in L2[ — 1,17, [19, Theorem 3.1.5]. We also have

1

lim K(O’x,y)f(y)dy =f(x), —l<x<l1 9.2)

=17 |
for every bounded function f that is continuous on (— 1, 1), where
(g, 7%, €%, 672 g)q
2m sin @ (rel@+9), rel@= ) peild =0 ye=i®+d) 4 -
It also means that in the limit r — 1~ the kernel K{®(x, y) behaves like the delta functional 6(x — y).
The proof of (9.2) follows by Wiener’s arguments in lemma [21, Proposition X 55, p. 41]. Indeed,

ifweseta=0,b = nand K,(0, ¢) = sin ¢ K¥(cos 0, cos ¢), then the hypotheses of this lemma are
satisfied by this kernel. Here

f: K, (0, $)d¢ = z

K9(x,y) =

(9.3)

) —— H,(cos 8| q)

% qz_fc)w f H,(cos ¢|q)(€**,e7%%; g),,d¢p = 1 ©4)
[1]
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due to uniform convergence of the series for |r| < 1 and the orthogonality of the g-Hermite
polynomials. Thus the property (4.12) of [21] is established. Again if 2n — ¢ >0 + ¢ >
[0 —¢| >y >0,y <O <m—y and 0 < ¢ <, then

(g, 12, €%, e 5% g),

K,.(O, ¢) < 2n(rei|//, re—illl; q)go

% 9w 9.5)

< (constant) ¥, 1o~ ¥ )’

since
(relCF 9 pe=i@F 9. gy

(1 — 2r cos(0 F ¢)q* + r?q?)

s

]

k=0

(1 — 2r cosyg* + r?q*) = (re¥, re ¥; q),.

|

>
k

The validity of [21, (4.13)] is thus assured. The positivity of K, (6, ¢) is also obvious. Therefore, by
[21, Proposition X 55]

0

lim [ "K,(0.6)96)d8 = 9(0), 0<0<n 0

for every bounded function g that is continuous on (0, w), which is equivalent to (9.2).

10. Complex orthogonality of the kernels

Sett = re'", t’ = re " with 0 < t < min Eq. (7.2) and consider its limiting form whenr — 1~ and
then A’ —» A. With the aid of (8.6), (9.2) and (9.3) we can write (in the distribution sense), for the
right-hand side of (7.2):

2n(abed; )
(g, ab, ac, ad, be, bd, cd; q),

o(x — x)

pHx)
Here A =(a,b,c,d), A’ =(a, b, c',d") with ac = d'c’, bd = b'd’, bc =b'c’ and b’ < b.

To consider the analytic continuation of the left-hand side of (7.2) when t = (')* =re™ = ¢
and x —» 0%, let us rewrite this formula in terms of the contour integral (Fig. 1):

K3 (x, x) >
as A' - A (10.1)

it—x

1
J 1 KLt (x, ) Ki4(y, x)p*(y)dy

_logg™! j Li#(z, )L 2(s, (g% 4~ %5 @) ds 102)
i c (og®, 0q7% Bg®, Ba~%, va®, va ™%, 04°, 64”5 Q) '
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Ims

iT
P logg~!

C+

Fig. 1.

where x =4(g* + ¢ 7%, ¢ = €% y = 3(¢° + ¢, ¢* = €, and L}*(z, s) = K}*(x, y). An examina-
tion of the series on the right-hand sides of (3.10)—(3.12) reveals that the poles only originate from
the function K (x, y) given by (3.12). Even here the only singular term corresponds to k = 0 on the
right-hand side of (3.12). The poles of the integrand which are located in the lower half plane, are
given by

_ o+ k—i(t+6)

Sl - logq_l ’ S1 +1, ey
(10.3)

s2=w+K_1£Tl_0), s, +1, ...

log g

and

, o —xk—it+8) |
ST = — . Sl—].,...,

log (10.4)
, o —k—i(t—-0) | .
Sy = 1 s Sz—l,....

log g~
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Ims
in
'y -1
84 = —8 logq
. L] L] L]
‘ 32 = -—s’l [ ] L . '} .
C'+
+
Cl‘ sg = —5'2 [ . Y . °
L] o ° L]
Re s
853 = —S2 0
52
L ] o - L
° e o . sh C.
c-
e L] ® L} S;
° . . .
. 81
T
logg
Fig. 2.

Here c/y =¢e¢7 %, c'/y=¢"%, r=¢e"% and ¢ < ¢’ < y. In the limit x - 0" the first poles of (10.4),
s1 and s5, will move from the left half plane to the right plane, thus invalidating the formula (10.2).
Therefore, we have to replace our original contour C ™ by a contour C, with certain indentations
(see Fig. 2), thus separating the increasing and decreasing sequences of poles (10.3) and (10.4). After
the analytic continuation of both sides of (7.2) we arrive at the complex orthogonality property of
the kernels:

logg™* f L}z, s)LE(s, 2)(q%, 4 % @)w ds
i c: (og®, aqg ™%, Ba’, Ba %, va’, yqa ™%, 64, 09 "%, @)

_ 21(2B79; 9)
(q, aB, xy, ad, By, B9, v3; @)

2n(abced; q) o(x — x')
g, ab, ac, ad, be, bd, cd; q), p(x; a, b, c, d)

x (10.5)
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For the P-kernels, the orthogonality relation (10.5) has the more compact form

[ Pernpetaprinay =25 (106)

Here C,, = I', when y = 3(¢° + q¢7°).

11. Real orthogonality of the kernels: the case of one additional mass-point

The structure of poles in (10.3) and (10.4) of the integrand in (10.5) was shown in Fig. 2, where we
now let @' > w (or ¢ —c¢). First we consider the simplest case when 0 < w/logg™! <1 or
1 < y/e < g~ 1,50 only the first pole from each sequence has appeared in the lower half s-plane after
analytic continuation. Let us denote the integrand on the left-hand side of (10.5) as F(z, z’, s). Then

J F(z,Z,s)ds = J F(z,z', s)ds
c; c-

+ 2ni(Res F(z, 2/, 5)|5=5, + Res F(z, 2, 5)|5=¢,), (11.1)
where
Res F(z, 2, s)|s=5, = lim(s — 53) F(z, Z,5), a=1,2. (11.2)

In view of (3.9)-(3.12) we get
Res F(z, z/, 8)|5=¢
L'z 5)(@%, 4> 9
" (g’ 0q %, Ba, B 745 74 045 00 5 D) | s,
x lim (s — s1) Le*4(s, 2), (11.3)

551

and

lim (s — sy Li4(s, 2')

_ (% aq%,cq”, dg”, aq "%, yq "%, 39 %; )
log g~ *(q, ade™, ay, By, 0y, ad, ¢, 4**; g,

. [(Bre”"/cd, aq”*, abq®/; g).. p pye~*/ac,dq™ %, bdq*/B
(aba a/d; q)oo 3r2 qd/a, bd 44

+ (ﬁ'ye‘ir/ac, dq“z', bdqs;/ﬁ; q)oo d) ﬁye_i’/cd, aq—z” abqs"/ﬁ.
(bd, d/a; g)o 372 qga/d, ab 49 |(

(11.4)
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where g% = cg®e'"/y. We can now sum the expression above by [11, I1.24], thus getting the final
result

lim (s — s})Lek(s, 7))

s8]

B (82, aye—i(z+9’)/c’ ﬂ,ye—i(r+0’)/c, ,yZC—i(r+0')/C’ 5ye—i(r+0’)/c, aeia” beif)" Ceif)” deie'; q)oo (11 5)
B log ¢~ (g, xy, By, 0y, ab, ad, bd, &>, y>e = ¢+ D¢, g),, ’ '

since ¢ = ¢ and ¢* = ce"q*/y. The value of Res F(z, 7, s)|s=s, is obtained from (11.3) and (11.5)
by simply replacing 8’ by — 6'. Thus we have shown that

1
| P P2ty

(@B, 29, Bd; q)«

).',‘u , )

(aeiﬂ” bei@’, CCio,, deiG’, eZi(r+0’)—2w; q)w
X - — - — - — - —— =
(ael(t+0) w, ﬁex(t+0) w, ,yel(t+0) w’ 5el(t+0) w’ 6210; q)oo

(xB, ad, B9; @)

l‘,tu _n :
(ab, ad. b q).. Pi*(cos b, cos(t — 8" + iw))

— i@’ —ig’ —i6’ —if L2i(t—¢)— 2.
(ae™®, be ™1, ce 1Y, de 710 20V 20, gy

2

X —— — ——— — 7
(ael(r 6) w, ﬁel(t 6) w, ,ye1(1: &) w, 561(1’ 9') w’e 210.q)m

b

_ o(x — x)

e (11.6)

Here x = 4(e" + e ) = cos 0, y/c = e®, with 1 < y/c < q~ 1.

12. Real orthogonality of the kernels: the general case

Let us now consider the case of more than one pole, say N poles, appearing in the lower half
s-plane which happens when N —1 <w/logqg™! <N, ie. ¢' VN <y/c <q™ ¥, since e® = y/c.
Here

J F(z,Z,s)ds = J F(z,z', s)ds
c; c-

N-1
+2ni Y (Res F(z, 7, s)|s=s;, + Res F(z, 2, 5)|s=5,), (12.1)
j=0

J
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where Eqs. (11.2) and (11.3) are still valid but with g% = (c/y)e”*q* ™/ and q% = (c/y)e'"q =/,
j=0,1,...,N—1.So,

lim (s — sl)L” (s, z')

- (% cq” 7, aye” g’ " e, Vze‘i’q"‘z'/c yoe T /s @)
B log q_l(q_j; Q)J(q, 0656" oy, ﬂ'y, 5’}), ad, ¥ e —2it 2] 2z/c q
o J(Bre”"/cd, aq”, aq”*, dq” ™, abee®q” "//By; q).

(ab, a/d; q)

Bye™"/ac, dq*, dq”*, bede™q" /By

X4¢3|: qd/a bd’dqz’—j 4,9
(ﬁ'))e n/ac dq dq aCIZI-j deeinzl“j/ﬂy; q)Qo
(i, 4/ 9.

Bye™"/cd, aq®, aqg™* abce“q’ /By .
X 4¢3|: qa/d, ab, aq —j ? q) (122)

2z'—j.

;s Do

Both ,¢; series above are balanced and their coefficients are so matched that the sum in the curly
brackets can be transformed to a terminating g, series by [11,(2.10.10)] which, in turn, can be
transformed back to a terminating and balanced 4¢3. The final result is

lim (s — sy)LA4(s, 2')

(8 ozée“q j ocye —it 1 Z/C ﬁye 11: z’/c ,yZC—ir j—z’/C 5ye*ir j—z’/c; q)oo
logq~ 1(q % 9)i(g, aée” ay, By, 67, ab, ad, bd; q).,
G Y dq 9o
0P T, ¢ q).
q’,aq7%,bqg”%,dq" "
> . 2.
X4¢3|: 1—22 ﬁye-ltq /c aéeltq j® q’ q} (1 3)

So, from (3.7), (10.5), (12.1) and (12.3) we obtain the following general orthogonality property of the
kernels:

1
J Pi*(x, y) Pit(y, x) p*(y) dy

(B, ad, BS, ac®®, be'?, ce?, dei?’, e216 T~ 20: gy
(ab, ad, bd, ael(r+0’)—w, Bel(r+0’)—w’ ,yel(t+0) ) 561(9 +17)— w 10’; q)co

y Nil (ﬂye—i(t+0’)/c’ qe—ir/a(S, qe—ie’/c; q)j(qCZw 21(r+0), q)

o (q, qew—i(t+9’)/a, qew—i(t+0’)/b), qew—i(t+0)/,y, qew—1(1+0)/5’ Q);

c . N q—j ae i pe~i0 Ja i’
x| ——=—elC*t® @) 5 et i G
< ﬁ? q 4¢3 qe—ZIO,B,ye—l(t+0)/c’ “5611:‘1—1 q9.9
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x P& (cos B, cos(t + 0" + iw + ij log q))
+ idem(8’; — 6')
_o(x —Xx')
pHx)
where, as before, x = cos 0, y/c =e®, g1 ™" < y/c < q™" and ay = ac, 6 = bd. When N = 1, the
formula above reduces to (11.6).

(12.4)

13. General nonsymmetric g-Fourier transformation and its inversion formula

From (3.7), (3.8) and the orthogonality property (2.4) of the Askey—Wilson polynomials one can
write

i) = |

1
1 Pl (x, y)ri(y)p*(y)dy, (13.1)

where [¢| < 1 and 7;,(x) = ks, pr(x), T4(¥) = Hi.pi(y). To consider the analytic continuation of (13.1)

to the unit circle |¢| = 1, when t = re™* = ¢* 7%, k - 0% and y > ¢, let us rewrite this formula in the
contour integral form (Fig. 2):

e () = 108 a=" J Lz 9)rG@ + 479N @, 47 @) ds
i c (g’ aq™% Ba’, Bg™"5, vq%, ya"%, 0¢°, 695 @)’

(13.2)

where x = cos 0, ¢° = ¢ and y = cos ¢, ¢°* = €. The singular term of L"*(z, s) = K}>*(x, y) is the
k=0 term of K{®(x,y) in (3.12), and the poles are defined by (10.3). Therefore, by analytic
continuation, from (13.2) we obtain

1
) = [ P ()P O) . (133)
-1
provided that y > c.
To consider the analytic continuation of (13.1) with A and p interchanged, t replaced by
t'=re ®=¢ " *and k > 0%, let us rewrite this formula in terms of a contour integral (Fig. 3):

-1 1, 4 AL,z “2N(g22, g~ 2%
gq J' Lt (S,Z)rm(Z(q +4 ))(q » 4 ’q)wdz (134)

lo
(t/)mr%(y) = : hﬂ z -z z -z z -z z -z *
i % )c(aq’,aq” % bg?, bq ™%, cq?, cq” %, dg7, dg ™ q)s

The essential poles of the integrand are now at

w—Kx—iT
Z; = K (1+¢), zi—1, ...,

logq~

(13.5)
_ W —K— it + ¢)

1qu_1 . 22—1,....

23
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Imz
ir
logg—! 4
‘ —Z] = Z4 o . L) . .
C+
Ci ‘ —22 = Z3 . . . .
0 Re z
. . . ] ¢ 22 C;
c-
. 3 . . . 23
in
logg
Fig. 3.

In the limit k — 0™ the first poles, z; and z,, will move from the left half plane to the right half plane,
thus invalidating the formula (13.4). Therefore, in analogy with Section 10, we need to replace our
contour C~ by a contour C; with certain indentations (see Fig. 3). This gives the analytic
continuation of (13.4), and for the kernel P we can write

e s = [ PR O 0 dx (136)

Here C; —» I'; when x =4(g° + q7?).
Now we can define a general g-Fourier transformation by

fx) =I Pi*(x, )g(»)p*(y)dy := F,[ g1(x), (13.7)

and may guess that its inversion formula has the form

9(y) = L PEX(y, %) f(0p*(x)dx:= Fi ' LF1(9). (13.8)
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From this point of view, Egs. (13.3) and (13.6) are just mappings, up to a phase factor, of two
systems of Askey—Wilson polynomials, { pj(x)} and { p%(y)}, corresponding to two different sets of
parameters A = (a, b, ¢,d) and u = (%, f, y, 6) with the conditions ay = ac and 6 = bd.

To prove the inversion formula (13.8), let us interchange the order of integration in the double
integral

[, roropzen [ Pt s ax

= er dx’pl'(x’)f(x’)fr Ph*(x, y) PE% (3, x) p*(y)dy

and apply the multiplication law (7.1) for the kernels to get

fr dyp*(3) P (x, y) f PEE(y, X)) f(x)p¥ (x') d¥’

= Jll P ¥ (x, x') f(x')p* (x")dx'. (13.9)

In the limit A’ — A, under the same conditions as in (10.1), we obtain the inversion formula (13.8) for
bounded continuous functions.

By using the same considerations as in Section 12 one can finally obtain the inversion formula in
terms of a real integral with additional mass points:

1
g(y) = f P, ) £ dx
(of, a6, B, ae™?, Pe'?, ye'?, de'?, 21T 2 g |
(ab, ad, bd, aei(r+¢)—w’ bei(r+¢)—m, cei(t+¢)—w’ dei(t+¢)—w’ e2i¢’; q)oo

Nt (ye'C 9, ge~"/ad, ge " /B; 9)1(qe** " H ), ),
= ( , ea)—i(r+¢) a, qew~i(1:+¢) b, qew——i(r+¢)/c, qew—i(t+¢) d’ q)
j=o0 \q, 4 i

) (= yeitr oy g0 g, [ 4750007 bt 90, de ) g,
Y q a@3 q1—2je2i(t+¢)—2a>’ ﬂyeirp—wq—j/c, (xcse"q“j »4, 4

+

X

xf(cos(t + ¢ + iw + ij logg))
+ idem(¢; — ¢), (13.10)

where y = cos ¢, y/c = €°,¢* ¥ <y/c < q~ % and ay = ac, 6 = bd.

14. Special cases of the kernel

Although the general form of the kernel K/#(x, y) given in (3.9)—(3.12) is quite formidable it does
expose all its poles which are all that are needed for the purposes of this paper. However, in view of
its multiplicative property (7.2) and its continuous orthogonality when |¢| — 1 it may be useful to
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list some special cases that correspond to orthogonal polynomials which are lower than the
Askey—Wilson polynomials in the general scheme of classical orthogonal polynomials.

Case L. Continuous dual qg-Hahn polynomials. Setting d = 0 and 6 =0, ay = ac in (3.8) one can
obtain

K}*(x, y)

© (ab,ac; @), _,
=) ————=(ta"*)pa(x; a, b, )pa(y; o, B,7)

n;o (g, be; g)a P Py
(PP, acte®fy, acte T /v; )

T (apB, ac, be, act2e% % q)o

(Be', bete ™ [y, ye T4, crei?fy, ate'®; q),,
(cte® ™0y, cte® ™10y, cte® ™y, cte T y; gy

c’t2e¥/y%; Q)
(/7% @)
(t, ctei® iy, cte®® "1 1y, cre’ Oy, cre 70Ty, ),
(g, c*te' [y, are™, bere ™y, acte®/y, acte ™ /y; gk
~i betg*/By, wc*t2q*e?/y?; g
(g, bet*e ™ fy, c*t2q**/y%; q);
y (ctq"e“”if’&/v, ctgte ™ /y; q),
(actq e}y, actqte = /y; q);

x ¥ (~bofgt™
k=0

< Y (B
1=0

242 2
ocet o ct pe, CL S .ot ct .
X 8W7< ’yz q2k+l— 1el¢; ? qkele+1¢,; qkel¢ 19’ OCC’¢, 7 qk+l’7 qk+l; q, ye 1¢>. (141)

Here A =(a, b, c) and p = («, B, 7), ay = ac. It would be nice if this formula would follow from
(3.10)—(3.12) by simply setting d = 6 = 0, but it doesn’t, unless one goes through a series of
transformations followed by careful use of the limits. We shall give a separate proof of (14.1) in the
Appendix.

The polynomials in (14.1) are, of course, the continuous dual g-Hahn polynomials

—n, aeia, ae—iG
pa(X;a,b,¢) = 3¢, [q b ac. P q], (14.2)

see, €.g., [6, 7]. In the limit d - 0, 6 — 0 and d/é = B/b it is easy to see from (8.4) that
(c?/y*, ce®, ce ™, ae", ae ™", bee ¥/, fe'; )
(@B, ac, be, ce® [y, ce® Ty, ce'? ¥y, ce T Ty q)

ce® " /y, ceT7/y, be/By ;
x s D OCIPY o peit
2 [ N I |

Ki#(x,y) =
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¢ # v and ay = ac. Under the additional condition By = bc this reduces to
(ae™, e ™1, Beit, fe ™™, ce, ce ™Y, (¢/7)%; @)

K{#(x,y) = o .. L S ,
10 Y) = B e, be, e By, e By, 0 By, o Ty o)

(14.3)

and we can apply the above method to get an inversion formula for the corresponding transforma-

tion.

Case1l. Al-Salam—Chihara polynomials. The Al-Salam and Chihara polynomials [6, 12] may be

defined by simply setting ¢ = 0 in (14.2), i.e.
—n, aeie, ae—io
Pa(x; 4, b) 1= 3¢ [q a0 % q}

_ e @ s ~", ae® ~i
(b )n (a 0) 2¢1|: 1—-n ,e/baq, e/b:I

So, with 4 = (a, b) and u = («, ), «f = ab, we find that

Ki(x, y) i Zmb%Gme@awmmam

n=0 )n
(«?t?/a?, be *, a2te!/a, bte®®, ate'?, ate ™'%; q) .,

" (ab, a%t%e®/a, ate® ¢ /a, ate’® " ?/a, ate'® " Y/a, ate ™" %/a; q).,
x gW ,(a*t%e¥/aq; t, at/B, ae™®, ate®*i®/a, ate®~1¢/a; q, be ™19,
which in the case t = 1 becomes
(be', be 1, e, ae ¢, a*/a?; q)
(ab, ae®*i¢/a, ae'? ¢ /a, ae' " /a, ae " "1%/a; q)

With a different normalization, namely,

(a9 _, q~" ae’, ae™ "
pn(x7 s b) (q’ q)n a 3¢2 ab, 0 2 q’ q ’

the corresponding kernel is

K{H(x, y) =

i (% 9n
n=0 (ab; @)n
_ (t%, be7 % ae®, Bre’’, ate™, ate ™Y, g),

(ab, at%e®, 16010 1e0- 10 o910 1o-10-16; gy

x s W (at2q~ e at/b, Bt/b, ac'®, te'*1¢ tei®~19; g, be ~i%)
_ (Bt/a, ure”, ate™, ate¥, ate™™%; @)

(aat, te°7 19, (e© 1% g9~ 1, te 0 1%; g)

K}H(x, y) = t"pa(x; a, b)pa(y; &, P)

x g W, (aatq™1; at/b, ae', ac ™, ae'®, e ~'¢; g, Bt/a)

with ab = af. Egs. (14.5) and (14.8) can be derived as a limiting case of (14.1).

(14.4)

(14.5)

(14.6)

(14.7)

(14.8)



R.A. Askey et al./Journal of Computational and Applied Mathematics 68 (1996) 25-55 51

The special case of the polynomials (14.7) are the so-called continuous g-Laguerre polynomials,

(2a+1)/4

Li(x|q) = pa(x; q , g2 I (14.9)

(see [6]), which go to the classical Laguerre polynomials in the limit g — 1,

lin} L1 — (1 — q'¥)x|q) = LY(x). (14.10)
q—’

From this point of view, one can consider (14.8) as a g-version of the well-known Poisson kernel for
the Laguerre polynomials,

0

s n!

I rrxxLe
“T@+n+1) (L)

=(1-0"1 exp( — tj—t%) (xyt)"%* I, <2 (’Clyt—)1:2>, [t] <1, (14.11)
where
1) = g oFa( = v+ 22
I“((i/i)vl) e Fi(v + 1/2;2v + 1; 22). (14.12)

So, one can consider the corresponding transformation with the kernel (14.8) as a g-version of the
Fourier—Bessel transform.

Case III: Continuous big q-Hermite polynomials. Setting b = 0 in (14.4) one obtains the so-called
continuous big g-Hermite polynomials [12]:

—-n i0 —if
q ", ae”, ae
Pu(x; a) := 34)2[ 0.0 5 d, q}

. n —n’ aeiﬂ; e o
— (e 3 U5k o De ( gre=ip g0 (14.13)
k=0 s

The nonsymmetric Poisson kernel for these polynomials can be derived as a limiting case of (14.5)
by [11, (3.2.11)],

- Z)n

£,y g X; @) pu(y; @)

@G ©
(@*t?/a?, ate®, ae™; q)

T (et /g, ate® 19 /q, atelt "%/, ate "1 "% /a; q) o,

t, ate®*i¢/q ate'd "1/ .
X ’ P iq, e |, 14.14
3¢2|: aztz/az, octe“” q ( )
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On the other hand, setting b = f = 0 and b/f = a/a in (14.7)—(14.8) one obtains the kernel

K *(x, y):= i t"(q; @nDn(x; @) pu(y; )

n

(t%, ate¥, ae 7Y% q)s
(te16+1¢7’ te‘o_‘¢, telqb—lo’ te—10—1¢; q)oo

‘ at/oc telftie teid —id .
? ’ . —i¢
X (f) : s g, xe . 14.15
3¥2 tz’ rei® q ( )

Observe that

- i9.
hm ein() - (q n’ ael > q)k

— e 2%~ ® = H (x|q), 14.16
Ime™ L T an ( Yq (x1q) (14.16)

where H,(x]|q) is the continuous g-Hermite polynomial defined in (1.10). See also [1] for the proof
of this limit directly from the first expression in (14.13). Eq. (14.15) then reduces further to

(t% 0e™%; @)oo
(tei0+i¢’ tew—id’, teig&—io’ te—io—iqs; D

tei0 i faid =i .
x2¢1[ © t’ze g, ae—*"]. (14.17)

K *(x, y) =

This ,¢, series is related to an addition formula [16] for the g-Bessel functions of Jackson [11,
Exercise 1.24]. Denoting

tei0+i¢’ tei®—id .
Jilx, y) = 2¢1[ ;2 ; q, e “’J, (14.18)

we find that a special limiting case of (10.6) is

f Je"(-xa y)J::‘(x’9 ,V)P(y, eit+i0’ eir—-iO’ eiG'—ir’ e—i@’—it) dy
r

2 2 dx — x'
- [(q; Z)J |(e2“im;>;))w|2 (1=, (14.19)

where I' is a limiting symmetric form of the contour I', in (10.6)

We would like to add, in conclusion, that there are many more interesting special and limiting
cases of the Askey—Wilson polynomials and that the same technique as we have developed in this
paper can be applied to most of them.
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Appendix. Proof of (14.1)

The g-integral representation (4.4) in the case of the dual g-Hahn polynomials has the simpler
form

gqe /b (bueie bue—io. q)
K}*(x,y) = B,(6, J d.u ’ ? 1/
v 7) = 816, 4) w'n - (bau/q, beu/q; @)
y j L ee e g),
o (yaw/q, vBv/g; 4)e

X 21 [q/“’ 9., gfuvt}, (15.1)

where

_ 2 1 — 2
Bi0.0) - - L @ aaapio.

x h(x; ) h(y; 1)p*(x)p"(¥), (15.2)

and A =(a,b, c) and u = (o, B, 7), ay = ac. The troublesome ¢W 5 function in (4.4) now becomes
a ,¢, series which is first transformed to a ,¢, series by

2¢1["/“"””-q be uvt]-(”‘”“/q”’“”/q;q’” 2¢>2[ b bewwt/q” bc] (153)

be P47 " (bc, beuvt/q%; @) bctu/q, betv/q’ K

(this formula can be obtained as a consequence of [11, ITI1.2 and II1.4]). So,

B = y (£
K#*(x,y) = ! — be) g =2V, 15.4
) (b¢; 9)eo kgo( ra @ax " (154

where

[

J b (bue', bue ™, betug* " 1; q) o
Vk =

U

a€"/b (bau/q, beu/q; q) o

wrh e, yue” ™ betog' "' g)s,
X dgv > .
ge/y (yav/q, yBv/q, bcuvtq*™ ?; q)o,

(15.5)
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The limiting form the g-integral (6.1) now is
J D (o, yoe” 4, betvg* Y g 4
aerry  (vav/g, yBv/q, beuvtq* =% q)o, *

_q(1—9g) . . ) ot
—z—iy(q, 4B @)oo H(y; ) P*(3)

(betg*e ™ /y; q)s,
(beutg“~te™ Y /y; q)

ae”™ % Be ' g/u  bcut ,_, .
><3¢2[ p q/’ —q et

aB, betgte ¢y T Ty

-9 .. (betg*e ™" [y, abctug ™ /y; @)u
=——5—1(4, f"; @) h(y; ) p* = —1.-i
oy P D PN D) Gt beutg o 755 ).

ae ™', betg*/By, betugt ey "
X392 [bctqke_i“’/y, abctug*1/y 4 P |.
Here we have used a limiting case of [11, (2.10.19)],
® (gt/a, t/b, ct; 9)w
o (dt e ft; )
(9, a/b, gb/a, be, abde; g)o,
=b(1 —
b0 = D Cd e, bd, be, bf. ).,

bd, be, c/f
x3¢2[bc,abde’q’af]7 |af|<1’

and then transformed the 3¢, series by [11, II1.9]. Therefore,

V== Dy on3)(q, B, betge ™ y; ).

21y
x ¥ (B (e ™%, betg'/By: )
R (g, betge ™ /y; q)
% b (bue”, bue ™", betug* ™!, abctug* ' fy; g) du
geon  (bau/q, beujq, beutg*~1e* [y, beutg* ' le T /y; q),

d,t

L (Be, betg* e ™[y, ctq'e ™", q)o,
(ap, ctq*e " */y; g)o
% i (Beidy (xe” ", li“fl{‘/ﬁ?? 9
=0 (g, betg“e ™ [y; q)
(actq* ey, atg* e, actgt e a; q).,
(ctg" @ )y, ctgt e 010 1y yergk e 019 g)

= By

ct

(15.6)

(15.7)

P L i » » . ct ., ..
X8W7<Otctqk+l le i6 14:;_qk+le i6 1¢>’ ae 10’ce 10, ve 1¢’ ocq’e 1¢; q,?q"e“’+‘¢>(15.8)

4

by [11, (2.10.19)]. Substituting this result in (15.4) with the aid of [11, II1.24] we finally get (14.1).
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