ON THE q-GENOCCHI NUMBERS AND POLYNOMIALS WITH WEIGHT ZERO AND THEIR APPLICATIONS

Serkan Araci1, Mehmet Acikgoz2 and Feng Qi3

1Department of Mathematics, Faculty of Science and Arts
University of Gaziantep, 27310 Gaziantep, Turkey
e-mail: mtsrktn@hotmail.com

2Department of Mathematics, Faculty of Science and Arts
University of Gaziantep, 27310 Gaziantep, Turkey
e-mail: acikgoz@gantep.edu.tr

3Department of Mathematics, School of Science, Tianjin Polytechnic University
Tianjin City, 300387, China;
School of Mathematics and Informatics, Henan Polytechnic University
Jiaozuo City, Henan Province, 454010, China
e-mail: qifeng618@gmail.com, qifeng618@hotmail.com, qifeng618@qq.com

Abstract. In the paper, the authors discuss properties of the q-Genocchi numbers and polynomials with weight zero. They discover some interesting relations via the p-adic q-integral on \mathbb{Z}_p and familiar basis Bernstein polynomials and show that the p-adic log gamma functions are associated with the q-Genocchi numbers and polynomials with weight zero.

1. Preliminaries

Let p be an odd prime number. Denote the ring of the p-adic integers by \mathbb{Z}_p, the field of rational numbers by \mathbb{Q}, the field of the p-adic rational numbers by \mathbb{Q}_p, and the completion of algebraic closure of \mathbb{Q}_p by \mathbb{C}_p, respectively. Let \mathbb{N} be the set of positive integers and $\mathbb{N}^* = \{0\} \cup \mathbb{N}$ the set of all non-negative integers. Let $| \cdot |_p$ be the p-adic norm on \mathbb{Q} with $|p|_p = p^{-1}$.

When one talks of a q-extension, q can be variously considered as an indeterminate, a complex number $q \in \mathbb{C}$, or a p-adic number $q \in \mathbb{C}_p$. If $q \in \mathbb{C}$, one normally assumes $|q| < 1$. If $q \in \mathbb{C}_p$, one normally assumes $|1 - q|_p < 1$.

Received October 6, 2012. Revised February 15, 2013.

2010 Mathematics Subject Classification: 05A10, 11B65, 11B68, 11B73.

Keywords: Genocchi number, Genocchi polynomial, q-Genocchi number, q-Genocchi polynomial, weight, application.
We use the notation $[x]_q = \frac{1-x^q}{1-q}$. Hence $\lim_{q \to 1} [x]_q = x$ for any $x \in \mathbb{C}$ in the complex case and any x with $|x|_p \leq 1$ in the present p-adic case. This is the hallmark of a q-analog: The limit as $q \to 1$ recovers the classical object.

A function f is said to be uniformly differentiable at a point $a \in \mathbb{Z}_p$ if the divided difference $F_f(x, y) = \frac{f(x) - f(y)}{x - y}$ converges to $f'(a)$ as $(x, y) \to (a, a)$. The class of all the uniformly differentiable functions is denoted by $UD(\mathbb{Z}_p)$.

For $f \in UD(\mathbb{Z}_p)$, the p-adic q-analogue of Riemann sum for f is defined by

$$\frac{1}{[p^n]_q} \sum_{0 \leq \xi < p^n} f(\xi)q^\xi = \sum_{0 \leq \xi < p^n} f(\xi)\mu_q(\xi + p^n\mathbb{Z}_p)$$

in [7, 9], where $n \in \mathbb{N}$. The integral of f on \mathbb{Z}_p is defined as the limit of (1.1) as n tends to ∞, if it exists, and represented by

$$I_q(f) = \int_{\mathbb{Z}_p} f(\xi) \, d\mu_q(\xi).$$

The bosonic integral and the fermionic p-adic integral on \mathbb{Z}_p are defined respectively by

$$I_1(f) = \lim_{q \to 1} I_q(f)$$

and

$$I_{-q}(f) = \lim_{q \to -q} I_q(f).$$

For a prime p and a positive integer d with $(p, d) = 1$, set

$$X = X_d = \lim_{\overleftarrow{n}} \mathbb{Z}/dp^n\mathbb{Z}, \quad X_1 = \mathbb{Z}_p,$$

$$X^* = \bigcup_{(a,p)=1} a + dp\mathbb{Z}_p,$$

and

$$a + dp^n\mathbb{Z}_p = \{ x \in X \mid x \equiv a \mod dp^n \},$$

where $a \in \mathbb{Z}$ satisfies $0 \leq a < dp^n$ and $n \in \mathbb{N}$.

In this paper, we will discuss properties of the q-Genocchi numbers and polynomials with weight zero. Via the p-adic q-integral on \mathbb{Z}_p and familiar basis Bernstein polynomials, we discover some interesting relations and show that the p-adic log gamma functions are associated with the q-Genocchi numbers and polynomials with weight zero.

2. Main results

Now we are in a position to state our main results.
Theorem 2.1. For \(n \in \mathbb{N} \), we have
\[
\frac{\widetilde{G}_{n+1,q}(x)}{n+1} = H_n(-q^{-1}, x).
\]
(2.1)

Proof. In [2, 3], Araci, Acikgoz, and Seo considered the \(q \)-Genocchi polynomials with weight \(\alpha \) in the form
\[
\frac{\widetilde{G}_{n+1,q}^{(\alpha)}(x)}{n+1} = \int_{\mathbb{Z}_p} \left[x + \xi \right]_q^n \, d\mu_{-q}(\xi),
\]
(2.2)

where \(\widetilde{G}_{n+1,q}^{(\alpha)} = \widetilde{G}_{n+1,q}(0) \) is called the \(q \)-Genocchi numbers with weight \(\alpha \). Taking \(\alpha = 0 \) in (2.2), we easily see that
\[
\frac{\widetilde{G}_{n,q}}{n+1} = \frac{\widetilde{G}_{n+1,q}^{(0)}}{n+1} = \int_{\mathbb{Z}_p} \xi^n \, d\mu_{-q}(\xi),
\]
(2.3)

where \(\widetilde{G}_{n,q} \) are called the \(q \)-Genocchi numbers and polynomials with weight 0. From (2.3), it is simple to see
\[
\sum_{n=0}^{\infty} \frac{\widetilde{G}_{n,q} t^n}{n!} = t \int_{\mathbb{Z}_p} e^{\xi t} \, d\mu_{-q}(\xi).
\]
(2.4)

By (1.4), we have
\[
q^n I_{-q}(f_n) + (-1)^n-1 I_{-q}(f) = [2]_q \sum_{0 \leq \ell < n} q^\ell (-1)^n-1-\ell \, f(\ell),
\]
(2.5)

where \(f_n(x) = f(x+n) \) and \(n \in \mathbb{N} \) (see, [6, 8, 10]). Taking \(n = 1 \) in (2.5) leads to the well-known equality
\[
q I_{-q}(f_1) + I_{-q}(f) = [2]_q f(0).
\]
(2.6)

When setting \(f(x) = e^{xt} \) in (2.6), we find
\[
\sum_{n=0}^{\infty} \frac{\widetilde{G}_{n,q} t^n}{n!} = \frac{[2]_q t}{q e^t + 1}.
\]
(2.7)

By (2.7), we obtain the \(q \)-Genocchi polynomials with weight 0 as follows
\[
\sum_{n=0}^{\infty} \frac{\widetilde{G}_{n,q}(x) t^n}{n!} = \frac{[2]_q t}{q e^t + 1} \, e^{xt}.
\]
(2.8)

By (2.8), we see that
\[
\sum_{n \geq 0} \frac{\widetilde{G}_{n,q}(x) t^n}{n!} = t \frac{1 - (-q^{-1})}{e^t - (-q^{-1})} \, e^{xt} = t \sum_{n \geq 0} H_n(-q^{-1}, x) \frac{t^n}{n!},
\]
where \(H_n(-q^{-1}, x) \) are the \(n \)-th Frobenius-Euler polynomials defined by
\[
\sum_{n=0}^{\infty} H_n(\lambda, x) \frac{t^n}{n!} = \frac{1 - \lambda}{e^t - \lambda}, \quad \lambda \in \mathbb{C} \setminus \{1\}.
\]
Equating coefficients of \(t^n \) on both sides of the above equality leads to the identity \((2.1)\). □

Theorem 2.2. For \(n \in \mathbb{N} \), the identity
\[
qH_n(-q^{-1}, x + 1) + H_n(-q^{-1}, x) = [2]_q x^n \tag{2.9}
\]
is valid.

Proof. By \((2.6)\), we discover that
\[
[2]_q \sum_{n=0}^{\infty} \frac{x^n t^n}{n!} = q \int_{\mathbb{Z}_p} e^{(x+\xi+1)t} d\mu_q(\xi) + \int_{\mathbb{Z}_p} e^{(x+\xi)t} d\mu_q(\xi)
\]
\[
= \sum_{n=0}^{\infty} [q \int_{\mathbb{Z}_p} (x+\xi+1)^n d\mu_q(\xi) + \int_{\mathbb{Z}_p} (x+\xi)^n d\mu_q(\xi)] \frac{t^n}{n!}
\]
\[
= \sum_{n=0}^{\infty} [qH_n(-q^{-1}, x + 1) + H_n(-q^{-1}, x)] \frac{t^n}{n!}.
\]
Equating coefficients of \(t^n \) on both sides of the above equation leads to the identity \((2.9)\). □

Theorem 2.3. The identities
\[
G_n(x + 1) + G_n(x) = 2nx^{n-1}, \quad n \geq 1 \tag{2.10}
\]
and
\[
q \tilde{G}_{n,q}(1) + \tilde{G}_{n,q} = \begin{cases} [2]_q, & n = 1 \\ 0, & n \neq 1 \end{cases} \tag{2.11}
\]
are true, where \(G_n(x) \) are called the Genocchi polynomials.

Proof. These follow from respectively letting \(q = 1 \) and \(x = 0 \) into the identity \((2.9)\). □

Theorem 2.4. The following identity holds
\[
\tilde{G}_{n,q^{-1}}(1 - x) = (-1)^{n+1} \tilde{G}_{n,q}(x). \tag{2.12}
\]
Proof. When we substitute x by $1 - x$ and q by q^{-1} in (2.8), it follows that
\[
\sum_{n=0}^{\infty} \tilde{G}_{n,q-1}(1 - x) \frac{t^n}{n!} = t \frac{1 + q^{-1}}{q^{-1} e^t + 1} e^{(1-x)t} = \frac{1 + q}{e^t + q} e^{t x} = -\frac{[2]_q(-t)}{qe^{-t} + 1} e^{(-t)x} = \sum_{n=0}^{\infty} (-1)^{n+1} \tilde{G}_{n,q}(x) \frac{t^n}{n!}.
\]
From this, we procure the equality (2.12), the symmetric property of this type polynomials. □

Theorem 2.5. The identity
\[
\tilde{G}_{n,q}(x) = \sum_{k=0}^{n} \binom{n}{k} \tilde{G}_{k,q} x^{n-k}
\]
(2.13) is true.

Proof. By using (2.2) for $\alpha = 0$ and the binomial theorem, we readily obtain that
\[
\tilde{G}_{n+1,q}(x) = \frac{1}{n+1} \int_{Z_p} (x + \xi)^n d\mu_q(\xi) = \sum_{k=0}^{n} \binom{n}{k} \left[\int_{Z_p} \xi^k d\mu_q(\xi) \right] x^{n-k} = \sum_{k=0}^{n} \binom{n}{k} \tilde{G}_{k+1,q} x^{n-k}.
\]
Further using
\[
\frac{n+1}{k+1} \binom{n}{k} = \binom{n+1}{k+1},
\]
we obtain
\[
\tilde{G}_{n+1,q}(x) = \sum_{k=0}^{n} \binom{n+1}{k+1} \tilde{G}_{k+1,q} x^{n-k} = \sum_{k=1}^{n+1} \binom{n+1}{k} \tilde{G}_{k,q} x^{n+1-k}.
\]
Thus, the equality (2.13) follows. □

Proposition 2.1. The identities
\[
\tilde{G}_{0,q} = 0 \quad \text{and} \quad q(\tilde{G}_{q} + 1)^n + \tilde{G}_{n,q} = \begin{cases} [2]_q, & n = 1 \\ 0, & n \neq 1 \end{cases}
\]
(2.14) are true, where the usual convention of replacing $(\tilde{G}_q)^n$ by $\tilde{G}_{n,q}$ is used.

Proof. These can be deduced from combining (2.11) with (2.13). □
Proposition 2.2. For \(n > 1 \),
\[
\hat{G}_{n+1,q}(2) = \frac{(n + 1)}{q} [2]_q + \frac{1}{q^2} \hat{G}_{n+1,q}.
\] (2.15)

Proof. From (2.13), it follows that
\[
q^2 \hat{G}_{n+1,q}(2) = q^2 (\hat{G}_q + 1 + 1)^{n+1} = q^2 \sum_{k=0}^{n+1} \binom{n + 1}{k} (\hat{G}_q + 1)^k
\]
\[
= (n + 1)q^2 (\hat{G}_q + 1) + q \sum_{k=2}^{n+1} \binom{n + 1}{k} q(\hat{G}_q + 1)^k
\]
\[
= (n + 1)q([2]_q - \hat{G}_1) - q \sum_{k=2}^{n+1} \binom{n + 1}{k} \hat{G}_k
\]
\[
= (n + 1)q[2]_q - \left[q \sum_{k=0}^{n+1} \binom{n + 1}{k} \hat{G}_k + (n + 1)q\hat{G}_1, \right]
\]
\[
= (n + 1)q[2]_q - q \sum_{k=0}^{n+1} \binom{n + 1}{k} \hat{G}_k
\]
\[
= (n + 1)q[2]_q - q(\hat{G}_q + 1)^{n+1} = (n + 1)q[2]_q + \hat{G}_{n+1,q}
\]
for \(n > 1 \). Therefore, we deduce (2.15). \(\square \)

Theorem 2.6. The identity
\[
\int_{\mathbb{Z}_p} (1 - \xi)^n d\mu_{-q}(\xi) = [2]_q + q^3 \hat{G}_{n+1,q}^{-1} \frac{n+1}{n+1}
\] (2.16)
is valid.

Proof. By virtue of (1.4), (2.12), and (2.15), we find
\[
(n + 1) \int_{\mathbb{Z}_p} (1 - \xi)^n d\mu_{-q}(\xi) = (n + 1)(-1)^n \int_{\mathbb{Z}_p} (\xi - 1)^n d\mu_{-q}(\xi)
\]
\[
= (-1)^n \hat{G}_{n+1,q}(-1) = \hat{G}_{n+1,q}^{-1}(2) = (n + 1)[2]_q + q^3 \hat{G}_{n+1,q}^{-1}.
\]
As a result, we conclude Theorem 2.6. \(\square \)
Theorem 2.7. The following identity holds:

\[\sum_{\ell=0}^{n-k} \binom{n-k}{\ell} (-1)^\ell \tilde{G}_{\ell+k+1, q} \]

\[= \begin{cases}
[2]_q + q^2 \tilde{G}_{n+1, q^{-1}}, & k = 0, \\
\sum_{s=0}^{k} \binom{k}{s} (-1)^{k-s} \left([2]_q + q^2 \tilde{G}_{n-s+1, q^{-1}} \right), & k \neq 0.
\end{cases} \]

Proof. Let \(UD(\mathbb{Z}_p) \) be the space of continuous functions on \(\mathbb{Z}_p \). For \(f \in UD(\mathbb{Z}_p) \), the \(p \)-adic analogue of Bernstein operator for \(f \) is defined by

\[B_n(f, x) = \sum_{k=0}^{n} f\left(\frac{k}{n}\right) B_{k,n}(x) = \sum_{k=0}^{n} f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}, \]

where \(n, k \in \mathbb{N}^* \) and the \(p \)-adic Bernstein polynomials of degree \(n \) is defined by

\[B_{k,n}(x) = \binom{n}{k} x^k (1-x)^{n-k}, \quad x \in \mathbb{Z}_p, \quad (2.17) \]

see [4, 11, 12, 13]. Via the \(p \)-adic \(q \)-integral on \(\mathbb{Z}_p \) and Bernstein polynomials in (2.17), we can obtain that

\[I_1 = \int_{\mathbb{Z}_p} B_{k,n}(\xi) d\mu_q(\xi) \]

\[= \binom{n}{k} \int_{\mathbb{Z}_p} \xi^k (1-\xi)^{n-k} d\mu_q(\xi) \]

\[= \binom{n}{k} \sum_{\ell=0}^{n-k} \binom{n-k}{\ell} (-1)^\ell \int_{\mathbb{Z}_p} \xi^{\ell+k} d\mu_q(\xi) \]

\[= \binom{n}{k} \sum_{\ell=0}^{n-k} \binom{n-k}{\ell} (-1)^\ell \tilde{G}_{\ell+k+1, q}. \]

On the other hand, by symmetric properties of Bernstein polynomials, we have
\[I_2 = \int_{\mathbb{Z}_p} B_{n-k,n}(1-\xi)\,d\mu_{-q}(\xi) \]
\[= \left(\frac{n}{k} \right) \sum_{s=0}^{k} \left(\frac{k}{s} \right) (-1)^{k-s} \int_{\mathbb{Z}_p} (1-\xi)^{n-s}\,d\mu_{-q}(x) \]
\[= \left(\frac{n}{k} \right) \sum_{s=0}^{k} \left(\frac{k}{s} \right) (-1)^{k-s} \left(\frac{[2]_q + q^2 \tilde{G}_{n-s+1,q^{-1}}}{n-s+1} \right) \]
\[= \begin{cases}
[2]_q + q^2 \tilde{G}_{n+1,q^{-1}}, & k = 0, \\
\left(\frac{n}{k} \right) \sum_{s=0}^{k} \left(\frac{k}{s} \right) (-1)^{k-s} \left(\frac{[2]_q + q^2 \tilde{G}_{n-s+1,q^{-1}}}{n-s+1} \right), & k \neq 0.
\end{cases} \]

Equating \(I_1 \) and \(I_2 \) yields Theorem 2.7. \(\square \)

Theorem 2.8. The identity
\[\sum_{\ell=0}^{n_1+\cdots+n_m-mk} \left(\frac{n_1 + \cdots + n_m - mk}{\ell} \right) (-1)^{\ell} \frac{\tilde{G}_{\ell+mk+1,q}}{\ell+mk+1} \]
\[= \begin{cases}
[2]_q + q^2 \tilde{G}_{n_1+\cdots+n_m+1,q^{-1}}, & k = 0, \\
\sum_{\ell=0}^{mk} \left(\frac{mk}{\ell} \right) (-1)^{mk+\ell} \left(\frac{[2]_q + q^2 \tilde{G}_{n_1+\cdots+n_m+\ell+1,q^{-1}}}{n_1+\cdots+n_m+\ell+1} \right), & k \neq 0.
\end{cases} \quad (2.18) \]
is true.

Proof. The \(p \)-adic \(q \)-integral on \(\mathbb{Z}_p \) of the product of several Bernstein polynomials can be calculated as
\[I_3 = \int_{\mathbb{Z}_p} \prod_{s=1}^{m} B_{k,n_s}(\xi)\,d\mu_{-q}(\xi) \]
\[= \prod_{s=1}^{m} \left(\frac{n_s}{k} \right) \int_{\mathbb{Z}_p} \xi^{mk} (1-\xi)^{n_1+\cdots+n_m-mk}\,d\mu_{-q}(\xi) \]
\[= \prod_{s=1}^{m} \left(\frac{n_s}{k} \right) \sum_{\ell=0}^{n_1+\cdots+n_m-mk} \left(\frac{n_1 + \cdots + n_m - mk}{\ell} \right) (-1)^{\ell} \left[\int_{\mathbb{Z}_p} \xi^{\ell+mk}\,d\mu_{-q}(\xi) \right] \]
\[= \prod_{s=1}^{m} \left(\frac{n_s}{k} \right) \sum_{\ell=0}^{n_1+\cdots+n_m-mk} \left(\frac{n_1 + \cdots + n_m - mk}{\ell} \right) (-1)^{\ell} \frac{\tilde{G}_{\ell+mk+1,q}}{\ell+mk+1} \]
On the other hand, by symmetric properties of Bernstein polynomials and the equality (2.16), we have

\[
I_4 = \int_{\mathbb{Z}_p} \prod_{s=1}^{m} B_{n_s-k, n_s} (1 - \xi) \, d\mu_q(\xi)
\]

\[
= \prod_{s=1}^{m} \left(\frac{n_s}{k} \right) \sum_{\ell=0}^{mk} \left(-1 \right)^{mk-\ell} \int_{\mathbb{Z}_p} (1 - \xi)^{n_1+\cdots+n_m-\ell} \, d\mu_q(\xi)
\]

\[
= \prod_{s=1}^{m} \left(\frac{n_s}{k} \right) \sum_{\ell=0}^{mk} \left(-1 \right)^{mk-\ell} \left([2]_q + q^2 \frac{G_{n_1+\cdots+n_m-\ell+1,q^{-1}}}{n_1+\cdots+n_m-\ell+1} \right)
\]

\[
= \begin{cases}
[2]_q + q^2 \frac{G_{n_1+\cdots+n_m+1,q^{-1}}}{n_1+\cdots+n_m+1}, & k = 0, \\
\prod_{s=1}^{m} \left(\frac{n_s}{k} \right) \sum_{\ell=0}^{mk} \left(-1 \right)^{mk-\ell} \left([2]_q + q^2 \frac{G_{n_1+\cdots+n_m-\ell+1,q^{-1}}}{n_1+\cdots+n_m-\ell+1} \right), & k \neq 0.
\end{cases}
\]

Equating \(I_3 \) and \(I_4 \) results in an interesting identity (2.18) for the \(q \)-analogue of Genocchi polynomials with weight 0. \(\square \)

3. AN IDENTITY ON \(p \)-ADIC LOCALLY ANALYTIC FUNCTIONS

In this section, we consider Kim’s \(p \)-adic \(q \)-log gamma functions related to the \(q \)-analogue of Genocchi polynomials.

Definition 3.1. ([5, 7]) For \(x \in \mathbb{C}_p \setminus \mathbb{Z}_p \),

\[
(1 + x) \log(1 + x) = x + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)} x^{n+1}.
\]

Kim’s \(p \)-adic locally analytic function on \(x \in \mathbb{C}_p \setminus \mathbb{Z}_p \) can be defined as follows.

Definition 3.2. ([5, 7]) For \(x \in \mathbb{C}_p \setminus \mathbb{Z}_p \),

\[
G_{p,q}(x) = \int_{\mathbb{Z}_p} [x + \xi]_q \log[x + \xi]_q - 1) \, d\mu_q(\xi).
\]

By considering Kim’s \(p \)-adic \(q \)-log gamma function, we introduce the following \(p \)-adic locally analytic function

\[
G_{p,1}(x) \triangleq G_p(x) = \int_{\mathbb{Z}_p} (x + \xi) \log(x + \xi) - 1) \, d\mu_q(\xi).
\]
Theorem 3.1. For \(x \in \mathbb{C}_p \setminus \mathbb{Z}_p \),
\[
G_p(x) = \left(x + \frac{\tilde{G}_{2,q}}{2} \right) \log x + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)(n+2)} \frac{\tilde{G}_{n+2,q}}{x^n} - x. \tag{3.2}
\]

Proof. Replacing \(x \) by \(\frac{x}{\xi} \) in (3.1) leads to
\[
(x + \xi)[\log(x + \xi) - 1] = (x + \xi) \log x + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}\xi^{n+1}}{n(n+1)} \frac{\xi}{x^n} - x. \tag{3.3}
\]
From (3.1) and (3.3), we can establish an interesting formula (3.2). \(\square\)

Remark 3.1. This is a revised version of the preprint [1].

Acknowledgements. The authors appreciate the anonymous referee for his valuable suggestions to and helpful comments on the original version of this manuscript.

References