
MONASTIR MINI-COURSE:

THE SELBERG CLASS OF ZETA- AND L-FUNCTIONS

JÖRN STEUDING

”What is a zeta-function (an L-function)? We know one when we see one! ”

This quotation is attributed to M.N. Huxley and reflects the number-theoretical prob-

lem to classify those generating functions which carry arithmetically relevant data. In

1989, Selberg introduced a general class S of Dirichlet series having an Euler product

representation, analytic continuation and a functional equation of Riemann-type, and for-

mulated some fundamental conjectures. In only twenty years this so-called Selberg class of

L-functions became an important branch of research in Analytic Number Theory with im-

portant arithmetical applications. It is widely expected that the Selberg class contains all

aritmetically important L-functions, moreover, that it consists of exactly all automorphic

L-functions. In this mini-course, consisting of six lectures, we give an introduction to this

topic. Our focus is on general methods, e.g., Hecke’s approach to functional equations and

analytic continuation, Tauberian theorems to deduce information about prime numbers,

as well as linear and non-linear twists, a powerful tool recently invented by Kaczorowski

& Perelli to investigate the structure of the Selberg class. The course is mainly based on

the excellent surveys of Kaczorowski [20] and Perelli [42, 43], and the monographs [38, 54]

of M.R. Murty & V.K. Murty and the author, respectively. Basic knowledge in Real and

Complex Analysis is expected, and a background from Number Theory is useful, although

we have added several appendices in order to present a self-contained introduction.
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1. Classical Theory of Zeta- and L-Functions

Since Dirichlet’s proof of the prime number theorem for arithmetic progressions from

1837 and Riemann’s famous path-breaking paper in 1859, zeta and L-functions play a cen-

tral role in Analytic Number Theory. Being generating functions formed out of local data

associated with either an arithmetic object or with an automorphic form, these functions

possess a Dirichlet series and an Euler product representation (if the underlying object is

of multiplicative nature). The famous Riemann zeta-function

(1) ζ(s) =

∞
∑

n=1

1

ns
=
∏

p

(

1 − 1

ps

)−1

(Re s > 1)

may be regarded as the prototype. Here the product is taken over all prime numbers and

the identity between this product and the series is an analytic version of the unique prime

factorization of the integers (which becomes obvious by expanding each factor). According

to their inventors, any product over primes is called an Euler product and any series of

the above type is called a Dirichlet series. L-functions encode in their value-distribution

information about the underlying arithmetical or algebraic structure, e.g. the infinitude

of prime numbers follows immediately from (1) and the divergence of the harmonic series;

a more advanced study yields the celebrated prime number theorem (which we discuss

more detailed in §3). Another example is Dirichlet’s analytic class number formula which

measures the deviation from unique prime factorization in the ring of integers of quadratic

number fields. Actually, two of the seven millennium problems are questions about L-

functions: the famous Riemann hypothesis on the zeros of ζ(s) and the conjecture of Birch

& Swinnerton-Dyer that the rank of the Mordell-Weil group of an elliptic curve is equal

to the order of the zero of the associated L-function LE(s) at s = 1.

In order to deduce information on the value-distribution of zeta- and L-functions, first

analytic continuation beyond the abscissa of convergence of the defining Dirichlet series is

needed. In many arithmetically interesting examples this can be realized by a functional

equation. In the case of the Riemann zeta-function this functional equation takes the form

of a point symmetry with respect to s = 1
2 :

Theorem 1 (Riemann’s Functional Equation). The Riemann zeta-function ζ(s) has

an analytic continuation to the whole complex plane except for a simple pole at s = 1 with

residue 1, and satisfies the identity

π− s
2 Γ
(s

2

)

ζ(s) = π− 1−s
2 Γ

(

1 − s

2

)

ζ(1 − s).

Proof. The Gamma-function plays an important part in the theory of the zeta-function

(see [56], §1.86 and §4.41, for a collection of its most important properties); for Re z > 0,

it is defined by Euler’s integral

Γ(z) =

∫ ∞

0

uz−1 exp(−u) du.

Substituting u = πn2x, leads to

Γ
(s

2

)

π− s
2

1

ns
=

∫ ∞

0

x
s
2−1 exp(−πn2x) dx.

Summing up over all n ∈ N, yields

π− s
2 Γ
(s

2

)

∞
∑

n=1

1

ns
=

∞
∑

n=1

∫ ∞

0

x
s
2−1 exp(−πn2x) dx.
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On the left-hand side we find the Dirichlet series defining ζ(s); hence the latter formula

is valid only for Re s > 1. On the right-hand side we may interchange summation and

integration, which is allowed by absolute convergence. Thus we obtain

π− s
2 Γ
(s

2

)

ζ(s) =

∫ ∞

0

x
s
2−1

∞
∑

n=1

exp(−πn2x) dx.

We split the integral at x = 1 to get

(2) π− s
2 Γ
(s

2

)

ζ(s) =

{∫ 1

0

+

∫ ∞

1

}

x
s
2−1ω(x) dx,

where

ω(x) :=

∞
∑

n=1

exp(−πn2x) =
1

2
(θ(x) − 1)

can be expressed in terms of Jacobi’s theta-function θ(x) :=
∑∞

n=−∞ exp(−πn2x). Next

we shall use the functional equation for the theta-function,

(3) θ(x) =
1√
x
θ

(

1

x

)

,

valid for any x > 0; this formula will be proved in Appendix B as an application of Poisson’s

summation formula. Hence, we find

ω

(

1

x

)

=
1

2

(

θ

(

1

x

)

− 1

)

=
√
xω(x) +

1

2
(
√
x− 1).

By the substitution x 7→ 1
x the first integral in (2) equals

∫ ∞

1

x−
s
2−1ω

(

1

x

)

dx =

∫ ∞

1

x−
s+1
2 ω(x) dx+

1

s− 1
− 1

s
.

Inserting this in (2) yields

(4) π− s
2 Γ
(s

2

)

ζ(s) =
1

s(s− 1)
+

∫ ∞

1

(

x−
s+1
2 + x

s
2−1
)

ω(x) dx.

Since ω(x) ≪ exp(−πx), the last integral converges for all values of s, and thus (4) holds,

by analytic continuation, throughout the complex plane.∗ The right-hand side remains

unchanged by s 7→ 1 − s which proves the functional equation for zeta. It easily follows

from (2) that ζ(s) − 1
s−1 is an entire function; we leave the details to the reader. •

The given proof is one of the two proofs Riemann found. It relies heavily on the functional

equation (3) of the theta-function, which is an easy consequence of the Poisson summation

formula (Theorem 30 in Appendix B). In the sequel we shall see how Riemann’s approach

via the theta-function allows interesting generalizations. Other proofs of the functional

equation for ζ(s) can be found in [56].

Before we continue to consider further examples of L-functions we shall discuss the im-

pact of the functional equation on the values of ζ(s) at the integers and on the distribution

of zeros. By the Euler product representation (1) the zeta-function does not vanish in the

half-plane of convergence Re s > 1 of its Dirichlet series. In view of the functional equation

the only zeros in the left half-plane Re s < 0 occur at the poles of the Gamma-factor Γ( s
2 );

those zeros lie at s = −2n, n ∈ N, and are said to be trivial. All other zeros are called

nontrivial and, consequently, they appear inside the so-called critical strip 0 ≤ Re s ≤ 1,

∗We write f(x) ≪ g(x) or f(x) = O(g(x)) with a positive function g if lim sup
x→∞ |f(x)|/g(x) < ∞;

in this case there exists a positive constant C such that |f(x)| ≤ Cg(x) for all sufficiently large x.
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symmetrically distributed with respect to the so-called critical line 1
2 + iR and the real

axis. In §3, we shall show that there are no zeros on the boundary of the critical strip.

Exercise 1. Show that, for Re s > 0,

(5) ζ(s) = (1 − 21−s)−1
∞
∑

n=1

(−1)n−1

ns
,

and deduce that ζ(s) does not vanish for s ∈ (0, 1).

It was Riemann’s great contribution to number theory to point out the relevance of the

zeta zeros to the distribution of prime numbers. In this context he formulated that very

likely all nontrivial zeros lie on the critical line 1
2 + iR which is now widely known as the

Riemann Hypothesis. ζ(s) 6= 0 for Re s > 1
2 .

It is amazing that already in the 18th century Euler had partial results toward the

functional equation for ζ(s), namely, formulae for the values of ζ(s) for integral s (and

even for half-integral s) relating s with 1 − s:

Theorem 2 (Euler’s Theorem). For k, n ∈ N,

ζ(2k) = (−1)k−1 (2π)2k

2(2k)!
B2k, ζ(0) = − 1

2 , and ζ(−n) = −Bn+1

n+ 1
,

where the Bernoulli numbers Bn are defined by the identity

z

exp z − 1
=

∞
∑

n=0

Bn
zn

n!
= 1 − 1

2
z +

1

12
z2 ∓ . . . .

Nearly nothing is known about the values of zeta at the positive odd integers; in 1979,

Apéry proved that ζ(3) is irrational but the arithmetic character of ζ(5) is still unknown.

Exercise 2. Prove Theorem 2 as follows: First show
∞
∑

k=1

(−1)k (2π)2k

(2k)!
B2kz

2k = πz cot(πz) − 1 = z
d

dz
log

sin(πz)

πz
,

then use the product representation for sin(πz)
πz to evaluate ζ(2k). Next apply the functional

equation to obtain the values ζ(1 − n). Why is it impossible to deduce information about

ζ(5) this way? How did Euler obtain his formulae? For this and advice see [55].

Next we consider Dirichlet L-functions which are defined by

(6) L(s, χ) =
∞
∑

n=1

χ(n)

ns
=
∏

p

(

1 − χ(p)

ps

)−1

(Re s > 1);

here χ denotes a Dirichlet character, i.e., a group homomorphism from the group of prime

residue classes modulo some positive integer q into C
∗; see Appendix A for a short introduc-

tion to these useful tools in Number Theory. Since characters are completely multiplica-

tive, L(s, χ) may be represented both, as Dirichlet series and as Euler product (similarly

to (1)). In fact, the Riemann zeta-function may be considered as the Dirichlet L-function

to the unique character χ0 mod 1. By analytic continuation, L(s, χ) extends to a mero-

morphic function in the complex plane with a single pole at s = 1 if χ is a principle

character (i.e., χ(n) = 1 for all n coprime with some q). Of special interest are Dirich-

let L-functions associated with primitive characters χ (that means χ is not induced by a

character of smaller modulus), since any non-principle character is induced by a uniquely
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determined primitive character and the corresponding L-functions differ from one another

only by a finite Euler product which extends to an entire function with a very regular

value-distribution. In a similar manner as above one can prove the functional equation

for Dirichlet L-functions L(s, χ) with a primitive character χ mod q. Here we have to

distinguish the cases χ(−1) = +1 and χ(−1) = −1. In the first case we find

(7) θ(x, χ) :=
∑

n∈Z

χ(n) exp(−πn2x/q) =
τ(χ)√
qx
θ

(

1

x
, χ

)

,

where τ(χ) :=
∑

a mod q χ(a) exp(2πia
q ) is the Gaussian sum which satisfies

τ(χ)τ(χ) = χ(−1)|τ(χ)|2 = χ(−1)q.

The second case, χ(−1) = −1, is slightly more difficult. Here we make use of

(8) θ̃(x, χ) :=
∑

n∈Z

χ(n)n exp(−πn2x/q) =
τ(χ)

i
√
qx

3
2

θ̃

(

1

x
, χ

)

,

Also the proofs of these functional equations rely on the Poisson summation formula and

basic facts from character theory. Formulae (7) and (8) lead by more or less the same

method as for the zeta-function to

Theorem 3 (Functional Equation for Dirichlet L-Functions). Let χ be a primitive

character mod q. Then, L(s, χ) extends to an entire function and satisfies

( q

π

)
s+δ
2

Γ

(

s+ δ

2

)

L(s, χ) =
τ(χ)

iδ
√
q

( q

π

)
1+δ−s

2

Γ

(

1 + δ − s

2

)

L(1 − s, χ),

where δ := 1
2 (1 − χ(−1)).

Exercise 3. Prove the latter theorem as well as all identities for the involved theta-

functions, that are (3), (7) and (8). What can be said about zeros and zero-free regions?

It should be noticed that, previous to Riemann, already in 1846 Malmstén and a little

later Schlömilch obtained among other identities

L(1 − s, χ−4) =
(π

2

)−s

sin
πs

2
Γ(s)L(s, χ−4)

with the unique character χ−4 modulo 4 defined by χ−4(−1) = −1. In fact, this functional

equation is a special case of the latter theorem (as follows from some properties of the

Gamma-function). In 1849, Eisenstein derived an even more general functional equation

(cf. Bombieri [2]; see also Weil’s treatise [60] for details).

Next we shall briefly investigate an interesting example. The Davenport-Heilbronn

zeta-function is given by

L(s) =
1 − iκ

2
L(s, χ) +

1 + iκ

2
L(s, χ),

where κ :=

√
10−2

√
5−2√

5−1
and χ is the character mod 5 with χ(2) = i. It is an easy conse-

quence of Theorem 3 that the Davenport-Heilbronn zeta-function satisfies the functional

equation
(

5

π

)
s
2

Γ

(

s+ 1

2

)

L(s) =

(

5

π

)
1−s
2

Γ
(

1 − s

2

)

L(1 − s).

Davenport & Heilbronn introduced this function as an example for a Dirichlet series having

infinitely many zeros on the critical line and also infinitely many zeros in the half-plane

Re s > 1 in spite of satisfying a Riemann-type functional equation. The localization of these
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zeros is not too easy (see also [57]). Following Balanzario [1], we give another example:

consider of a Dirichlet series satisfying a Riemann-type functional equation for which the

analogue of the Riemann hypothesis does not hold. Consider the following functions with

5-periodic Dirichlet coeffcients:

(1 + 5
1
2−s)ζ(s) = 1 +

1

2s
+

1

3s
+

1

4s
+

1 +
√

5

5s
+ . . . ,

L(s, χ) = 1 − 1

2s
− 1

3s
+

1

4s
+

0

5s
+ . . . ,

where χ is the unique character mod 5 with χ(2) = −1. Both functions satisfy the same

functional equation,

(9) F (s) = 5
1
2−s2(2π)s−1Γ(1 − s) sin

πs

2
F (1 − s).

Now let z be an arbitrary complex number, then the function

L(z, χ)(1 + 5
1
2−s)ζ(s) − L(s, χ)(1 + 5

1
2−z)ζ(z)

vanishes for s = z, satisfies the functional equation (9) which can be rewritten as an

identity with a point symmetry with respect to s = 1
2 , and possesses a Dirichlet series

expansion for Re s > 1. Thus, we observe that a functional equation of Riemann type is

not sufficient for having all complex zeros on a straight line! It is expected that the Euler

product is responsible for the location of the nontrivial zeros on the critical line although

the Euler product does not converge inside the critical strip.

Now we shall prove Hecke’s important correspondence between Dirichlet series with a

Riemann-type functional equation and modular forms of the upper half-plane. Roughly

speaking, these modular forms are analytic functions defined on the upper half-plane which

satisfy a bunch of functional equations similar to (3) for the theta-functions above. A

precise definition of modular forms will be given in the next section; for the first just notice

that the following theorem is not about the empty set; actually, with Ogg’s monograph

[41] there is a whole book on this topic, and the proof reflects some ideas from Riemann’s

proof of the functional equation for zeta as well.

Theorem 4 (Hecke’s Converse Theorem). Let λ and k be fixed positive real num-

bers. Given two sequences {a(n)}n∈N0
and {b(n)}n∈N0

of complex numbers satisfy-

ing a(n), b(n) ≪ nc for some positive constant c, define φ(s) =
∑∞

n=1 a(n)n−s and

ψ(s) =
∑∞

n=1 b(n)n−s, as well as

Φ(s) =

(

λ

2π

)s

Γ(s)φ(s) and Ψ(s) =

(

λ

2π

)s

Γ(s)ψ(s).

The functions φ(s) and ψ(s) are analytic in the half-plane Re s > c+1, while the functions

given by

f(z) =

∞
∑

n=0

a(n) exp(2πinz/λ) and g(z) =

∞
∑

n=0

b(n) exp(2πinz/λ)

are analytic in the upper half-plane H := {z := x+ iy ∈ C : y > 0} satisfying the boundary

condition f(x+ iy), g(x+ iy) ≪ y−c−1 as y → 0+. Furthermore, the following statements

are equivalent:

(i) The function Φ(s) + a(0)
s + ǫb(0)

k−s is entire and bounded on every vertical strip and

satisfies the functional equation

Φ(s) = ǫΨ(k − s);
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(ii) for any z ∈ H,

f(z) = ǫ

(

i

z

)k

g

(−1

z

)

.

This correspondence provides plenty of examples of L-functions associated with automor-

phic forms. An important generalization is due to Weil [59].

Proof. First of all, we observe that the statement concerning the convergence of the

Dirichlet series is trivial. In order to derive the holomorphy and the boundary condition

it suffices to consider the function f(z) only. By Stirling’s formula,

(−1)n

(−c− 1

n

)

=
Γ(c+ 1 + n)

Γ(c+ 1)Γ(n+ 1)
∼ c1n

c

with some positive constant c1.
† Hence, the series for f(x+ iy) is dominated term-by-term

by
∞
∑

n=0

(−1)n

(−c− 1

n

)

exp(−2πny/λ) = (1 − exp(−2πy/λ))−(c+1) ≪ y−c−1.

By the way, given the boundary condition, we can conversely bound the coefficients

a(n) by using their integral representation

a(n) =

∫ 1

0

f(x+ iy) exp(−2πin(x+ iy)/λ) dx;

using this with y = 1
n , we get

a(n) =

∫ 1

0

f

(

x+
i

n

)

exp

(

−2πin

(

x+
i

n

)

/λ

)

dx≪ nc.

It remains to show the equivalence of (i) and (ii). We start with the implication (ii)⇒(i).

We note that, for sufficiently large Re s,

Φ(s) =

∞
∑

n=1

a(n)

∫ ∞

0

(

λ

2π

)s

xs−1 exp(−nx) dx =

∞
∑

n=1

∫ ∞

0

a(n)ys−1 exp(−2πny/λ) dy

as in the proof of the functional equation for ζ(s). Now interchanging summation and

integration (justified by absolute convergence), we get

Φ(s) =

∫ ∞

0

∞
∑

n=1

a(n)ys−1 exp(−2πny/λ) dy =

∫ ∞

0

ys−1(f(iy) − a(0)) dy.

The integral is improper for y → 0+ and y → ∞; we consider the contributions of the

intervals (0, 1) and (1,∞) separately. Since f(iy) − a(0) ≪ exp(−cy) as y → ∞ for some

positive constant c, it follows that
∫ ∞

1

ys−1(f(iy) − a(0)) dy

converges uniformly on vertical strips, and so it defines an entire function which is bounded

on vertical strips. For the integral taken over (0, 1) we make use of (ii). We have
∫ 1

0

ys−1(f(iy) − a(0)) dy = −a(0)ys

s

∣

∣

∣

1

y=0
+

∫ ∞

1

y1−sf

(

i

y

)

dy

y2
.

†We write f(x) ∼ g(x) with a positive function g if the limit limx→∞ f(x)/g(x) exists and is equal to

1. Sometimes this notation is also used for other limiting processes than x→ ∞.
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Now by (ii) we get
∫ 1

0

ys−1(f(iy) − a(0)) dy = −a(0)

s
+ ǫ

∫ ∞

1

yk−s−1(g(iy) − b(0)) dy − ǫ
b(0)

k − s
.

(In view of (3) we may understand Jacobi’s theta-function appearing in Riemann’s proof

of Theorem reffunctional as a modular form of weight k = 1/2.) Hence,

Φ(s) +
a(0)

s
+
ǫb(0)

k − s
=

∫ ∞

1

{

ys−1(f(iy) − a(0)) + ǫyk−s−1(g(iy) − b(0))
}

dy

is an entire function bounded on vertical strips. Furthermore, we observe that (i) holds.

Now we assume (i) and deduce (ii). We shall use the formula

exp(−x) =
1

2πi

∫ α+i∞

α−i∞
x−sΓ(s) ds,

where α > 0 and x > 0. The latter formula is the Mellin inversion of Euler’s integral

representation of the Gamma-function; Mellin transforms are important tools in zeta- and

L-function theory and will appear several times later on. It follows that

(10) f(iy) − a(0) =
1

2πi

∫ α+i∞

α−i∞
y−sΦ(s) ds;

however, here we have to choose the abscissa α > k such that the path of integration

lies inside the half-plane of absolute convergence for φ(s). We shall move the path of

integration over the origin to the left. Incorporating the residues at s = 0 and s = k, we

obtain

(11) f(iy) − a(0) =
1

2πi

∫ −α+i∞

−α−i∞
y−sΦ(s) ds+ {Res s=0 + Res s=k} y−sΦ(s).

In view of (i) we find Res s=0y
−sΦ(s) = −a(0) and Res s=ky

−sΦ(s) = ǫb(0)y−k. Thus, we

may replace (11) by

f(iy) − ǫb(0)y−k =
1

2πi

∫ −α+i∞

−α−i∞
y−sΦ(s) ds.

Taking into account (i), we get

f(iy) − ǫb(0)y−k =
1

2πi

∫ −α+i∞

−α−i∞
y−sǫΨ(k − s) ds =

ǫ

2πi

∫ k+α+i∞

k+α−i∞
y−(k−s)Ψ(s) ds,

by substituting s by k − s. The right-hand side above is equal to

ǫy−k

(

g

(

i

y

)

− b(0)

)

(by the same argument as for (10)). This gives (ii) and the theorem is proved. •
There are only a few methods known to obtain analytic or meromorphic continuation

for a Dirichlet series. The proof of a functional equation is probably the most elegant way

to extend an L-function to the whole complex plane. However, for so-called symmetric

power L-functions such functional equations are only conjectured (see [38, 54]). Moreover,

from a functional equation we can sometimes only deduce that the underlying L-function is

meromorphic, for control of possible poles more subtle information is needed. Here Artin L-

functions are examples (and more information concerning them can be found in Appendix

D). A good reading on other techniques for analytic continuation is the survey [13] of

Gelbart & Miller. On the contrary, many functions defined as Dirichlet series or Euler

products in some half-plane have somewhere a vertical line consisting of densely packed
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singularities such that there is no analytic continuation beyond this natural boundary

possible.

2. The Selberg Class: Axioms, Examples, and Structure

In 1989, Selberg [47] defined what is now widely known as the Selberg class. His aim

was to study the value-distribution of linear combinations of L-functions. In the meantime

this class became an important object of research for various reasons. In this section we

give the precise definition, discuss important examples, and do first investigations of its

structure.

The Selberg class S consists of Dirichlet series

(12) L(s) =

∞
∑

n=1

a(n)

ns

satisfying the following hypotheses:

(i) Ramanujan Hypothesis: a(n) ≪ nǫ for any ǫ > 0, where the implicit constant

may depend on ǫ.

(ii) Analytic Continuation: there exists an integer k ≥ 0 such that (s− 1)kL(s) is

an entire function of finite order.

(iii) Functional Equation: L(s) satisfies a functional equation of type

ΛL(s) = ωΛL(1 − s), where ΛL(s) := L(s)Qs

f
∏

j=1

Γ(λjs+ µj)

with positive real numbers Q, λj , and complex numbers µj , ω with Reµj ≥ 0 and

|ω| = 1.

(iv) Euler Product: L(s) has a product representation

L(s) =
∏

p

Lp(s), where Lp(s) = exp

( ∞
∑

k=1

b(pk)

pks

)

with suitable coefficients b(pk) satisfying b(pk) ≪ pkθ for some θ < 1
2 .

Recall the notion of the order of a meromorphic function. Assume that L(s) is analytic

in some strip σ1 ≤ Re s ≤ σ2 except for at most a finite number of poles. Then L(s) is said

to be of finite order in this strip if there exists a positive constant c such that the estimate

(13) L(σ + it) ≪ |t|c as |t| → ∞

holds uniformly for σ1 ≤ Re s ≤ σ2; here and in the sequel we shall sometimes write the

complex variable as s = σ + it (which is tradition since Landau). Similarly, one defines

the notion of finite order for half-planes Re s ≥ σ1. Clearly, a function given by a Dirichlet

series is of finite order in its half-plane of convergence. Given Re s, define µL(σ) to be the

lower bound of all c for which (13) holds:

µL(σ) = lim sup
t→±∞

log |L(σ + it)|
log |t| ;

this quantity is called the order of L(s) on the vertical line σ+ iR. One can show that the

function µL(σ) is convex downwards (in particular, it is continuous). Moreover, µL(σ) = 0
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for any σ strictly greater than the abscissa of absolute convergence. Conversely, the Dirich-

let series is convergent in the half-plane where L(s) is regular and µL(σ) = 0. Exploiting

the functional equation for L ∈ S, it is not difficult to prove that

(14) µL(σ) ≤







0 if σ > 1,
1
2 dL(1 − σ) if 0 ≤ σ ≤ 1,

(1
2 − σ) dL if σ < 0.

Exercise 4. Prove Formula (14). For this purpose rewrite the functional equation as

L(s) = ∆L(s)L(1 − s), where ∆L(s) := ωQ1−2s

f
∏

j=1

Γ(λj(1 − s) + µj)

Γ(λjs+ µj)
.

Applying Stirling’s formula and using the so-called Phragmén-Lindelöf principle (for both

see Appendix B), show that

(15) L(σ + it) ≍ |t|( 1
2−σ) dL |L(1 − σ + it)|,

uniformly in σ, as |t| → ∞.‡ Finally, deduce (14).

In view of the functional equation, resp. the convexity of µL(σ), the value for σ = 1
2 is

essential. In particular, we obtain µL(1
2 ) ≤ 1

4 dL or, equivalently,

L
(

1

2
+ it

)

≪ |t| 14 dL+ǫ(16)

for |t| ≥ 1; this bound is known as the convexity bound. The best known upper bound for

the Riemann zeta-function is µζ(
1
2 ) ≤ 32

205 , due to Huxley [16].

The most simple examples of elements of the Selberg class are the Riemann zeta-function

and shifts L(s + iθ, χ) of Dirichlet L-functions attached to primitive characters χ with

θ ∈ R. To verify this one just needs to recall Theorem 1 and 3 from the previous section.

More advanced examples are L-functions associated with certain modular forms which we

introduce now.

Denote by H the upper half-plane {z := x+iy ∈ C : y > 0}, and let k and N be positive

integers, k being even. Recall that the modular group SL2(Z) is the set of all 2×2-matrices

with integer entries and determinant 1; this group is generated by the matrices (1 1
0 1 ) and

( 0 1
−1 0 ). The subgroup

Γ0(N) :=

{(

a b

c d

)

∈ SL2(Z) : c ≡ 0 mod N

}

of SL2(Z) is called Hecke subgroup of level N or congruence subgroup modN . A holo-

morphic function f(z) on H is said to be a cusp form of weight k and level N , if

f

(

az + b

cz + d

)

= (cz + d)kf(z)

for all z ∈ H and all matrices
(

a b
c d

)

∈ Γ0(N), and if f vanishes at all cusps. The vanishing

of f at the cusps is equivalent with

z := x+ iy 7→ yk|f(z)|2

is bounded on H. Then f has for z ∈ H a Fourier expansion

(17) f(z) =

∞
∑

n=1

c(n) exp(2πinz).

‡We write f(x) ≍ g(x) with some positive function g if both, f(x) ≪ g(x) and g(x) ≪ |f(x)|.
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The cusp forms on Γ0(N) of weight k form a finite dimensional complex vector space,

denoted by Sk(Γ0(N)), with the Petersson inner product, defined by

〈f, g〉 =

∫

H/Γ0(N)

f(z)g(z)yk dxdy

y2

for f, g ∈ Sk(Γ0(N). Suppose that M |N . If f ∈ Sk(Γ0(M)) and dM |N , then z 7→ f(dz)

is a cusp form on Γ0(N) of weight k too. The forms which may be obtained in this way

from divisors M of the level N with M 6= N span a subspace Sold
k (Γ0(N)), called the space

of oldforms. Its orthogonal complement with respect to the Petersson inner product is

denoted Snew
k (Γ0(N)). For n ∈ N we define the Hecke operator T (n) by

T (n)f =
1

n

∑

ad=n

ak
∑

0≤b<d

f

(

az + b

d

)

for f ∈ Sk(Γ0(N)). The operators T (n) are multiplicative, i.e., T (mn) = T (m)T (n) for

coprime m,n, and they encode plenty of arithmetic information about modular forms.

The theory of Hecke operators implies the existence of an orthogonal basis of Snew
k (Γ0(N))

made of eigenfunctions of the operators T (n) for n coprime with N . By the multiplicity-

one principle of Atkin & Lehner, the elements f of this basis are in fact eigenfunctions of

all T (n), i.e., there exist complex numbers λf (n) for which T (n)f = λf (n)f and c(n) =

λf (n)c(1) for all n ∈ N. Furthermore, it follows that the first Fourier coefficient c(1) of

such an f is non-zero. Such a simultaneous eigenfunction is said to be an eigenform. A

newform is defined to be an eigenform that does not come from a space of lower level and

is normalized to have c(1) = 1. The newforms form a finite set which is an orthogonal

basis of the space Snew
k (Γ0(N)). For instance, Ramanujan’s cusp form

(18) ∆(z) =

∞
∑

n=1

τ(n) exp(2πinz) := exp(2πiz)

∞
∏

n=1

(1 − exp(2πinz))24

is a normalized eigenform of weight 12 to the full modular group, and hence a newform of

level 1.

To see that we fix a positive even integer k > 2 and define the Eisenstein series of weight

k by

Gk(z) =
(k − 1)!

2(2πi)k

∑

m,n∈Z
(m,n)6=(0,0)

1

(mz + n)k

(the condition k > 2 is needed to guarantee absolute convergence). The action of M =

(a
c

b
d) ∈ SL2(Z) on this function replaces (m,n) by (am + cn, bm + dn) and therefore

permutes the terms of the sum. We obtain

(19) Gk

(

az + b

cz + d

)

= (cz + d)kGk(z).

Using Lipschitz’ formula,

∑

n∈Z

1

(z + n)k
=

(−2πi)k

(k − 1)!

∞
∑

d=1

dk−1 exp(2πidz),
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we find by splitting the Gk-defining sum into terms with m = 0 and the terms with m 6= 0

that

Gk(z) =
(k − 1)!

(2πi)k

∞
∑

n=1

1

nk
+

∞
∑

m=1





(k − 1)!

(2πi)k

∑

n∈Z

1

(mz + n)k





= (−1)
k
2
(k − 1)!

(2π)k
ζ(k) +

∞
∑

m=1

∞
∑

d=1

dk−1 exp(2πidmz).

In view of the values of the zeta-function at the integers in terms of the Bernoulli numbers

Bk, Theorem 2 from §1, we get the Fourier series expansion

Gk(z) = −Bk

2k
+

∞
∑

n=1

σk−1(n) exp(2πinz);

here σk−1(n) denotes the sum of divisors of n in the power k−1. The so-called discriminant

is defined by

∆(z) =
(2π)12

1728

(

(240G4(z))
3 − (504G6(z))

2
)

(the name discriminant comes from the theory of elliptic curves). In view of (19) it follows

that

∆

(

az + b

cz + d

)

=
(2π)12

1728

{

(

240G4

(

az + b

cz + d

))3

−
(

504G6

(

az + b

cz + d

))2
}

= (cz + d)12
(2π)12

1728

{

(240G4(z))
3 − (504G6(z))

2
}

= (cz + d)12∆(z)

for all M = (a
c

b
d) ∈ SL2(Z). The proof of the product representation (18) can be found

in Koblitz [26]). The Fourier series expansion for ∆(z) in (18) defines Ramanunajan’s

τ -function for which he conjectured multiplicativity and that they satisfy the estimate

|τ(p)| ≤ 2p
11
2 for every prime number p. The multiplicativity was proved by Mordell, in

particular by the beautiful formula

τ(m)τ(n) =
∑

d|(m,n)

d11τ
(mn

d2

)

.

The estimate was shown by Deligne who proved for the coefficients of any newform f of

weight k the estimate

|c(n)| ≤ n
k−1
2 d(n),(20)

where d(n) :=
∑

d|n 1 is the divisor function.

In the 1930s, Hecke started investigations on modular forms and Dirichlet series with

a Riemann-type functional equation (see his Converse Theorem 4). His studies were com-

pleted by Atkin & Lehner for newforms. Here we shall focus on newforms. Given a

newform f with Fourier expansion (17), we define the associated L-function by

L(s, f) =

∞
∑

n=1

c(n)

ns
.(21)

In view of the classic bound d(n) ≪ nǫ it follows from Deligne’s estimate (20) that the

series (21) converges absolutely for Re s > k+1
2 . By the theory of Hecke operators, the
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Fourier coefficients of newforms are multiplicative. Hence, in the half-plane of absolute

convergence, there is an Euler product representation and it is given by

(22) L(s, f) =
∏

p|N

(

1 − c(p)

ps

)−1
∏

p 6 |N

(

1 − c(p)

ps
+

1

p2s+1−k

)−1

.

Hecke, resp. Atkin & Lehner, proved that L(s, f) has an analytic continuation to an entire

function and satisfies the functional equation

N
s
2 (2π)−sΓ(s)L(s, f) = ω(−1)

k
2N

k−s
2 (2π)s−kΓ(k − s)L(k − s, f),

where ω = ±1 is the eigenvalue of the Atkin-Lehner involution (0 −N
1 0 ) on Sk(Γ0(N)). This

follows more or less from the Converse Theorem 4 with f = g and λ = 1. For congruence

subgroups Γ0(N) a similar converse theorem is due to Weil; however, for identifying an

L-function associated with a modular form of Γ0(N) one has to consider sufficiently many

twists with primitive characters and their analytic behaviour (see Iwaniec [17] for details).

In the context of the Selberg class we shall normalize these L-functions as follows.

Suppose that f is a newform of weight k to some congruence subgroup Γ0(N) with Fourier

expansion (17). Writing

a(n) = c(n)n
1−k
2

we find via (22) the Euler product representation

L

(

s+
k − 1

2
, f

)

=
∏

p

(

1 − a(p)

ps
+
χ(p)

p2s

)−1

,

where χ(p) = 0 if p | N , and χ(p) = 1 otherwise. In the latter case, i.e., p | N , the

corresponding Euler factor can be rewritten as
(

1 − a(p)

ps
+

1

p2s

)−1

=

(

1 − α1(p)

ps

)−1(

1 − α2(p)

ps

)−1

,

where α1(p), α2(p) are complex numbers satisfying

α1(p) + α2(p) = a(p) and α1(p)α2(p) = 1;

Deligne’s estimate (20) translates to

|α1(p)| = |α2(p)| = 1, i.e., α1(p) = α2(p).

Thanks to the transformation s 7→ s+ k−1
2 the critical strip is normalized to 0 ≤ Re s ≤ 1

(as for ζ(s), independent of the weight). In the sequel we shall assume that L-functions to

modular forms are normalized in this way, and we denote them again by L(s, f). Further

examples of S of similar type are Rankin-Selberg convolution and L-functions and sym-

metric power L-functions, however, we do not give their definition here but refer to the

monographs of Iwaniec & Kowalski [18], M.R. Murty & V.K. Murty [38], and Kaczorowski’s

survey [20]. The elements in the Selberg class are automorphic or at least conjecturally au-

tomorphic L-functions, and it is conjectured that S consists of all automorphic L-functions.

In view of the Euler product representation it is clear that any element L(s) of the

Selberg class does not vanish in the half-plane of absolute convergence Re s > 1. This

gives rise to the notions of critical strip and critical line s = 1
2 + iR (as in the theory

of the Riemann zeta-function). The zeros of L(s) located at the poles of gamma-factors

appearing in the functional equation are called trivial and they all lie in Re s ≤ 0. All
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other zeros are said to be nontrivial. It is expected that for every function in the Selberg

class the analogue of the Riemann hypothesis holds:

Grand Riemann Hypothesis. If L ∈ S, then L(s) 6= 0 for σ > 1
2 .

There are only a few attempts towards the Riemann Hypothesis and its generalizations.

An old idea due to Hilbert and Polyá is to find a self-adjoint operator in some Hilbert space

whose spectrum coincides with the zeros of an L-function. Weil found generalizations and

expressed the truth of the Riemann hypothesis in the positivity of a certain hermitian form

(cf. [2]). Recently, Mazhouda & Omar [31, 32] extended an approach of Li [29] for the

Riemann zeta-function (which is not unrelated to Weil’s criterion) to the whole Selberg

class.§

The zero-distribution is essential for the Selberg class which is also manifested in each of

the defining axioms. Following Conrey & Ghosh [7] we motivate the axioms defining S. We

have already seen that the Ramanujan hypothesis implies the regularity of L(s) in Re s > 1.

The assumption that there be at most one pole, and that this one is located at s = 1, is

natural in the theory of L-functions. It seems that the point s = 1 is the only possible pole

for an automorphic L-function and that such a pole is always related to the simple pole

of the Riemann zeta-function in the sense that the quotient with an appropriate power of

ζ(s) is another L-function which is entire (examples for this scenario are Dedekind zeta-

functions). The restriction Reµj ≥ 0 in the functional equation comes from the theory

of Maass waveforms. If one assumes the existence of an arithmetic subgroup of SL2(R)

together with such a non-analytic cusp form that corresponds to an exceptional eigenvalue,

and if one further supposes that all local roots are sufficiently small (more precisely, that

the Ramanujan-Petersson conjecture holds), then the L-function associated with the Maass

cusp form has a functional equation where the µj satisfy Reµj < 0, but this L-function

violates the analogue of Riemann’s hypothesis; see Kaczorowski [20] for more details. The

axiom on the Euler product representation will be discussed later in this section.

Of special interest is the structure of the Selberg class. The degree of L ∈ S is defined

by

dL = 2

f
∑

j=1

λj .

Although the data of the functional equation is not unique, the degree is well-defined as

follows from an asymptotic formula for the number of zeros in analogy to the classical

Riemann-von Mangoldt formula for Riemann’s zeta-function which we state as

Theorem 5 (Riemann–von Mangoldt Formula). If NL(T ) counts the number of zeros

of L ∈ S in the rectangle 0 ≤ Re s ≤ 1, |Im s| ≤ T (according to multiplicities), then

NL(T ) =
dL
π
T logT +O(T ),

Sketch of Proof. We apply the principle of the argument from the Theory of Functions.

For this aim we integrate the logarithmic derivative of the left-hand of the functional

equation,

ΛL(s) := L(s)Qs

f
∏

j=1

Γ(λjs+ µj),

§It is legend that Hardy said that if the Riemann Hypothesis for the zeta-function will be proved some

day, the analogue for Dirichlet L-functions will be shown the following day at latest.
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along the rectangular contour R given by the vertices −1± iT, 2± iT in counterclockwise

direction; here we may assume that T is not the ordinate of a zero of L(s) so there are no

zeros on the contour. Then

NL(T ) =
1

2πi

∫

R

Λ′
L

ΛL
(s) ds+O(1),

where the error term results from the possible pole at s = 1. Taking into account the

principle of the argument, we may compute N(T ) as the variation of the argument of

ΛL(s) along R. Using the functional equation, we may replace that part of R which is

lying to the left of the critical line by another change in the argument such that

NL(T ) =
2

π
∆argΛL(s) +O(1),

where ∆ denotes the variation along the line segments from 2 to 2+ iT and from 2+ iT to
1
2 + iT . We observe that ∆arg is additive and that the main contribution comes from the

Gamma-factors which is computed by Stirling’s formula (Theorem 32 from Appendix B);

this explains the appearance of the degree dL as factor in the main term. The estimate

of the argument of L(1
2 + iT ) is the most difficult part and can be made via Jensen’s

formula (as in the case of the zeta-function; see [57, 55]). A precise evaluation leads to the

asymptotic formula of the theorem (or even a more precise one with another main term

cT , where the constant c contains data from the functional euqation, and an error term

O(log T ). •

A different proof of Theorem 5 is given in Chapter 7 of [54] (based on a method of Levinson).

Exercise 5. Fill all gaps left in the sketch of proof of Theorem 5. See [57] for the special

case of the zeta-function; [18] might offer some help for the case that all weights in the

axiom on the functional equation are λj = 1
2 . Study the method of proof in [54]. What are

advantages and disadvantages of either approach?

We shall give an example: the following identity is equivalent to the form of the func-

tional equation we obtained in §1:

(π

2

)− s
2

Γ
(s

4

)

Γ

(

s

4
+

1

2

)

ζ(s) =
(π

2

)− 1−s
2

Γ

(

1 − s

4

)

Γ

(

1 − s

4
+

1

2

)

ζ(1 − s).

This functional equation can be transformed into the one of Theorem 1 by the duplication

formula for the Gamma-function. From both functional equations we deduce the degree

dζ = 1. As a matter of fact, the study of invariants defined in terms of the data of L ∈ S is

an important tool in deeper studies of the Selberg class. For further reading on invariants

we refer to [43].

Another class of examples of elements of the Selberg class are L-functions of number

fields K (i.e., finite algebraic extensions of Q. For example, the Dedekind zeta-function of

a number field K over Q is given by

(23) ζK(s) =
∑

a

1

N(a)s
=
∏

p

(

1 − 1

N(p)s

)−1

(Re s > 1),

where the sum is taken over all non-zero integral ideals, the product is taken over all prime

ideals of the ring of integers of K, and N(a) is the norm of the ideal a. The Riemann zeta-

function may be regarded as the Dedekind zeta-function for Q. Note that, by the splitting

of primes, the above Euler product representation over prime ideals can be rewritten in
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the form of axiom (4) (as we shall indicate below in the case of quadratic number fields).

The functional equation for ζK(s) was found by Hecke in 1917 and takes the form

AsΓ
(s

2

)r1

Γ(s)r2ζK(s) = A1−sΓ

(

1 − s

2

)r1

Γ(1 − s)r2ζK(1 − s)

with A := 2−r2π−n|∆K|
1
2 , where r1 is the number of real embeddings, r2 is the number of

pairs of conjugate complex embeddings, n = r1 + 2r2 = [K : Q] is the degree of the field

extension, and ∆K is the discriminant of K. It follows that the analytic degree of ζK(s)

coincides with the algebraic degree of the field extension K/Q, that is, dζK
= [K : Q]. In

particular, we see that there exist elements in S of arbitrary large degree.

We shall briefly discuss the example K = Q(
√
D). We write for short d := ∆

Q(
√

D)

(since now there is no confusion with the degree), which is equal to D if D ≡ 1 mod 4,

and equal to 4D if D ≡ 2, 3 mod 4. In view of the splitting of the primes one easily finds

ζ
Q(

√
D)(s) =

∏

( d
p

)=+1

(

1 − 1

ps

)−2
∏

( d
p

)=0

(

1 − 1

ps

)−1
∏

( d
p

)=−1

(

1 − 1

ps

)−1(

1 +
1

ps

)−1

= ζ(s)L(s, χd),(24)

with the Jacobi symbol, defined by

χ d : N → C, n 7→
(

d

n

)

=

ν
∏

j=1

(

d

pj

)

,

where n = p1 · . . . ·pν is the factorization of the integer n into prime factors (not necessarily

distinct). An excellent reading in Algebraic Number Theory is Narkiewicz [40].

The following important conjecture is based on the above and further examples of

elements of the Selberg class and its solution would provide a lot of structure:

Degree Conjecture. All L ∈ S have integral degree. Moreover, all λj appearing in the

Gamma-factors of the functional equation can be chosen to be equal to 1
2 .

Recently, Kaczorowski & Perelli proved the degree conjecture for the range (0, 2). Here,

we shall prove

Theorem 6 (Structure Theorem – Small Degrees). If L ∈ S has degree 0 ≤ dL < 1,

then dL = 0 and L(s) ≡ 1.

It should be noted that the statement proved above is implicitly contained in the works

of Bochner, Richert, and Vignéras on classifying the solutions of Riemann-type functional

equations. In some sense Theorem 6 may be considered as a converse theorem similar to

Hecke’s Theorem 4. In the sequel we shall present further results of this type; the case of

degree [1, 2) will be considered in Sections §4 and §5.

Proof. We consider the coefficients a(n) of the Dirichlet series representation of L. Let

B be a constant such that a(n) ≪ nB. By Perron’s formula (Theorem 31),

∑

n≤x

a(n) =
1

2πi

∫ c+iT

c−iT

L(s)
xs

s
ds+O

(

xc+B

T

)

,

where c > 1 is a constant. Shifting the path of integration to the left, yields, by the

Phragmén-Lindelöf principle (Theorem 33), the asymptotic formula

∑

n≤x

a(n) = xP (log x) +O

(

x
(1+B)

dL−1

dL+1 +ǫ

)

,
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where P (x) is a computable polynomial according to the principal part of the Laurent

expansion of L(s) at s = 1. By subtraction, this implies

(25) a(n) ≪ n
(1+B)

dL−1

dL+1 +ǫ
,

where the implicit constant depends on B. For dL < 1 the exponent is negative, and we

may choose B arbitrarily large. Then L(s) is uniformly bounded in every right half-plane.

This is a contradiction for L ∈ S with positive degree since the functional equation implies

a certain order of growth (see (15)). This shows that S is free of elements having degree

0 < d < 1.

It remains to consider the case that dL = 0. Then the functional equation takes the

form:

QsL(s) = ωQ1−sL(1 − s)

(there are no Gamma-factors). By (25) the a(n) are so small that the Dirichlet series for

L(s) converges in the whole complex plane. Thus we may rewrite the functional equation

as

(26)

∞
∑

n=1

a(n)

(

Q2

n

)s

=

∞
∑

n=1

ωQ
a(n)

n
ns.

We may regard this as an identity between absolutely convergent Dirichlet series. Thus,

if a(n) 6= 0, then Q2/n is an integer. In particular, q := Q2 ∈ N. Moreover, since q has

only finitely many divisors, it follows that L(s) is a Dirichlet polynomial. If q = 1, then

L(s) ≡ 1 and we are done. Hence, we may assume q > 1 from now on.

Since the Dirichlet coefficients a(n) are multiplicative, we have a(1) = 1 and via (26)

a(1)Q2s = ωQ−1a(Q2)Q2s;

thus, |a(q)| = Q. In particular, there exists a prime p such that the exponent ν of p in the

prime factorization of q is positive and, by the multiplicativity of the a(n)’s,

|a(pν)| ≥ p
ν
2 .

Now consider the logarithm of the corresponding Euler factor:

log

(

1 +
ν
∑

m=1

a(pm)

pms

)

=
∞
∑

k=1

b(pk)

pks
.

Viewing this as a power series in X = p−s, we write

logP (X) =
∞
∑

k=1

BkX
k with Bk = b(pk).

Since a(1) = 1, we find

P (X) = 1 +

ν
∑

m=1

a(pm)Xm =

ν
∏

j=1

(1 − CjX) with Bk = −1

k

ν
∑

j=1

Ck
j .

Now
ν
∏

j=1

|Cj | = |a(pν)| ≥ p
ν
2 ,

and thus the maximum of the values |Cj | is greater than or equal to p
1
2 . We have

lim
k→∞

|b(pk)| 1
k = lim

k→∞

∣

∣

∣

∣

∣

∣

1

k

ν
∑

j=1

Ck
j

∣

∣

∣

∣

∣

∣

1
k

= max
1≤j≤ν

|Cj |;
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by our foregoing observations the right-hand side is greater than or equal to p
1
2 . This is

a contradiction to the condition b(pk) ≪ pkθ with some θ < 1
2 in the axiom on the Euler

product. Hence, q = 1 and L(s) ≡ 1. This proves the theorem. •
Now let us consider the axiom concerning the Euler product. It is well-known that the

existence of an Euler product is a necessary (but not sufficient) condition for Riemann’s

hypothesis. On first sight the condition θ < 1
2 seems to be a little bit unnatural. However,

for θ = 1
2 , there are examples violating the Riemann hypothesis: the function

(1 − 21−s)ζ(s) =

∞
∑

n=1

(−1)n−1

ns

has zeros off the critical line; the latter representation follows from (5). As we have seen in

the proof of Theorem 6, the bound for θ rules out non-trivial Dirichlet polynomials from

S as for example

(1 − 2a−s)(1 − 2b−s) with a+ b = 1.

The extended Selberg class S♯ is defined as the set of all Dirichlet series (12) which

converge for Re s > 1 and satisfy axioms (ii) and (iii). This larger class is of minor

arithmetical interest. To illustrate this please notice that the Davenport-Heilbronn zeta-

function is an example of an element in S♯ (of degree one) which violates the analogue of

the Riemann hypothesis; lacking an Euler product representation, this example is not in

the Selberg class S. We conclude with an easy

Exercise 6. Reviewing the proof of Theorem 6, prove that any element L ∈ S♯ of degree

zero is a Dirichlet polynomial of the following form:

L(s) =
∑

n|Q2

a(n)

ns
with a(n) = ω

n

Q
a(Q2/n).

For another characterization of the small degree elements of the extended Selberg class see

[53].

3. The Selberg Conjectures and Applications to Arithmetic

The Selberg class is multiplicatively closed. A function L ∈ S is called primitive if it

cannot be factored as a product of two elements non-trivially:.

L = L1L2 with Lj ∈ S =⇒ L1 ≡ 1 or L2 ≡ 1.

The notion of a primitive function is fruitful for studying the structure of S. The central

claim concerning primitive functions is part of

Selberg’s Conjectures. Denote by aL(n) the coefficients of the Dirichlet series repre-

sentation of L ∈ S.

A) For all 1 6= L ∈ S there exists a positive integer nL such that

∑

p≤x

|aL(p)|2
p

= nL log log x+O(1),

where the summation is over prime numbers.

B) For any primitive functions L1 and L2 ∈ S,

∑

p≤x

aL1(p)aL2(p)

p
=

{

log log x+O(1) if L1 = L2 ,

O(1) otherwise .
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The stronger Conjecture B reflects a certain kind of orthogonality and is therefore also

called Selberg’s Orthogonality Conjecture.

In some particular cases it is not too difficult to verify Selberg’s Conjecture A. For

instance, ζ(s) satisfies Selberg’s Conjecture A which is basically due to Euler who wrote

1

2
+

1

3
+

1

5
+ . . . = log log∞.

By the Prime Number Theorem 11 for arithmetic progressions (below) it is easy to show

that
1

ϕ(q)

∑

p≡a mod q

1

p
=

{

log log x+O(1) if gcd(a, q) = 1,

O(1) otherwise,

where ϕ(q) is Euler’s totient; hence the same asymptotics hold for Dirichlet L-functions.

Taking into account the orthogonality relations for characters, one can also verify Conjec-

ture B for pairs of Dirichlet L-functions. The Rankin-Selberg convolution method shows

that L-functions associated with holomorphic modular forms satisfy some kind of orthogo-

nality (in terms of regularity at s = 1) which is related to Selberg’s conjectures. Liu, Wang

& Ye [30] proved Conjecture B for automorphic L-functions L(s, π) and L(s, π′), where

π and π′ are automorphic irreducible cuspidal representations of GLm(Q) and GLm′(Q),

respectively; their result holds unconditionally for m,m′ ≤ 4 and in other cases under the

assumption of the convergence of

∑

p

|aπ(pk)|2
pk

(log p)2

for k ≥ 2, where the aπ(n) denote the Dirichlet series coefficients of L(s, π). The latter

hypothesis is an immediate consequence of the Ramanujan Hypothesis.

An important feature about prime numbers is the unique prime factorization of integers

(or rationals). This important concept from arithmetic has a functional analogue: The

notion of degree already permits to prove factorization into primitive elements! An im-

portant consequence of Selberg’s conjectures, due to Conrey & Ghosh [7], is the stronger

concept of unique factorization into primitive elements:

Theorem 7 ((Unique) Factorization Theorem). Every function in the Selberg class

has a factorization into primitive functions. If Selberg’s conjecture B is true, then this

factorization into primitive functions is unique.

Proof. Suppose that L is not primitive, then there exist functions L1 and L2 in S \ {1}
such that L = L1L2. Taking into account the Riemann-von Mangoldt formula, Theorem

5, from

NL(T ) = NL1(T ) +NL2(T )

we find dL = dL1 + dL2 . In view of Structure Theorem 6, both L1 and L2 have degree at

least 1. Thus, each of dL1 and dL2 is strictly less than dL. A continuation of this process

terminates since the number of factors is ≤ dL by Theorem 6, which proves the first claim.

In order to prove the second claim suppose that L has two factorizations into primitive

functions:

L =
m
∏

j=1

Lj =
n
∏

k=1

L̃k,
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and assume that no L̃k is equal to L1. Then it follows from
m
∑

j=1

aLj
(p) =

n
∑

k=1

aL̃k
(p)

that
m
∑

j=1

∑

p≤x

aLj
(p)aL1(p)

p
=

n
∑

k=1

∑

p≤x

aL̃k
(p)aL1(p)

p
.

By Selberg’s conjecture B, the left-hand side tends to infinity for x → ∞, whereas the

right-hand side is bounded, giving the desired contradiction. •
The same argument gives a characterization of primitive functions in terms of the quantity

nL from Selberg’s ConjectureA: if the Selberg ConjectureB is true, then L ∈ S is primitive

if and only if nL = 1. However, in connection with Theorem 6 it follows much easier

that Riemann’s zeta-function and Dirichlet L-functions are primitive. A more advanced

example of primitive elements are L-functions associated with newforms is due to M.R.

Murty [36]. On the contrary, Dedekind zeta-functions to cyclotomic fields 6= Q are not

primitive.

Exercise 7. Assuming Selberg’s Conjectures, show that any function L ∈ S which has a

pole of order m at s = 1 is divisble by ζ(s)m in the sense that L(s)/ζ(s)m is an entire

function in S.

Our next application has purely arithmetical character. Recall the celebrated Prime

Number Theorem,

π(x) ∼ x

log x
, resp. ψ(x) ∼ x,

where π(x) counts the number of primes p ≤ x and ψ(x) :=
∑

n≤x Λ(n). The analogue in

the Selberg class of this deep result is

Theorem 8 (Prime Number Theorem for the Selberg Class). For L ∈ S,

(27) ψL(x) :=
∑

n≤x

ΛL(n) ∼ kLx,

where kL = 0 if L(s) is regular at s = 1, otherwise kL is the order of the pole of L(s) at

s = 1, and ΛL(n) is the von Mangoldt-function, defined by

−L′

L (s) =

∞
∑

n=1

ΛL(n)

ns
.

The asymptotic formula (27) is unconditionally true for polynomial Euler products L;

otherwise it holds true subject to the truth of Selberg’s Conjecture B.

Here an Euler product is said to be polynomial if it is of the form

(28) L(s) =
∏

p

m
∏

j=1

(

1 − αj(p)

ps

)−1

,

where m is a fixed positive integer and for each prime p and 1 ≤ j ≤ m the αj(p) are

certain complex numbers (it is easily seen that they have absolute value less than or equal

to one subject to the Ramanujan hypothesis). Substituting X = p−s each Euler factor is

the reciprocal of a polynomial in X of degree m which explains the name polynomial Euler

product.

For polynomial Euler products in the Selberg class one can prove this equivalence by

standard arguments. We illustrate this by using the following Tauberian theorem.
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Theorem 9 (Wiener–Ikehara Theorem). Let F (s) =
∑∞

n=1 a(n)n−s be a Dirichlet

series with non-negative real coefficients and absolutely convergent for Re s > 1. Assume

that F (s) can be extended to a meromorphic function in Re s ≥ 1 such that there are no

poles except for a possible simple pole at s = 1 with residue r ≥ 0. Then

A(x) :=
∑

n≤x

a(n) ∼ rx.

The proof of this theorem can be found in Appendix C.

As an application of this Tauberian theorem we shall prove Dirichlet’s prime number

theorem for arithmetic progressions.¶ Let χ mod q be a character. We consider the loga-

rithmic derivative of a Dirichlet L-functions L(s, χ), given by

L′

L
(s, χ) = −

∞
∑

n=1

Λ(n)χ(n)

ns
,

where

Λ(n) =

{

log p if n = pk with k ∈ N,

0 otherwise

is the von Mangoldt-function. We define

ψ(x;χ) =
∑

n≤x

Λ(n)χ(n) and ψ(x; a mod q) =
∑

n≤x
n≡a mod q

Λ(n).

By the orthogonality relation for characters (Theorem 26 in Appendix A), we find

ψ(x; a mod q) =
1

ϕ(q)

∑

χ mod q

χ(a)ψ(x;χ).

Now suppose that a and q are coprime (otherwise the functions in the latter identity are

all bounded). We want to apply Theorem 9 with the functions

F (s) = −
∑

χ mod q

χ(a)
L′

L
(s, χ) and A(x) = ψ(x; a mod q).

Notice that the left-hand side has a Dirichlet series representation for Re s > 1 with non-

negative coefficients. It is well-known that L(s, χ) is analytic for Re s ≥ 1 if χ is not a

principal character. In the case of the principal character it follows from (6) that

(29) L(s, χ0) = ζ(s)
∏

p|q

(

1 − 1

ps

)

.

By partial summation (Theorem 28 in Appendix A),

ζ(s) =
∑

n≤N

1

ns
+
N1−s

s− 1
+ s

∫ ∞

N

⌊u⌋ − u

us+1
du.

Hence, ζ(s) has a simple pole at s = 1 with residue 1 (which we already noticed in Theorem

1). Moreover,

−L
′

L
(s, χ0) =

1

s− 1
+O(1).

Finally, we have to assure that any of the appearing L(s, χ) has no zero on the line 1+ iR.

The hardest part is the value at s = 1:

¶The reader who is not familiar with characters and Dirichlet L-functions may follow the reasoning

with q = 1 and replace everywhere L(s, χ) by the zeta-function; this leads to the classical prime number

theorem ψ(x) ∼ x.
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Theorem 10 (Dirichlet’s Theorem). For any character χ, we have L(1, χ) 6= 0.

In the sequel we give Mertens’ proof from 1897; Dirichlet’s original proof from 1837 was

a detour through the theory of quadratic forms and led him to his analytic class number

formula.

Proof. We may assume that χ is not the principal character. Let s > 1. In view of the

Euler product (6) and the orthogonality relation for characters, Theorem 26, it follows

that
1

ϕ(q)

∑

χ mod q

χ(a) logL(s, χ) =
∑

p

∞
∑

k=1
pk≡a mod q

1

kpks
≥ 0.

In particular, for a = 1,

(30)
∏

χ mod q

L(s, χ) ≥ 1.

Since L(s, χ0) has a simple pole at s = 1 (inherited from ζ(s), see (29)) and all other

L(s, χ) are regular, it follows from (30) that there is at most one character χ for which

L(1, χ) = 0. Since

L(1, χ) = L(1, χ)

such a character has to be real, i.e., χ = χ.

Now suppose χ is real. Then we define f = χ ∗ 1, resp. f(n) =
∑

d|n χ(d). Obviously, f

is multiplicative. We find f(pk) = 1 if p divides q; otherwise, if p does not divide q, then

f(pk) =







k + 1 if χ(p) = +1,

1 if χ(p) = −1 and k ≡ 0 mod 2,

0 if χ(p) = −1 and k ≡ 1 mod 2.

(Actually, this construction defines a Dirchlet series Lf(s) := ζ(s)L(s, χ) which shares

many features with, and in some instances is equal to a Dedekind zeta-function of a

quadratic number field; see (24).) It follows that f(n) ≥ 0 and f(m2) ≥ 1. Therefore,

∑

n≤N2

f(n)

n
1
2

≥
∑

m≤N

f(m2)

m
≥
∑

m≤N

1

m
,

which diverges, as N → ∞. On the contrary, partial summation (Theorem 28) implies

∑

n≤N2

f(n)

n
1
2

=
∑

d≤N

χ(d)

d
1
2

∑

b≤N2

d

1

b
1
2

+
∑

b≤N

1

b
1
2

∑

N<d≤N2

b

χ(d)

d
1
2

= 2NL(1, χ) +O(1).(31)

The left-hand side diverges to +∞ which implies L(1, χ) 6= 0 and thus proves the theorem.

•

Next we shall show that Dirichlet L-functions do not vanish at any other point of the

line 1 + iR. For an arbitrary point s = 1 + it with t 6= 0 we find via the Euler product (6)

that

−L
′

L
(σ + it, χ) =

∑

n=1

Λ(n)χ(n)

nσ
exp(−it logn).

Since 17 + 24 cosα+ 8 cos(2α) = (3 + 4 cosα)2 ≥ 0, it follows that

−17
L′

L
(σ, χ0) − 24Re

L′

L
(σ + it, χ) − 8Re

L′

L
(σ + 2it, χ2) ≥ 0.(32)
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Assuming that L(1 + it, χ) vanishes for t = t0 6= 0 of order m, it would follow that

Re
L′

L
(σ + it0, χ) =

m

σ − 1
+O(1),

which leads to

17

σ − 1
− 24m

σ − 1
+O(1) ≥ −17

L′

L
(σ, χ0) − 24Re

L′

L
(σ + it, χ) − 8Re

L′

L
(σ + 2it, χ2),

contradicting (32) as σ → 1+. Thus, the Dirichlet L-function has no zeros on the line

1 + iR:

L(1 + it, χ) 6= 0 for t ∈ R.

Thus, applying Theorem 9, we obtain ψ(x; a mod q) ∼ ϕ(q)−1x as in the Prime Number

Theorem 8. By partial summation, we may further deduce

Theorem 11 (Prime Number Theorem for arithmetic progressions). Let a and q

be coprime integers. Then, as x→ ∞,

π(x; a mod q) ∼ 1

ϕ(q)

x

log x
.

It is not difficult to show that the non-vanishing of L(s, χ) on the line 1 + iR is equivalent

to the prime number theorem in arithmetic progressions (see [55]). We did not use any

information about the behaviour of the involved Dirichlet L-functions from inside the

critical strip. Therefore, we do not get an error term. In our situation one can easily prove

an asymptotic formula with error term. For this purpose we briefly discuss the case of

the Riemann zeta-function. For the beginning we may move the path of integration in

Perron’s formula: for x 6∈ Z and c > 1,

ψ(x) = − 1

2πi

∫ c+i∞

c−i∞

ζ′

ζ
(s)

xs

s
ds(33)

to the left and apply calculus of residues as Hadamard and and de la Vallée-Poussin (in-

dependently) in 1896 when they achieved the first proof of the Prime Number Theorem.

Since any zeta zero corresponds to a pole of the logarithmic derivative and hence a con-

tribution to the sum of residues, the error term in the Prime Number Theorem depends

heavily on the location of the zeta zeros:

π(x) −
∫ x

2

du

log u
≪ xθ+ǫ ⇐⇒ ζ(s) 6= 0 for Re s > θ ,

where the logarithmic integral is asymptotically equal to x
log x . Similar formula hold for

the prime number counting function for arithmetic progressions. For applications one

often wants to have a result which is uniform in the modulus; for instance, for bounds of

the least prime in an arithemtic progression. For this purpose one can extend Riemann’s

approach for the zeta-function to Dirichlet L-functions as sketched above, and the theorem

of Page-Siegel-Walfisz provides such an asymptotic formula which is uniform in a small

region of values q. As a matter of fact, the character analogue is more delicate than for

the zeta-function, since one cannot exclude that certain L(s, χ) have real zeros on the real

axis inside the critical strip. These so-called exceptional zeros (or Siegel zeros) are difficult

to deal with. For the explicit formulae and more information on this topic we refer to

Davenport [8], resp. [55].

Although the above method via a Tauberian theorem is pretty powerful, it does not

imply the Prime Number Theorem 8 for the Selberg class in its full generality. The

Selberg conjectures refer to the analytic behaviour at the edge of the critical strip. Conrey
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& Ghosh [7] proved the non-vanishing on the line Re s = 1 subject to the truth of Selberg’s

Conjecture B.

Theorem 12. Let L ∈ S. If Selberg’s Conjecture B is true, then

L(s) 6= 0 for Re s ≥ 1.

Proof. With regard to the Euler product representation, in the half-plane Re s ≥ 1 zeros

can only occur on the line Re s = 1. In view of Theorem 7 it suffices to consider primitive

functions L ∈ S. In case of ζ(s) it is known that there are no zeros on Re s = 1. Recall

Exercise 7: if Selberg’s conjecture B is true and if L ∈ S has a pole at s = 1 of order m,

then the quotient L(s)/ζ(s)m is an entire function. Hence we may assume that L(s) is

entire. Then L(s+ iα) is for any real α a primitive element of S. Selberg’s Conjecture B

applied to L(s+ iα) and ζ(s) yields

∑

p≤x

aL(p)

p1+iα
≪ 1.(34)

Now suppose that L(1 + iα) = 0. Then

L(s) ∼ c(s− (1 + iα))k as s = σ + iα→ 1 + iα

for some complex c 6= 0 and some positive integer k. It follows that

logL(σ + iα) ∼ k log(σ − 1) as σ → 1 + .(35)

Since

logL(s) =
∑

p

aL(p)

ps
+O(1)

for Re s > 1, we get by partial summation

logL(σ + iα) ∼
∑

p

aL(p)

pσ+iα
= (σ − 1)

∫ ∞

1

∑

p≤x

aL(p)

p1+iα

dx

xσ
.

By (34) the right-hand side is bounded as σ → 1+, which contradicts (35). The theorem

is proved. •

As we have seen above, the non-vanishing of L-functions on the edge of the critical

strip is closely related to Prime Number Theorems. As a matter of fact, the statement of

Prime Number Theorem 8 is unconditionally equivalent to the non-vanishing of L(s) on

the 1-line. It is not too difficult to verify this statement (by application of a Tauberian

theorem) for polynomial Euler products in the Selberg class. In view of Theorem 12 it

follows that

Corollary 13. Assume Selberg’s Conjecture B. Then the Prime Number Theorem 8 holds

for elements of the Selberg class of the form (28).

Exercise 8. Generalizing the above reasoning for Dirichlet L-functions, prove the Prime

Ideal Theorem, that is, the Prime Number Theorem in the case of Dedekind zeta-functions.

Moreover, prove Corollary 13. (See [38] for an appropriate Tauberian theorem.)

For a Prime Number Theorem with remainder term one may consult Iwaniec & Kowalski

[18] (although their reasoning is slightly more restrictive than the Selberg class).

However, Conjecture B might be a rather strong condition if we are interested in a prime

number theorem for a single L-function. Recently, Kaczorowski & Perelli obtained a more

satisfying condition. For this aim they introduced a weak form of Selberg’s Conjecture A:
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Normality conjecture. For all 1 6= L ∈ S there exists a non-negative integer kL such

that

∑

p≤x

|aL(p)|2
p

= kL log log x+ o(log log x).

Assuming this hypothesis, they proved the claim of Theorem 12, namely the non-vanishing

of any L(s) on the line Re s = 1, and that this statement is equivalent to the Prime Number

Theorem for the Selberg class. It should be noted that their proof of L(1 + iR) 6= 0 for

a given L involves the assumption of their normality conjecture for several elements in

S. As already mentioned above, it is conjectured that the Selberg class consists only of

automorphic L-functions, and for those Jacquet & Shalika [19] obtained an unconditional

non-vanishing theorem.

Exercise 9. Assuming the Selberg Conjectures, prove Dedekind’s conjecture: if K is a

number field and ζK(s) is the associated Dedekind zeta-function (see (23)), then

L(s) := ζK(s)/ζ(s)

is an entire function in S (compare with Example (24)). For this purpose it might be

helpful to recall Exercise 7.

The Dedekind conjecture is known to be true for normal extensions (as a consequence of

the Aramata-Brauer theorem).

The observation of the latter exercise is due to Conrey & Ghosh [7]. Another related

important application to arithmetic deals with Artin L-functions. Assuming Selberg’s con-

jecture B and applying deep results on Artin L-functions from Algebraic Number Theory,

M.R. Murty showed that Artin L-functions are entire elements of the Selberg class which

leads to a conditional proof of

Artin’s Conjecture. Let L/K be a finite Galois extension with Galois group G. For any

irreducible character χ 6= 1 of G the Artin L-function L(s, χ,L/K) extends to an analytic

function on C except a possible pole at s = 1.

Appendix D contains an exemplary introduction to Artin L-functions. For Murty’s work,

which is beyond the scope of this course, we refer to [38].

4. Classification of Degree One Elements

We start with a classical theorem for the Riemann zeta-function. In 1921, Hamburger

[14] proved that ζ(s) is characterized by its functional equation (see Theorem 1):

Theorem 14 (Hamburger’s Theorem). Let G(s) be an entire function of finite order,

P (s) a polynomial, and suppose that

f(s) :=
G(s)

P (s)
=

∞
∑

n=1

a(n)

ns
,

the series being absolutely convergent for σ > 1. Assume that

(36) π− s
2 Γ
(s

2

)

f(s) = π− 1−s
2 Γ

(

1 − s

2

)

g(1 − s),
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where

g(1 − s) =

∞
∑

n=1

b(n)

n1−s
,

the series being absolutely convergent for Re s < −α for some positive constant α. Then

f(s) = cζ(s), where c is a constant.

We shall give here a simplified proof due to Siegel [48] (see also [57]).

Proof. By Perron’s formula (see Theorem 31 in Appendix B), we find, for x > 0,

φ(x) :=
1

2πi

∫ 2+i∞

2−i∞
f(s)Γ

(s

2

)

(πx)−
s
2 ds

=

∞
∑

n=1

a(n)
1

2πi

∫ 2+i∞

2−i∞
Γ
(s

2

)

(πn2x)−
s
2 ds = 2

∞
∑

n=1

a(n) exp(−πn2x).(37)

In view of (36) we also have

φ(x) =
1

2πi

∫ 2+i∞

2−i∞
g(1 − s)Γ

(

1 − s

2

)

π
s−1
2 x−

s
2 ds.

Next we move the line of integration to Re s = −1−α. Obviously, f(s) is bounded on the

vertical line Re s = 2 and g(1 − s) is bounded on Re s = −1 − α. By Stirling’s formula

(Theorem 32 from Appendix B),

Γ
(

s
2

)

Γ
(

1−s
2

) ≪ |t|Re s− 1
2 for s = σ + it

as |t| → ∞. Thus, g(1−s) ≪ |t| 32 on Re s = 2 as |t| → ∞, and, justified by the Phragmén-

Lindelöf principle (see Theorem 33 in Appendix B), we can apply Cauchy’s theorem. It

follows that

(38) φ(x) =
1

2πi

∫ −1−α+i∞

−1−α−i∞
g(1 − s)Γ

(

1 − s

2

)

π
s−1
2 x−

s
2 ds+

k
∑

j=1

Rj ,

where R1, . . . , Rk are the residues at the poles, say s1, . . . , sk. It is easily seen that the

sum of residues is of the form
k
∑

j=1

Rj =

k
∑

j=1

x−
sj
2 Pj(log x) =: R(x),

where the Pj(log x) are polynomials in log x. We rewrite (38) and find as above

φ(x) =
1√
x

∞
∑

n=1

b(n)
1

2πi

∫ −1−α+i∞

−1−α−i∞
Γ

(

1 − s

2

)(

πn2

x

)

s−1
2

ds+R(x)

=
2√
x

∞
∑

n=1

b(n) exp(−πn2/x) +R(x).

Comparing with (37), we arrive at
∞
∑

n=1

a(n) exp(−πn2x) − 1

2
R(x) =

1√
x

∞
∑

n=1

b(n) exp(−πn2/x).

Multiplying with exp(−πt2x) with t > 0 and integrating over (0,∞) with respect to x, we

get

t

π

∞
∑

n=1

a(n)

(t2 + n2)
− t

2

∫ ∞

0

P (x) exp(−πt2x) dx =

∞
∑

n=1

b(n) exp(−2πnt).
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The integral can be evaluated as a finite sum of terms of the form

Q(t; a, b) :=

∫ ∞

0

xa(log x)b exp(−πt2x) dx,

where the b’s are integers and Re a > −1; thus, Q(t; a, b) is a sum of terms of the form

tα(log t)β . Hence,

∞
∑

n=1

a(n)

{

1

t− in
− 1

t+ in

}

− t
π

2
Q(t; a, b) = π

∞
∑

n=1

b(n) exp(−2πnt).

The left-hand side is a meromorphic function in t with poles at t = ±in for n ∈ N. The

right-hand side is periodic with period i and, by analytic continuation, the function on

the left-hand side is also periodic. Hence, the residues at in and i(n+ 1) are equal. Thus,

a(n) = a(n+ 1) for all n ∈ N and the theorem is proved. •

Exercise 10. Compare the proof with Riemann’s proof for Theorem 1. Try to extend

Hamburger’s Theorem to the case of Dirichlet L-functions.

Hamburger’s Theorem 14 has been the motivation for Hecke’s Converse Theorem 4. One

can find quite a few similar converse theorems in the literature (starting from Dirichlet

L-functions to higher degree L-functions). We are interested to classify all degree one

elements of the Selberg class. Since the degree is defined via the data of the functional

equation, we are in a similar position as Hamburger was, however, in our situation we have

the additional difficulty that there are infinitely many functional equations associated with

degree one (as follows immediately from Theorems 1 and 3).

Theorem 15 (Structure Theorem – Degree One). If L(s) =
∑∞

n=1 a(n)n−s has

degree one in S, then there exists a positive integer q and a real number θ such that

a(n)n−iθ is q-periodic. Moreover, L(s) equals either ζ(s) or a shifted Dirichlet L-function

L(s+ iθ, χ) with a primitve character χ mod q. For short:

L ∈ S with dL = 1 =⇒ L(s) = ζ(s) or = L(s+ iθ, χ).

There are different proofs of this result; we follow Soundararajan [49].

Sketch of proof. For c > 1
2 , we consider the integral

1

2πi

∫ c+i∞

c−i∞
L(1

2 + it+ z)XzΓ(z) dz.

If we expand L into its Dirichlet series and integrate term by term, the integral equals
∑∞

n=1 a(n)n− 1
2−it exp(− n

X ). Moving the line of integration to z = −1+ ǫ+ iR, the pole at

z = 0 yields the residue L(1
2+it) and the possible pole at z = 1

2−it leaves a residue bounded

by X
1
2 +ǫ exp(−|t|) by Stirling’s formula. Using the latter formula, we may estimate the

integral on the vertical z = −1 + ǫ+ iR by X−1+ǫ(1 + |t|)1+ǫ. Hence, we have shown

(39) L(1
2 + it) =

∞
∑

n=1

a(n)

n
1
2+it

exp(− n
X ) +O((1 + |t|)1+ǫX−1+ǫ +X

1
2 +ǫ exp(−|t|)),

where X ≥ 1 is arbitrary.

Now define

ℓ(α, T ) =
1√
α

∫ 2αT

αT

L(1
2 + it) exp

(

it log
t

2πeα
− i

π

4

)

dt,
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where α is positive and T ≥ 1. Next we use the functional equation for L in the form

Λ(s) = QsG(s)L(s) with G(s) =

f
∏

j=1

Γ(λjs+ µj)

such that Λ(s) = ωΛ(1 − s) (where all involved numbers satisfy axiom (iii)). It follows

that

ℓ(α, T ) =
ω√
α

∫ 2αT

αT

L(1
2 + it)Q−2itG(1

2 + it)

G(1
2 + it)

exp

(

it log
t

2πeα
− i

π

4

)

dt.

Again by Stirling’s formula (Theorem 32 in Appendix B) we may rewrite the last but one

formula as
ω exp(iB)√

α

∫ 2αT

αT

L(1
2 + it)(πCQ2α)−ittiθ(1 +O(

1

T
)) dt

with certain real numbers θ,B and C > 0. Now, using (39) with X = T
4
3 , we find

ℓ(α, T ) =
ω exp(iB)√

α

∫ 2αT

αT

∞
∑

m=1

a(m)

m
1
2

exp
(

−m
X

)

(

m

πCQ2α

)it

tiθ(1 +O(
1

T
)) dt+

+O(T
2
3+ǫ)

=
ω exp(iB)√

α

∞
∑

m=1

a(m)

m
1
2

exp
(

−m
X

)

∫ 2αT

αT

(

m

πCQ2α

)it

tiθ dt+O(T
2
3+ǫ).(40)

Integration by parts shows, for x 6= 1,
∫ 2αT

αT

xittiθ dt≪ 1

| log x| ,

while
∫ 2αT

αT

tiθ dt =
(2αT )1+iθ − (αT )1+iθ

1 + iθ
.

Now define

ℓ(α) = lim
T→∞

T−1−iθℓ(α, T )

Using our computations of the oscillatory integral in (40), we are led to

ℓ(α) = ω exp(iB)δ(πCQ2α)
a(πCQ2α)

(πC)
1
2Q

21+iθ − 1

1 + iθ
+

+O

(

lim
T→∞

T−1+ǫ
∞
∑

m=1

|a(m)|m 1
2 exp

(

−m
X

)

)

,

where δ(x) = 1 if x ∈ N and equals zero otherwise. Since the error term vanishes, we have

(41) ℓ(α) = ω exp(iB)δ(πCQ2α)
a(πCQ2α)

(πC)
1
2Q

21+iθ − 1

1 + iθ
.

This proves in particular the existence of the limit.

Next we evaluate ℓ(α, T ) in another way. Using again (40) with X = T
4
3 , we find

(42) ℓ(α, T ) =
1√
α

∞
∑

n=1

a(n)

n
1
2

exp
(

− n

X

)

∫ 2αT

αT

exp

(

it log
t

2πeα
− i

π

4

)

dt+O(T
2
3+ǫ).

We may evaluate the oscillatory integral above by standard methods for exponential inte-

grals, namely Theorem 29 in Appendix B. First, the integral is ≪ 1 for 2πn > 3T which
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yields the contribution O(T
2
3+ǫ) for such n. In the range T < 2πn ≤ 2T , the integral

equals

2π
√
nα exp(−2πinα) +O(T

2
5 + min

{

T
1
2 ,

∣

∣

∣

∣

log
T

2πn

∣

∣

∣

∣

−1
}

+ min

{

T
1
2 ,

∣

∣

∣

∣

log
T

πn

∣

∣

∣

∣

−1
}

.

For 2πn < T or between 2T and 3T the integral is bounded by the error terms above.

Hence,

ℓ(α, T ) = 2π
∑

T≤2πn≤2T

a(n) exp(−2πinα) +O(T
9
10 +ǫ).

We deduce that

ℓ(α) = ℓ(α+ 1).

It follows from (41) that

δ(πCQ2α)a(πCQ2α)αiθ = δ(πCQ2(α+ 1))a(πCQ2(α+ 1))(α + 1)iθ.

Recall the definition of δ. We immediately deduce that πCQ2 = q has to be a positive

integer and that a(n)niθ is q-periodic which proves the first part of the theorem.

So far we have not used the arithmetic axioms. In view of the Euler product (iv) the

coefficients a(n) are multiplicative. Together with the periodicity it follows that

a(n)n−iθ = χ(n)

for a Dirichlet character χ mod q (see Theorem 27 in Appendix A). If q = 1, we are done

and L(s) is the zeta-function. Otherwise, if χ′ mod q′ denotes the primitive character

that induces χ, the quotient L(s)/L(s+ iθ, χ′) is a finite Euler product (over those primes

which divide q). It follows from the Euler product axiom that the logarithm of this Euler

product converges absolutely for Re s > δ for some δ < 1
2 . Setting a = 1

2 (1 − χ′(−1)), we

find that

f(s) :=
QsG(s)L(s)

( q′

π )
s
2 Γ( s+iθ+a

2 )L(s+ iθ, χ′)

is analytic in the half-plane Re s > δ; obviously, the same is true for f(s) and both

functions are zero-free in this region. It follows from the functional equations for L(s) and

L(s + iθ, χ′) that both, f(s) and f(s) are analytic and zero-free in Re s < 1 − δ. Since

δ < 1
2 , it thus follows that both, f(s) and f(s) are entire functions of order one with no

zeros. By Hadamard’s Product Theorem 34 (see Appendix B), we find

f(s) = c1 exp(c2s)

for some constants c1, c2. The functional equation linking f(s) and f(1 − s) implies that

c2 = 0 and f is constant. Examination of f(1
2+it) for large t shows that L(s) = L(s+iθ, χ′).

The theorem is proved. •

Reviewing the proof we observe some ideas from Siegel’s proof of Hamburger’s theorem.

Conrey & Ghosh [7] gave a proof for the subclass of all elements which have necessarily

weights λj = 1
2 in the Gamma-factor of their functional equation, that is even more close

to Siegel’s reasoning.

Exercise 11. Fill in all details left in the sketch of proof of Theorem 15. In particular,

prove the estimates for the oscillatory integral (42). Why does this approach not work to

classify degree two elements?
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Kaczorowski & Perelli [22] gave a characterization of th degree one elements of the

extended selberg class S♯ which is more delicate. They proved that any element in L ∈ S♯

of degree one has a unique representation of the form

L(s) =
∑

χ mod q

Pχ(s+ iθ)L(s+ iθ, χ∗),

where θ is a real number and the summation is over all characters χ mod q and χ∗ denotes

the unique primitive or principal character which induces χ mod q, and Pχ is a Dirichlet

polynomial of degree zero in S♯. Their approach relies on the theory of hypergeometric

functions.

5. Powerful Tools: Linear and Non-linear Twists

For investigating the structure of the Selberg class beyond Theorem 6 Kaczorowski &

Perelli introduced linear and non-linear twists. Given an element L(s) =
∑∞

n=1 a(n)n−s,

a linear twist is obtained by twisting with an additive character:

L(s, α) =
∞
∑

n=1

a(n)

ns
exp(−2πiαn) for some α ∈ R.

For the Riemann zeta-function this leads to the so-called Lerch zeta-function which has

been studied for more than a century sstarting with Lerch, Lipschitz, and Hurwitz; see

the monograph [11] of Garunkštis & Laurinčikas for details. Recall that twisting the zeta-

function with a multiplicative Dirichlet character leads to Dirichlet L-functions, and in §3
we have seen that their value-distribution contains information about the prime number

distribution which with ζ(s) alone would not have been accessible.

Exercise 12. Prove the formula

χ(n)τ(χ) =
∑

a mod q

χ(a) exp

(

2πi
an

q

)

,

where τ(χ) denotes the Gaussian sum associated with χ (see [8, 55] for help). Use this

and related formulae to express Dirichlet L-functions in terms of Lerch zeta-functions and

vice versa. Deduce information about Lerch zeta-function from your knowledge of Dirichlet

L-functions and compare with [11].

Kaczorowski & Perelli introduced more advanced twists by replacing the additive char-

acter αn with a linear combination of different α’s with weights (see (43) below). For the

first, the prototype suffices: given L ∈ S of degree d, the standard non-linear twist is given

by

L(s, α) =

∞
∑

n=1

a(n)

ns
exp(−2πiαn1/ d) (Re s > 1),

where α > 0. It is remarkable that those twists carry much information about the Selberg

class theory although they are not elements of S. Recently, Kaczorowski & Perelli [25]

succeeded in extending Theorem 6 to

Theorem 16 (Structure Theorem – Larger Degrees). If L ∈ S has degree 1 < dL ≤
2, then dL = 2.
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Thus, the Degree Conjecture is true for [0, 2]. We can give only a sketch of the lengthy and

technical proof. Our poor approach cannot replace a detailed study of their deep work.

We start with the most simple twist. Given L ∈ S of degree d, the standard non-linear

twist is given by

L(s, α) =

∞
∑

n=1

a(n)

ns
exp(−2πiαn1/ d) (Re s > 1),

where α > 0. We further define the conductor of L in terms of the data from the functional

equation by

qL = (2π)dQ2

f
∏

j=1

λ
2λj

j ;

in what follows we shall write q in place of qL for short. The conductor is besides the

degree another important invariant. We briefly note d = q = 1 for the zeta-function, and

d = 1 and q equals the conductor, resp. the modulus for Dirichlet L-functions L(s, χ). In

the case of Dedekind zeta-functions to a number field K we have d = [K : Q] and q = |∆K|
equals the absolute value of the discriminant of K.

Exercise 13. What are degree and conductor of L-functions to newforms? What are

degree and conductor of Artin L-functions, assuming that they belong to S (see Appendix

D)?

We further define the quantity

nα := q d− dα d and a(nα) =

{

a(n) if nα = n ∈ N,

0 otherwise.

We call

Spec(L) := {α > 0 : a(nα) 6= 0}

the spectrum of L. Obviously, the spectrum is an unbounded subset of the positive real

numbers if L has positive degree, i.e., it is not identical 1 what we shall assume for the

sequel. Moreover, we shall from now on suppose that θ :=
∑f

j=1 µj = 0, where the µj are

data from the functional equation; this is no restriction of generality but allows a more

convenient presentation. The following theorem due to Kaczorowski & Perelli [24] provides

the main analytic properties:

Theorem 17 (Standard Non-Linear Twists). Let L ∈ S be of degree d ≥ 1 (and

θ = 0) and α > 0. Then L(s, α) extends to a meromorphic function on C. If α 6∈ Spec(L),

then L(s, α) is entire; otherwise, If α ∈ Spec(L), then L(s, α) has at most a simple poles

at

sk :=
d + 1

2 d
− k

d
for k = 0, 1, 2, . . .

with residue equal to cLa(nα) at s = s0, where cL is a non-zero constant.

The point s0 is always a simple pole if α 6∈ Spec(L); the other points sk need not be poles

(as follows from the example L = ζ).

Sketch of Proof. Let X be a positive large parameter. Starting with Mellin’s transform

(as we already did in the proofs of Theorems 1, 4 and 15) and shifting the line of integration
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to the left, then applying the functional equation and making use of the Dirichlet series

expansion for L(1 − s), one finds

∞
∑

n=1

a(n)

ns
exp(−2πiαn1/d) exp(−Xn1/d)

= RX(s, α) + ωQ1−2s
∞
∑

n=1

a(n)

n1−s
H

(

n1/ d

Q2/ d(2πiα+X−1)
, s, λ, µ

)

,

where RX(s, α) is a sum of residues and the incomplete hypergeometric function

H(z, s, λ, µ) :=
1

2πi

∫ −c− 1
2+i∞

−c− 1
2−i∞

f
∏

j=1

Γ(λj(1 − s) + µj − λj

d ω)

Γ(λjs+ µj +
λj

d ω)
Γ(ω)zω dω;

here z = x + iy is complex and c is a positive large integer, and λ, µ stand for the data

λ1, . . . , λf , µ1, . . . , µf from the functional equation. One wishes to let X → ∞ in order to

obtain analytic continuation for L(s, α). However, the integral converges absolutely only

for x > 0. To solve this problem a subtle study of H(z, s, λ, µ) as a function of the two

variables z and s is required and finally allows to perform the limit X → ∞. Moreover, it

turns out that H(−iy, s, λ, µ) is analytic in s if

y 6= 1

d

f
∏

j=1

λ
2λj

j ,

while otherwise it has at most simple poles at s = sk. •

Exercise 14. Fill all gaps in the sketch of proof; good reading for this aim are [24, 20].

Theorem 17 already allows to show how linear (and later non-linear) twists may be used

to show that certain real numbers cannot appear as degree of an L-function in the Sleberg

class. For this purpose we give now a short proof of Theorem 6: Assume L ∈ S has degree

d ∈ (0, 1). If α ∈ Spec(L), then L(s, α) has a pole at s0 = d+1
2 d which is > 1 for d < 1,

giving the desired contradiction.

If d = 1, then L(s, α) is a linear twist of L and hence periodic with respect to α. This

allows a very simple proof of Hamburger’s Theorem 14 as follows: if additionally q = 1,

then nα = α and, choosing α as a positive integer m, say, it follows that the residue of

L(s,m) at s0 equals

cLa(m) for m = 1, 2, . . . .

In view of the α-periodicity it follows that a(m) is constant, hence L(s) = cζ(s).

This simple reasoning to obtain a rather deep result gives hope. We continue with

another application:

Theorem 18 (Ω-Theorem for Coefficient Sums). Let L ∈ S be of degree d ≥ 1 (and

θ = 0) and α > 0. Then, for any polynomial P ,‖

∑

n≤x

a(n) = xP (log x) + Ω(x
d−1
2 d ),

where a(n) is, as usual, the n-th coefficient of the Dirichlet series for L(s).

‖We write f(x) = Ω(g(x)) with a positive function g(x) if f(x) = o(g(x)) is not true or, alternatively,

lim infx→∞ |f(x)|/g(x) > 0.
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Sketch of Proof. For the sake of simplicity we may suppose that L(s) is an entire

function. Moreover, we may assume that P vanishes identically (otherwise the statement

is trivial). Now suppose that
∑

n≤x

a(n) = o
(

x
d−1
2 d

)

.

It follows from partial summation that
∑

n>y

a(n)

ns
= o(y

d−1
2 d −Re s) for Re s >

d + 1

2 d
.

For α ∈ Spec(L) we have

L(s, α) − exp(2πiα)L(s)

= −2πiα

d

∫ ∞

1

∑

n>y

a(n)

ns
y1/ d−1 exp(−2πiαy1/ d) dy = o

(

(

Re s− d − 1

2 d

)−1
)

as Re s→ d+1
2 d +, contradicting the pole at s = s0 by Theorem 17. •

Exercise 15. Fill the gaps of the latter sketch of proof. How to argue if L is not entire?

Further deduce that the abscissa of convergence of the L defining Dirichlet series is ≥ d−1
2 d .

Here is another type of converse theorem:

Theorem 19. Assume that L ∈ S is not identically 1. If its Dirichlet series
∞
∑

n=1

a(n)

ns

converges for Re s > 1
5 − ǫ with some positive ǫ, then L(s) has degree one and equals a

shifted Dirichlet L-function L(s+ iθ, χ) with real θ and a primitive character χ.

Proof. In Exercise 15 we have seen that the abscissa of convergence of the L defining

Dirichlet series is ≥ dL−1
2 dL

. In view of the assumption we find 3 dL ≤ 5 + 10 dLǫ, hence

dL = 1 and the statement follows from Theorem 15. •
The latter theorem is due to Kaczorowski & Perelli [24]. There is also an analogue for the

Riemann zeta-function:

Exercise 16. Assume that L ∈ S is not identically 1. If a(n) denotes the coefficient of

the Dirichlet series expansion of L and the series
∞
∑

n=1

a(n) − 1

ns

converges for Re s > 1
5 − ǫ with some positive ǫ, then L(s) = ζ(s).

Now we proceed in direction of Theorem 16. We assume that L ∈ S has degree d ∈
(1, 2). Our aim is to arrive at a contradiction. The idea is to find a twist that has a pole

at the wrong place.

In the sequel we consider the linear twist

L(s, α) =

∞
∑

n=1

a(n)

ns
exp(−2πiαn),

so we drop the exponent at n in the exponential from the previous notation. Moreover,

with the data from above we put

κ =
1

d − 1
, A = (d − 1)q−κ, s∗ = κ(s+ 1

2 d − 1).
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However, to go further more complicated twists are needed. For real numbers αj and

κ0 > κ1 > . . . > κN > 0 let

(43) L(s, f) =
∞
∑

n=1

a(n)

ns
exp (−2πif(n, α, κ)) with f(ξ, α) =

N
∑

j=0

αjξ
κj ;

here the set of κj’s is fixed whereas αj are considered as variable. The analytic properties

of L(s, f) depend heavily on the leading exponent κ0. In fact, L(s, f) is

• entire if 0 < dκ0 < 1,

• meromorphic over C with control on the poles if dκ0 = 1,

• satisfies a transformation formula if dκ0 > 1.

This can be shown by means of the theory of hypergeometric functions. By a similar

reasoning as for Theorem 17, one can show

(44) L(s, α) = exp(as+ b)

∞
∑

n=1

a(n)

ns∗ exp
(

2πiA
(n

α

)κ)

+G(s, α)

with certain constants a, b, and where G(s, α) is analytic for Re s∗ > 1 − κ. This yields

a first glimpse of the general transformation formula of Kaczorowski & Perelli which is

to complicated to be given here. Representation (44) transforms the linear twist L(s, α)

into a non-linear twist plus an analytic function. Since the non-linear twist converges

in a larger half-plane, this yields an analytic continuation for L(s, α). It follows from

d ∈ (1, 2) that Re s∗ > 1 for Re s > d
2 , hence the right-hand side of (44) is analytic

for Re s > d
2 ; in particular, L(s) = L(s, 1) is regular at s = 1 which shows that any L

with degree d ∈ (1, 2) must be entire. One can exploit the above transformation formular

further. Using Fourier Analysis and Rankin-Selberg convolution besides (44), Kaczorowski

& Perelli [23] succeeded to prove that there are no elements of degree d ∈ (1, 5
3 ).

For the full proof of Theorem 16 Kaczorowski & Perelli [25] introduced a recursive

process in which they apply certain operators T and S acting on f in L(s, f) in order

to generate appropriate twists with a pole in a wrong place. The operator S is the shift

operator given by

f(ξ, α) 7→ S f(ξ, α) = f(ξ, α) + ξ,

which acts trivially on the twist: L(s, S f) = L(s, f). The operator T is self-reciprocal

and defined by a complicated algebraic manipulation of the αj ’s. Starting with f0(ξ, α) :=

αξ1/ d they construct explicitly expressions as

S−1TSmTS f0(ξ, α) = c2(m)ξ d−1 + c3(α,m)ξ1/ d + . . .

with certain coefficients cj . Suitable choices of α ∈ Spec(L) lead via the general tarnsforma-

tion formula to impossible poles, and hence to the desired contradiction. The construction

is too complicated to be reproduced here.

We conclude with a brief look into the future: if we put (formally) d = 2 in (44), some

kind of modularity in α appears which matches the expectation that the set of degree

elements in the Selberg class consists of analytic and non-analytic modular forms. If we

consider the larger extended Selberg class S♯, it is completely open what kind of elements

to expect. We may ask which functions lie in S♯ \ S. The descriptions of these classes are

complete for degree d < 2 thanks to the method of Kaczorowski & Perelli which actually

applies to the extended Selberg class. For degree two Kaczorowski et al. [21] gave examples

with Dirichlet series associated with cusp forms of certain Hecke groups. Note that for
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a positive real number λ, the Hecke group G(λ) is defined as the subgroup of PSL2(R)

generated by the matrices
(

1

0

λ

1

)

and

(

0

−1

1

0

)

.

Kaczorowski et al. showed that the associated Dirichlet series are elements of S♯ or a

related class of Dirichlet series where the axiom on the functional equation is appropriately

adjusted. Moreover, they showed that the Dirichlet series associated to newforms for G(λ)

have an Euler product representation if and only if G(λ) can be arithmetically defined,

i.e., if λ ∈ {1,
√

2,
√

3, 2}. Their result is based on Hecke’s Converse Theorem 4. For

λ ≤ 2, Molteni & Steuding [34] proved that all these Dirichlet series are almost primitive

(i.e., primitive up to factors of degree zero) and primitive if λ 6∈ {
√

2,
√

3, 2}; if the latter

condition is not fulfilled, there are examples of non-primitive functions.

6. A Collection of Open Problems

Selberg (unpublished) proved that the values taken by an appropriate normalization

of the Riemann zeta-function on the critical line are normally distributed: let R be an

arbitrary fixed rectangle in the complex plane whose sides are parallel to the real and the

imaginary axes, then

lim
T→∞

1

T
meas







t ∈ (0, T ] :
log ζ

(

1
2 + it

)

√

1
2 log log T

∈ R







=
1

2π

∫∫

R
exp

(

−x
2 + y2

2

)

dxdy.

In [47], Selberg outlined that if L ∈ S has not too many exceptional zeros of the critical

line (more precisely, the Grand density hypothesis) and his Conjecture A, then the values

of
logL

(

1
2 + it

)

√
πnL log log t

are distributed in the complex plane according to the normal distribution, where nL is the

positive integer appearing in Selberg’s Conjecture A. Furthermore, Selberg investigated the

value-distribution of linear combinations of independent elements of S. His argument was

streamlined and extended by Bombieri & Hejhal to independent collections of L-functions

having polynomial Euler products with the emphasis just on probabilistic convergence and

the goal of applications to the zero-distribution. For this aim they introduced a stronger

version of Selberg’s conjecture B. Their theorem shows the statistical independence of

any collection of independent L-functions in any family of elements of S. Furthermore,

Bombieri & Hejhal [3] applied their result to the zero-distribution of linear combinations

of independent L-functions. Assuming in addition the Grand Riemann hypothesis and

a weak conjecture on the well-spacing of the zeros, they proved that almost all zeros of

these linear combinations are simple and lie on the critical line. Bombieri & Perelli [4]

considered for the same class of functions the distribution of distinct zeros. They proved,

for two different functions L1,L2 of the same degree,
∑

0≤γ≤T

max{mL1(ρ) −mL2(ρ), 0} ≫ T logT,

where the sum is taken over the nontrivial zeros ρ = β+ iγ of L1L2(s) and mLj
(ρ) denotes

the multiplicity of the zero ρ of Lj(s). An unconditional result with T/ log logT as lower

bound was obtained by Srinivas [50].
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We quote from M.R. Murty & V.K. Murty [38] an interesting point which relates unique

factorization and zeros: if it could be shown that for any family of primitive L-functions

L1, . . . ,Lk in S there exist complex numbers s1, . . . , sk such that Lj(sℓ) = 0 if and only

if j = ℓ, then the factorization into primitive elements would be unique, and Theorem 7

would hold unconditionally. Unfortunately, this seems to be out of reach by present day

methods.

These lines of investigation are not unrelated to the following rather general

Question: How to distinguish L-functions?

A first answer might be: By the coefficients of their Dirichlet series expansion (since

Dirichlet series are uniquely determined by their coefficients). It is remarkable, and by

no means trivial, that one can identify L-functions already by their Dirichlet coefficients

restricted on the set of prime powers. In fact, M.R. Murty & V.K. Murty [37] proved

Theorem 20. If L1,L2 ∈ S have the same Euler factors

Lp(s) = exp

( ∞
∑

k=1

b(pk)

pks

)

in their Euler product representation for all but finitely many primes p, then they are

identical.

The proof follows from the observation that the quotient L1(s)/L2(s) has to be entire

and non-vanishing (thanks to the functional equation), and Hadamard’s theory of entire

functions (see Appendix B) is applicable. However, we expect more than that:

Strong Multiplicity One – Conjecture : If L1,L2 ∈ S have the same Dirichlet coef-

ficients aL1(p) = aL2(p) for all but finitely many primes, then they are identical.

Another way to distinguish L-functions is with respect to their value-distribution.

Recall the famous five value theorem of Rolf Nevanlinna which states that any two

non-constant meromorphic functions that share five distinct values are identical. Here

two meromorphic functions f and g are said to share a value c ∈ C ∪ {∞} if the sets of

preimages of c under f and under g are equal, for short

f−1(c) := {s ∈ C : f(s) = c} = g−1(c).

Furthermore, f and g are said to share the value c counting multiplicities (CM) if the

latter identity of sets holds and if the roots of the equations f(s) = c and g(s) = c have

the same multiplicities; if there is no restriction on the multiplicities, f and g are said

to share the value c ignoring muliplicities (IM). Since the functions f(s) = exp(s) and

g(s) = exp(−s) share the four values 0,±1,∞, the number five in Nevanlinna’s statement

is best possible. If multiplicities are taken into account, Nevanlinna proved that any two

meromorphic functions f and g that share four distinct values c1, . . . , c4 CM are identical

or can be transformed into one another by a Moebius transformation M in such a way

that g ≡ M ◦ f and M fixes two of the points cj while the other two are interchanged.

Also the number four of values shared CM is best possible.

In [54], it was shown by means of Nevanlinna Theory that in the special case of L-

functions better estimates are possible than those which Nevanlinna’s theorems provide

(since there is additional information about the functions available):
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Theorem 21 (Uniqueness Theorem – CM). If two elements of the extended Selberg

class S♯ share a complex value c 6= ∞ CM, then they are identical.

Recent joint work with Garunkštis et al. [10] provides a uniqueness theorem for L-

functions from the Selberg class for small degrees where the rather restrictive condition on

sharing a value CM is dropped:

Theorem 22 (Uniqueness Theorem – IM – Degree One). If two elements of the

Selberg class S, both of degree one, share a complex value c 6= ∞ IM, then they are identical.

In view of Theorem 15 this shows that if L(s, χ1) and L(s, χ2) are L-functions associated

with primitive Dirchlet characters χj mod qj and

L(s+ iθ1, χ1) = c ⇐⇒ L(s+ iθ2, χ2) = c

for some fixed c ∈ C, then θ1 = θ2 and χ1 = χ2; hence, the Dirichlet L-functions are

identical. Moreover, the same statement holds if one of the shifted Dirichlet L-functions is

replaced by the zeta-function. The idea of proof relies on Voronin’s universality theorem

which states, roughly speaking, that any non-vanishing analytic function can be uniformly

approximated by certain shifts of the Riemann zeta-function: for suitable functions f

defined on compact subsets K of the right half of the critical strip and any ǫ > 0, there

exists a real number τ such that

max
s∈K

|ζ(s+ iτ) − f(s)| < ǫ.

Actually, we need Voronin’s extension to a simultaneous approximation theorem for a fam-

ily of Dirichlet L-functions associated with non-equivalent characters which we formulate

here in a slightly more general form (according to [54]):

Theorem 23 (Joint Universality for Dirichlet L-functions). Let χ1, . . . , χℓ be

pairwise non-equivalent Dirichlet characters, K1, . . . ,Kℓ be compact subsets of the strip
1
2 < Re s < 1 with connected complements. Further, for each 1 ≤ j ≤ ℓ, let fj(s) be a

continuous non-vanishing function on Kj which is analytic in the interior of Kj. Then,

for any ǫ > 0,

lim inf
T→∞

1

T
meas

{

τ ∈ [0, T ] : max
1≤j≤ℓ

max
s∈Kj

|L(s+ iτ, χj) − fj(s)| < ǫ

}

> 0.

For the sophisticated and lengthy proof see Voronin [58], resp. [54].

Proof of Theorem 22. Let us consider two shifted Dirichlet L-functions L(s + iθj , χj)

associated with either primitive characters or the principal character mod1, where the

θj are real numbers and θj = 0 if χj ≡ χ0 mod 1. Now assume that L(s + iθ1, χ1) and

L(s + iθ2, χ2) share a complex value c. If χ1 = χ2, then L(s + iθ1, χ1) = c whenever

L(s + iθ2, χ1) = c, and it follows that either θ1 = θ2 or the c-points of L(s, χ1) are

periodically distributed with period i(θ1 − θ2) which is absurd. Therefore, we may assume

that χ1 6= χ2; hence, being primitive, they are non-equivalent.

Now suppose c 6= 0 and that c′ is another non-zero complex number different from c.

We shall show the existence of some complex number s′ such that

L(s′ + iθ1, χ1) = c 6= L(s′ + iθ2, χ2).

For this purpose let K be the closed disk centered at 3
4 of radius r ∈ (0, 1

4 ). Moreover,

define target functions by setting f1(s) = c + λ(s − iθ1 − 3
4 ) and f2(s) = c′ on sets Kj ,

where

(45) Kj = K + iθj := {s+ iθj : s ∈ K}
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and λ is a positive real number for which λr < |c|. By the latter condition f1(s) does not

vanish on K1. Thus, an application of Theorem 15 with 0 < ǫ < min{λr, |c− c′|} yields a

real number τ such that

(46) max
1≤j≤2

max
s∈Kj

|L(s+ iτ, χj) − fj(s)| < ǫ.

We first deduce that

max
s∈K

|L(s+ iθ1 + iτ, χ1) − f1(s+ iθ1)| < ǫ.

Since the absolute value of f1(s + iθ1) − c = λ(s − 3
4 ) on the boundary of K equals λr

which is strictly larger than ǫ, it follows that

max
s∈∂K

|L(s+ iθ1 + iτ, χ1) − c− {f1(s+ iθ1) − c}| < ǫ < min
s∈∂K

|f1(s+ iθ1) − c|,

and an application of Rouché’s theorem gives the existence of a c-point of L(s + iθ1, χ1)

inside K + iτ := {s+ iτ : s ∈ K}. Secondly, we deduce from (46) that

max
s∈K

|L(s+ iθ2 + iτ, χ2) − c′| < ǫ.

Consequently, L(s+ iθ2, χ2) does not assume the value c in K + iτ since ǫ < |c− c′|. This

already shows that L(s+ iθ1, χ1) and L(s+ iθ2, χ2) do not share any complex value c 6= 0.

Since Dirichlet L-functions are expected to have no zeros to the right of the critical line
1
2 + iR, universality is not an appropriate tool to discuss the remaining case of a shared

value c = 0.

To conclude let us assume that L(s+ iθ1, χ1) and L(s+ iθ2, χ2) share the value c = 0.

In view of the trivial zeros of Dirichlet L-functions on the negative real axis it follows that

θ1 = θ2. Next we may use a formula due to Fujii [9], resp. its unconditional version [52],

lim
T→∞

π

T logT

∑

|γχ1 |≤T

L(ρχ1 , χ2) = 1 − 1

ϕ([q1, q2])

∑

a mod [q1,q2]

(a,[q1,q2])=1

(χ1χ2)(a),

where qj is the modulus of χj . It follows from the orthogonality relation for characters

(Theorem 26) that the right-hand side does not vanish for χ1 6= χ2. Hence L(s+ iθ1, χ1)

and L(s+ iθ2, χ2) do not share the value 0. This proves Theorem 22. •

Alternatively, we could have used a joint universality theorem due to Sander & Steuding

[45] which applies to a family of Dirichlet series with periodic coefficients and analytic

continuation beyond the abscissa of absolute convergence. This theorem covers indeed the

degree one case of the extended Selberg class S♯; however, since elements in S♯ may be

linearly dependent, they cannot be jointly universal in general without any restriction.

In fact, the joint universality theorem of Sander & Steuding is conditional subject to a

linear independence condition on the target functions. Moreover, since ζ(s) and λζ(s) for

some complex λ 6= 0 are both elements of S♯ of degree one and therefore the statement of

Theorem 22 does not hold for the extended Selberg class.

Problem: Extend the above Uniqueness Theorem 22 to elements of the Selberg class of

higher degree.

It is reasonable to expect that independent L-functions cannot share any complex value.

However, it is not clear what the correct meaning of independence should be. Joint uni-

versality seems to be an interesting approach to this question. Hence, it might be an

interesting line of investigation to consider universality phenomena generalizing Voronin’s

Universality Theorem.
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Theorem 24 (Universality Theorem for the Selberg Class). Assume L ∈ S satisfies

lim
x→∞

1

π(x)

∑

p≤x

|a(p)|2 = κ

for some positive constant κ, where the a(p) are the Dirichlet series coefficients of L on the

primes. Furthermore, let K be a compact subset of the strip max{ 1
2 , 1 − 1

dL
} < Re s < 1

with connected complement, and suppose that g(s) is a non-vanishing continuous function

on K which is analytic in the interior of K. Then

lim sup
T→∞

1

T
meas {τ ∈ [0, T ] : max

s∈K
|L(s+ iτ) − g(s)| < ǫ} > 0.

This universality theorem is due to Nagoshi & Steuding [39]; it improves upon a previous

one for polynomial Euler products in S (see [54]). It should be noticed that the range for

the approximation is restricted to the mean-square half-plane. If L ∈ S, then existence of

the mean-square is, by Carlson’s theorem, equivalent to

lim sup
T→∞

1

2T

∫ T

−T

|L(σ + it)|2 dt <∞,

which is known to be true only for σ > max{ 1
2 , 1 − 1

dL
}. This follows from [54], resp.

classical work of Chandrasekharan & Narasimhan [6] on Dedekind zeta-functions. In this

context we shall mention recent work of Mazhouda & Omar [33] who proved asymptotics

for the mean-square of L(s) on and to the right of the the critical line. For instance, they

obtained the unconditional bound
∫ T

0

|L(1
2 + it)|2 dt ≪ T

1
2 dL+ǫ

for any positive ǫ, where the implicit constant depends on ǫ and L, and a conditional

improvement subject to an estimate for
∑

n≤X |aL(n)|2.
Furthermore, we may ask for generalizations of Voronin’s Universality Theorem. For

example, if L(s) is universal, is the standard linear twist also universal? In the case of the

Riemann zeta-function, this twist ζ(s, α) is a Lerch zeta-function and is indeed universal

if α is rational or transcendental, however, the case of algebraic irrational α is unsettled;

see the monograph [11] of Garunkštis & Laurinčikas.

What about generalizations of the Joint Universality Theorem for Dirichlet L-functions

from above? The known methods fail to prove, for example, joint universality for ζ(s) and

an arbitrary L-function from the Selberg class. More generally, we ask for a necessary and

sufficient condition that a given finite family of L-functions is jointly universal? In the con-

text of the Selberg class we expect that Selberg’s Conjecture B (or a suitable quantitative

extension) could be used to answer this question. By Selberg’s Conjecture B, primitive

functions are expected to form an orthonormal system. Recall that Bombieri & Hejhal

[3] proved, assuming a stronger version of Selberg’s conjecture B, the statistical indepen-

dence of any collection of independent L-functions in any family of independent elements

of S. With regard to this statistical independence, predicted by Selberg’s Conjecture B,

we recall from [54] the following

Joint Universality Conjecture: Any finite collection of distinct primitive functions in

the Selberg class is jointly universal. Moreover, any two functions L1,L2 ∈ S are jointly

universal, if and only if
∑

p≤x

a1(p)a2(p)

p
= O(1),
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as x→ ∞, where the Dirichlet series coefficients of Lj(s) are denoted by aj(n).

In the example of ζ(s) and ζ(s)2 the latter asymptotics does not hold; needles to say that

this pair is not jointly universal. For more details to this question and how it is related to

other results in this direction we refer to [54].

We conclude with an interesting number field-analogue of the Selberg class, proposed

by M.R. Murty [36]. Let K be a number field. The Dedekind zeta-function (23) satisfies

the following axioms:

(i’) Dirichlet Series & Ramanujan Hypothesis: for Re s > 1,

L(s) =
∑

a

c(a)

N(a)s
,

where the summation is over all integral ideals a and the coefficients satisfy c(1) = 1

and c(a) ≪ N(a)ǫ.

(ii) Analytic Continuation: there exists a non-negative integer k such that (s −
1)kL(s) is an entire function of finite order.

(iii) Functional Equation: L(s) satisfies a functional equation of type

ΛL(s) = ωΛL(1 − s), where ΛL(s) := L(s)Qs

f
∏

j=1

Γ(λjs+ µj)

with positive real numbers Q, λj , and complex numbers µj , ω with Reµj ≥ 0 and

|ω| = 1.

(iv’) Euler Product: L(s) has a product representation

L(s) =
∏

p

Lp(s), where Lp(s) = exp

( ∞
∑

k=1

b(pk)

N(p)ks

)

with suitable coefficients b(pk) satisfying b(pk) ≪ N(p)kθ for some θ < 1
2 , where p

is a prime ideal.

Observe that the arithmetic axioms (i’) and (iv’) are more restictive than the corresponding

axioms (i) and (iv) in the definition of the Selberg class S. M.R. Murty [36] showed that one

can find Artin L-functions L (see Appendix D for an exemplary introduction) associated

with the splitting field of the polynomial X8 + 9X6 + 23X4 + 14X2 + 1 which satisfy the

above properties but
∑

N(p)≤x

|c(p)|2
N(p)

=
1

4
log log x+O(1).

Hence, the analogue of Selberg’s Conjecture A fails. For this purpose M.R. Murty [36]

imposed as further axiom

(v’) Rankin–Selberg Property:∗ for some positive integer n,

∑

N(p)≤x

|c(p)|2
N(p)

= n log log x+O(1).

∗These names are in honour of the inventors of the so-called Rankin-Selberg convolution which is closely

related to this type of asymptotics and the Selberg Conjectures in particular.
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The set of all functions L satisfying the above axioms is said to be the Selberg class over

K and will be denoted as SK. Generalizing from the Selberg class, we call an element L a

K-primitive function if all factorizations of L in SK are trivial. Following M.R. Murty, we

introduce the

The Number Field-Analogue of Selberg’s Conjecture B: Let K be a number field.

For any K-primitive functions L1 and L2 ∈ SK,

∑

N(p)≤x

cL1(p)cL2(p)

N(p)
=

{

log log x+O(1) if L1 = L2 ,

O(1) otherwise ,

where cLj
(p) denotes the Dirichlet coefficient of Lj at the prime ideal p,

Then it is not difficult to see that also the anaologue of Theorem 7 holds true:

Theorem 25. Every function in SK has a factorization into primitive functions. If the

analogue of Selberg’s conjecture B is true, then this factorization into K-primitive functions

is unique.

Problem: Develop a theory for the Selberg class over K. What is the analogue of the

Degree Conjecture?

Further problems and questions can be found in the excellent surveys of Kaczorowski

[20] and Perelli [42, 43]. We conclude with a last task which may take a while:

Exercise 17. Prove any of these open problems or any of the many other conjectures. :-)

In the following appendices we have tried to provide apart from standard results all

mathematics necessary to make these course notes self-contained. For some results we

have decided to present their proofs; for others we only refer to literature which contains

a proof.

Appendix A: Characters and Other Tools from Number Theory

A character χ is a non-trivial group homomorphism from a finite (for the sake of sim-

plicity) abelian group G onto C
∗. By the structure theorem for finite abelian groups any

such group G is the direct product of cyclic groups. Often we will be concerned with

the the multiplicative group of the ring of residue classes mod q, i.e., the group of prime

residue classes modulo q,

(Z/qZ)∗ := {a mod q : gcd(a, q) = 1}.
By the chinese remainder theorem,

(Z/qZ)∗ =
∏

p|q
(Z/pν(q;p)Z)∗,

where ν(q; p) denotes the exponent of the prime p in the prime factorization of the integer

q. In this case the decomposition into a product of cyclic groups is much easier to obtain.

Gauss proved that the group of residue classes modulo q is cyclic if and only if q = 2, 4, pν

or 2pν , where p 6= 2; a generator of such a cyclic group (Z/qZ)∗ is called a primitive root

mod q. In the case q = 2ν one has (Z/2νZ)∗ = 〈−1〉 × 〈5〉 (which leads to a cyclic group

if ν = 1, 2, since then −1 ≡ 5 mod 22). In any case, the group of prime residue classes

mod q is a product of finitely many cyclic groups.
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For the first, however, we shall argue more generally. Assume that

G =

r
∏

j=1

Gj with Gj = 〈gj〉.

In particular, any g ∈ G has a unique representation of the form

g =

r
∏

j=1

g
tj

j with 0 < tj ≤ ℓj,

where ℓj = ♯Gj is the group order of Gj . Since a character on G is a group homomorphism,

i.e.,

χ(a · b) = χ(a) · χ(b) for all a, b ∈ G,

it follows that

χ(g) =

r
∏

j=1

χ(gj)
tj for g =

r
∏

j=1

g
tj

j .

Therefore, a character is uniquely determined by its values on the generators. Since the

order of any element of a finite abelian group is a divisor of the group order, we find

1 = χ(1) = χ(g
ℓj

j ) = χ(gj)
ℓj ,

and thus χ(gj) is an ℓj-th root of unity, i.e.,

χ(gj) = exp

(

2πi
kj

ℓj

)

for some kj ∈ Z with 0 < kj ≤ ℓj .

Consequently, there are at most ℓ1 · . . . · ℓr many characters χ on G. On the contrary,

any choice of k1, . . . , kr with 0 < kj ≤ ℓj defines via χ(gj) = exp(2πi
kj

ℓj
) such a character.

Hence, the number of characters χ on G is equal to the group order ♯G = ℓ1 · . . . · ℓr. We

may define the product of two characters mod q by setting (χ · ψ)(g) = χ(g) · ψ(g); this

gives the set of characters χ mod q the structure of a group, the character group (resp.

dual group) of G, for short Ĝ. Its unit element, the principal character, is the character

constant 1 and is denoted by χ0. Since |χ(g)| = 1, the inverse of a character χ ∈ Ĝ is given

by conjugation:

χ(g) = χ(g) = χ(g)−1.

Given

χk(gj) =

{

exp
(

2πi 1
ℓj

)

if j = k,

1 otherwise,

the mapping gj 7→ χj is an isomorphism between G and its character group Ĝ. We illustrate

these observations with the example G = (Z/5Z)∗:

χ0 χ1 χ2 χ3

1 ≡ 20 +1 +1 +1 +1

2 ≡ 21 +1 -1 +i -i

4 ≡ 22 +1 +1 -1 -1

3 ≡ 23 +1 -1 -i +i

We find 〈2〉 ∼= 〈χ2〉 (of course, here we can also replace 2 by 3 or χ2 by χ3).

Now we switch to the group of prime residue classes (Z/qZ)∗ and state the important

orthogonality relations for characters. Via the natural embedding of (Z/qZ)∗ in Z we can

define characters χ mod q on the whole of Z by setting

χ(n) =

{

χ(n+ qZ) if gcd(n, q) = 1,

0 otherwise.
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The new objects are called Dirichlet characters χ mod q. The function n 7→ χ(n) is

completely multiplicative; moreover, it is a q-periodic function on Z, i.e., χ(n+ q) = χ(n)

for any n ∈ Z. Notice that ♯(Z/qZ)∗ = ϕ(q).

Theorem 26 (Orthogonality Relation For Characters). If a and q are coprime, then

1

ϕ(q)

∑

χ mod q

χ(a)χ(n) =

{

1 if n ≡ a mod q,

0 otherwise.
(47)

A proof can be found in almost any book on Number Theory, e.g., Davenport [8], resp. in

[55]. With this tool one can sieve prime residue classes from the set of positive integers

as we did in the proof of Theorem 11. Hence, characters are at the heart of Dirichlet’s

approach to prove the infinitude of primes in arithmetic progressions.

An arithmetical function f : N → C is said to be multiplicative, if f(mn) = f(m)f(n)

for all coprime integersm,n; if the latter condition on the coprimality can be dropped, then

f is said to be completely multiplicative. Dirichlet Characters are examples of completely

multiplicative functions.

Theorem 27. A multiplicative function f is periodic if, and only if, there exists an integer

q and a Dirichlet character χ mod q satisfying the following properties:

• f(pk) = 0 if p is a prime divisor of q;

• if p is prime and p 6 | q, then the function k 7→ χ(pk)f(pk) is constant and 6= 0;

• there are at most finitely many primes p for which χ(pk)f(pk) 6= 1 for some expo-

nent k.

This result is due to de Bruijn and (independently) Leitmann & Wolke [28] (cf. Schwarz

& Spilker [46]). It follows immediately, that a completely multiplicative function which is

q-periodic, is a Dirichlet character mod q.

Another very important tool in Number Theory is

Theorem 28 (Abel’s Partial Summation). Let λ1 < λ2 < . . . be a divergent sequence

of real numbers, define for αn ∈ C the function A(u) :=
∑

λn≤u αn, and let F : [λ1,∞) →
C be a continuous differentiable function. Then

∑

λn≤x

αnF (λn) = A(x)F (x) −
∫ x

λ1

A(u)F ′(u) du.

The proof is by rewriting the difference between the integral and the sum by using the

fundamental theorem of analysis or, simply, by Stieltjes integration.

As an easy application we find

(48) −ζ
′

ζ
(s) = s

∫ ∞

1

ψ(x)

xs+1
dx

with the summatory function ψ(x) =
∑

n≤x λ(n) of the Dirichlet coefficients.

We conclude this appendix with estimates for exponential integrals:

Theorem 29. i) Let f(x) be a real differentiable function with monotonic derivative which

satisfies either f ′(x) ≥ m > 0 or f ′(x) ≤ −m < 0 throughout the interval [a, b] for some

constant m. Then
∣

∣

∣

∣

∣

∫ b

a

exp(if(x)) dx

∣

∣

∣

∣

∣

≤ 4

m
.
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ii) Let f(x) be real differentiable with derivatives up to the third order such that |f ′′′(x)| ≤
cλ2 and either 0 < λ1 ≤ f ′′(x) < cλ1 or 0 < λ1 ≤ −f ′′(x) ≤ cλ1 throughout the intervall

[a, b] for some constants λ, c. Moreover, let f ′(ξ) = 0 for some ξ ∈ [a, b]. Then
∫ b

a

exp(if(x)) dx = (2π)1
1

2

exp(±πi
4 + if(ξ))

|f ′′(ξ)| 12
+O(λ

− 4
5

1 λ
1
5
2 ) +

+O
(

min{λ−
1
2

2 , |f ′(a)|−1} + min{λ−
1
2

2 , |f ′(b)|−1}
)

,

where the sign ± is according to the sign of f ′′; if f ′ does not vanish in [a, b], then the

latter formula holds without leading term.

For the elementary proof see Lemmas 4.2 and 4.6 in Titchmarsh’s monograph [57].

Appendix B: Poisson Summation Formula and Further Results From

Analysis

Suppose f : R → C is an integrable function satisfying f(z) ≪ |z|−2 as |z| → ∞
(actually, this is a strong restriction but it allows to do the next step). Then we may

define its Fourier transform by

f̂(y) =

∫ +∞

−∞
f(z) exp(−2πiyz) dz.

The Poisson summation formula is a useful tool in Fourier theory with many applications

in real and complex analysis.

Theorem 30 (Poisson Summation Formula). Let f : R → R be a twice continuously

differentiable function with f(z) ≪ |z|−2 as |z| → ∞. Further, assume that the integral
∫ +∞

−∞
|f ′′(z)| dz

exists. Then, for any α ∈ R,
∑

n∈Z

f(n+ α) =
∑

m∈Z

f̂(m) exp(2πiαm).

Proof. It suffices to prove the formula in question only for α = 0. In fact, writing

g(z) = f(z + α) for fixed α ∈ R, we have ĝ(y) = f̂(y) exp(2πiαy). Therefore, we may

assume α = 0.

First of all, for r > 0, define

P (y, r) =

∞
∑

m=−∞
r|m| exp(2πimy).

This series is the sum of the term for m = 0 plus two infinite geometric series, one for

m < 0 and one for m > 0, both being absolutely convergent for r ∈ [0, 1). Hence, we can

compute the value of the infinite series P (y, r) by

P (y, r) = 1 +
r exp(2πiy)

1 − r exp(2πiy)
+

r exp(−2πiy)

1 − r exp(−2πiy)
=

1 − r2

1 − 2r cos(2πy) + r2
.

This implies P (y, r) ≥ 0 for any y (since the denominator is equal to (r − cos 2πy)2 +

(sin 2πy)2). Using
∫ 1

0

exp(2πimy) dy =

{

1 if m = 0,

0 otherwise,
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we find
∫ 1

0

P (y, r) dy = 1

for all r ∈ [0, 1). Further note that P (y, r) is 1-periodic with respect to y. Hence,

P (y, r) ≤ 1 − r2

(sin 2πδ)2

for 0 < δ ≤ |y| ≤ 1
2 .

Since f(z) ≪ z−2, we have

+∞
∑

m=−∞
r|m|f̂(m) =

∫ +∞

−∞
P (y, r)f(y) dy =

+∞
∑

m=−∞

∫

[m− 1
2 ,m+ 1

2 ]

P (y, r)f(y) dy;

interchanging summation and integration is justified with respect to the absolute conver-

gence. We want to show that the right-hand side converges to
∑

m f(m) as r → 1−. For

this purpose we note that
∫

[m− 1
2 ,m+ 1

2 ]

P (y, r)f(y) dy ≤ max
m− 1

2≤y≤m+ 1
2

|f(y)|
∫ 1

0

P (y, r) dy

≤ max
m− 1

2≤y≤m+ 1
2

|f(y)| ≪ m−2,

as |m| → ∞. Hence, given ǫ > 0, there exists M > 0 such that
∑

|m|>M

∫

[m− 1
2 ,m+ 1

2 ]

P (y, r)f(y) dy < ǫ and
∑

|m|>M

|f(m)| < ǫ.

Now assume |m| ≤M . Of course,
∫

[m− 1
2 ,m+ 1

2 ]

P (y, r)f(y) dy − f(m) =

∫

[m− 1
2 ,m+ 1

2 ]

P (y, r)(f(y) − f(m)) dy.

Take some δ > 0 for which |f(y) − f(z)| < ǫ
3M for all m with |m| ≤ M and all y, z with

|y − z| ≤ δ. Then

(49)
∑

|m|≤M

∣

∣

∣

∣

∣

∫

[m− 1
2 ,m+ 1

2 ]

P (y, r)f(y) dy − f(m)

∣

∣

∣

∣

∣

≤
∑

|m|≤M

(J1(m) + J2(m)),

where

J1(m) :=

∫ m+δ

m−δ

P (y, r)|f(y) − f(m)| dy,

J1(m) :=

∫

W (m)

P (y, r)|f(y) − f(m)| dy

with W (m) := {y ∈ R : δ < |y −m| ≤ 1
2}. By construction,

J1(m) ≤ ǫ

3M

∫ m+δ

m−δ

P (y, r) dy ≤ ǫ

3M
.

Moreover,

J2(m) ≤ 1 − r2

(sin 2πδ)2

∫

W (m)

|f(y) − f(m)| dy ≪ 1 − r2

m2
,

where the implicit constant depends only on δ, ǫ and f . Thus, the right-hand side of (49)

can be made less than 2ǫ for some r sufficiently close to 1. Hence, letting ǫ→ 0, we obtain

(50) lim
r→1−

+∞
∑

m=−∞
r|m|f̂(y) =

+∞
∑

m=−∞
f(m).
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Partial integration shows f̂(m) ≪ m−2. Consequently, the series on the left-hand side of

(50) converges absolutely and uniformly for r ∈ [0, 1) and we may interchange summation

and take the limit. This proves the theorem. •
The (most simple) theta-function is given by the infinite series

θ(x) =
∑

n∈Z

exp(−πxn2).

We apply Poisson’s summation formula, Theorem 30, to the function f(z) := exp(−πz2/x)

with x > 0. We compute the Fourier transform by quadratic substitution:

f̂(y) =

∫ +∞

−∞
exp(−π(z2/x+ 2iyz)) dz

= x exp(−πxy2)

∫ +∞

−∞
exp(−πx(w + iy)2) dw.(51)

Next we consider the integral

I(λ) :=

∫ +∞

−∞
exp(−πx(w + λ)2) dw,

where λ is any complex number. Consider the integral
∫

R
exp(−xω2) dω,

where R is the rectangular contour with vertices ±r,±r+ iImλ, where r is a positive real

number. By Cauchy’s theorem, the integral is equal to zero. On the line Reω = r, the

integrand tends uniformly to zero as r → ∞. Hence, I(λ) = I(0), and thus the integral

I(λ) does not depend on λ. This gives in (51)

f̂(y) = x exp(−πxy2)

∫ +∞

−∞
exp(−πxw2) dw = C

√
x exp(−πxy2),

where

C :=

∫ +∞

−∞
exp(−πz2) dz.

Applying Poisson’s summation formula leads to
∑

n∈Z

exp(−π(n+ α)2/x) = C
√
x
∑

n∈Z

exp(−πxn2 + 2πinα);

here we have introduced the parameter α by the trick from the proof of Theorem 30.

Choosing α = 0 and x = 1, both sums are equal; thus, C = 1 and we have just proved the

functional equation (3) for the theta-function: for any x > 0,

θ(x) =
1√
x
θ

(

1

x

)

.

Another important analytic tool is

Theorem 31 (Perron’s formula). For positive real numbers c, y, T , define

I(y, T ) =
1

2πi

∫ c+iT

c−iT

ys

s
ds and δ(y) =







0 if 0 < y < 1,
1
2 if y = 1,

1 if y > 1.

Then

|I(y, T )− δ(y)| <
{

yc min{1, (T | log y|)−1} if y 6= 1,

c/T otherwise.
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The proof follows from Cauchy’s theorem and can be found in Tichmarsh’s monograph

[56], resp. [55].

We shall apply this with the logarithmic derivative of the zeta-function in order to

obtain, for x 6∈ Z and c > 1,

∫ c+i∞

c−i∞

∞
∑

n=1

Λ(n)

ns

xs

s
ds =

∞
∑

n=1

Λ(n)

∫ c+i∞

c−i∞

(x

n

)s ds

s
;

here interchanging integration and summation is allowed by the absolute convergence of

the series. In view of Theorem 31 with T → ∞ it follows that

∑

n≤x

Λ(n) =
1

2πi

∫ c+i∞

c−i∞

∞
∑

n=1

Λ(n)

ns

xs

s
ds,

resp. Formula (33) which is also known as Perron’s formula. Please notice that this gives

in some sense the inversion of Formula (48).

The Gamma-function plays a central role in the analytic theory of L-functions. We shall

not give a full account of all properties needed, since they can be found in any textbook

on Complex Analysis, but state a convenient asymptotic formula for its growth:

Theorem 32 (Stirling’s formula). We have

log Γ(z) =

(

z − 1

2

)

− z +
1

2
log 2π +

∫ ∞

0

[u] − u+ 1
2

u+ z
du

=

(

z − 1

2

)

− z +
1

2
log 2π +O

(

|z|−1
)

,

uniformly in z with −π + ǫ ≤ arg z ≤ π − ǫ.

A proof can be found in Titchmarsh [56].

The next statement is a maximum principle for unbounded domains:

Theorem 33. Let f(s) be analytic in the strip σ1 ≤ Re s ≤ σ2 with f(σ+ it) ≪ exp(ǫ|t|).
If

f(σ1 + it) ≪ |t|c1 and f(σ2 + it) ≪ |t|c2 ,

then f(s) ≪ |t|c(σ) uniformly in σ1 ≤ σ ≤ σ2, where c(σ) is linear with c(σ1) = c1 and

c(σ2) = c2.

A proof can be found in Titchmarsh [56]. Note that there are counterexamples if the

growth condition f(s) ≪ exp(ǫ|t|) is not fulfilled.

Weierstrass proved that any non-zero entire function can be factored into a product over

its zeros (times an exponential function). In the case of polynomials this is just another

formulation of the fundamental theorem of algebra (that any polynomial over C has a root

in C) and is known since Gauss’ first proof in his doctorate. However, a generic entire

function has infinitely many zeros and hence its so-called Weierstrass product is infinite

and the analysis much more difficult. As part of his theory of entire functions, Hadamard’s

Product Theorem 34 obtained for entire functions of finite order a more explicit form for

Weierstrass’ products. For our purpose it suffices to consider only functions of order one.

Theorem 34 (Hadamard’s Product Theorem). Let f(s) be an entire function of

order one with zeros ρ0 = 0 with multiplicity m0 and ρ1, ρ2, . . . arranged so that 0 < |ρ1| ≤
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|ρ2| ≤ . . . and repeated according their multiplicities. Then there are constants A,B such

that

f(s) = sm0 exp(A+Bs)

∞
∏

j=1

(

1 − s

ρj

)

exp

(

s

ρj

)

.

A proof of this theorem can be found in many textbooks, e.g., Titchmarsh [56], as well as

in [55].

It should be noticed that all the above results were introduced with respect to investiga-

tions in Number Theory. It is amazing how Complex Analysis was pushed forwards in the

second half of the nineteenth century thanks to the Riemann zeta-function and attempts

to prove the Prime Number Theorem!

Appendix C: The Wiener-Ikehara Tauberian Theorem

Around 1825, Abel proved
∑∞

n=0 a(n)xn tends to 1 as x → 1− provided that
∑∞

n=0 a(n) = 1. In 1897, Tauber proved that the converse implication holds if na(n) = o(1)

as n → ∞. After Tauber plenty of similar results were proven, many of them with direct

applications to number theory (created with number theoretical motivation in mind). Here

we shall prove

Theorem 35 (Wiener–Ikehara Theorem – original version). Let A(x) be a non-

negative, non-decreasing function of x ∈ [0,∞). Suppose that the integral
∫ ∞

0

A(x) exp(−sx) dx

converges to the function f(s) and that f(s) is analytic in the half-plane σ ≥ 1, except for

a simple pole at s = 1 with residue 1. Then

lim
x→∞

A(x) exp(−x) = 1.

Proof. Define B(x) = A(x) exp(−x). First we shall prove that, for any positive λ,

(52) lim
y→∞

∫ λy

−∞
B
(

y − v

λ

)

(

sin v

v

)2

dv = π.

For σ > 1, we have

f(s) =

∫ ∞

0

A(x) exp(−sx) dx and
1

s− 1
=

∫ ∞

0

exp((1 − s)x) dx.

Thus, after a short computation,

F (s) := f(s) − 1

s− 1
=

∫ ∞

0

(B(x) − 1) exp((1 − s)x) dx.

By assumption F (s) is analytic for σ ≥ 1. Now define Fǫ(t) = F (1 + ǫ+ it) for ǫ > 0. For

λ > 0, we obtain

∫ 2λ

−2λ

Fǫ(t)

(

1 − |t|
2λ

)

exp(iyt) dt

=

∫ 2λ

−2λ

(

1 − |t|
2λ

)

exp(iyt)

(∫ ∞

0

(B(x) − 1) exp(−(ǫ+ it)x) dx

)

dt.(53)
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Next we want to interchange the order of integration on the right-hand side. Since A(x)

is non-negative and non-decreasing, for real s and x > 0,

f(s) ≥ A(x)

∫ ∞

x

exp(−su) du =
A(x) exp(−sx)

s
,

resp. A(x) ≤ sf(s) exp(sx). Since f(s) is analytic for σ > 1, this implies A(x) =

O(exp(sx)) for any s > 1 and

B(x) exp(−δx) = A(x) exp(−(1 + δ)x) = o(1)

for every δ > 0. It follows that the integral
∫ ∞

0

(B(x) − 1) exp(−(ǫ+ it)x) dx

converges uniformly for −2λ ≤ t ≤ 2λ. Thus, we can interchange the order of integration

in (53) and obtain
∫ ∞

0

(B(x) − 1) exp(−ǫx)
(

∫ 2λ

−2λ

exp(i(y − x)t)

(

1 − |t|
2λ

)

dt

)

dx.

This leads with (53) to
∫ 2λ

−2λ

Fǫ(t)

(

1 − |t|
2λ

)

exp(iyt) dt

= 2

∫ ∞

0

(B(x) − 1) exp(−ǫx) (sin(λ(y − x)))2

λ(y − x)2
dx.(54)

Since F (s) is analytic in σ ≥ 1, it follows that Fǫ(t) tends to F (1+ it) as ǫ→ 0, uniformly

for −2λ ≤ t ≤ 2λ. Moreover,

lim
ǫ→0

∫ ∞

0

exp(−ǫx) (sin(λ(y − x)))2

λ(y − x)2
dx =

∫ ∞

0

(sin(λ(y − x)))2

λ(y − x)2
dx.

Applying the theorem on monotone convergence, we deduce

lim
ǫ→0

∫ ∞

0

B(x) exp(−ǫx) (sin(λ(y − x)))2

λ(y − x)2
dx =

∫ ∞

0

B(x)
(sin(λ(y − x)))2

λ(y − x)2
dx.

By (54),

(55)
1

2

∫ 2λ

−2λ

F (1 + it)

(

1 − |t|
2λ

)

exp(iyt) dt =

∫ ∞

0

(B(x) − 1)
(sin(λ(y − x)))2

λ(y − x)2
dx.

The Riemann-Lebesgue lemma states that

lim
y→∞

∫ ∞

−∞
f(x) exp(ixy) dx = 0

for any absolutely integrable function f . Thus, letting y → ∞, the left-hand side of (55)

tends to zero while

(56) lim
y→∞

∫ ∞

0

(sin(λ(y − x)))2

λ(y − x)2
dx = lim

y→∞

∫ λy

−∞

(

sin v

v

)2

dv = π.

Hence,

lim
y→∞

∫ ∞

0

B(x)
(sin(λ(y − x)))2

λ(y − x)2
dx = π;

this proves (52).

In order to prove the theorem we have to show

(57) 1 ≤ lim inf
x→∞

B(x) ≤ lim sup
x→∞

B(x) ≤ 1.
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Clearly, this implies the existence of the limit limx→∞B(x) and that this limit is equal to

1. For given positive numbers a and λ let y > a
λ . By (52),

lim sup
y→∞

∫ a

−a

B
(

y − v

λ

)

(

sin v

v

)2

dv ≤ π

(the integrand is non-negative). Since A(u) = B(u) exp(u) is non-decreasing, we have, for

−a ≤ v ≤ a,

B
(

y − a

λ

)

exp
(

y − a

λ

)

≤ B
(

y − v

λ

)

exp
(

y − v

λ

)

.

This implies

B
(

y − v

λ

)

≥ B
(

y − a

λ

)

exp

(

v − a

λ

)

≥ B
(

y − a

λ

)

exp

(

−2a

λ

)

.

Hence,

lim sup
y→∞

B
(

y − a

λ

)

exp

(

−2a

λ

)∫ a

−a

(

sin v

v

)2

dv

= lim sup
y→∞

∫ a

−a

B
(

y − v

λ

)

(

sin v

v

)2

dv ≤ π.

For fixed a and λ we have lim supy→∞B(y − a
λ) = lim supy→∞B(y). Thus,

exp

(

−2a

λ

)

lim sup
y→∞

B(y)

∫ a

−a

(

sin v

v

)2

dv ≤ π,

being valid for all a > 0 and λ > 0. Since the right-hand side is independent of a and λ,

letting a, λ→ ∞ such that a
λ → 0, we deduce

lim sup
y→∞

B(y)

∫ ∞

−∞

(

sin v

v

)2

dv ≤ π.

Now (56) implies the desired upper bound for lim supy→∞B(y). The just proved inequality

yields the existence of a constant c such that |B(x)| ≤ c. Hence, for fixed positive a and

λ and a sufficiently large y,
∫ λy

−∞
B
(

y − v

λ

)

(

sin v

v

)2

dv

≤ c

{∫ −a

−∞
+

∫ ∞

a

}(

sin v

v

)2

dv +

∫ a

−a

B
(

y − v

λ

)

(

sin v

v

)2

dv.(58)

As above, we have B(y − v
λ) ≤ B(y + a

λ) exp(2a
λ ) for −a ≤ v ≤ a. Therefore,

∫ a

−a

B
(

y − v

λ

)

(

sin v

v

)2

dv ≤ B
(

y +
a

λ

)

exp

(

2a

λ

)∫ a

−a

(

sin v

v

)2

dv.

From (52), (58) and the latter inequality it follows that

π ≤ c

{∫ −a

−∞
+

∫ ∞

a

}(

sin v

v

)2

dv +

+ lim inf
y→∞

B
(

y +
a

λ

)

exp

(

2a

λ

)∫ a

−a

(

sin v

v

)2

dv.

Here we may replace lim infy→∞B(y+ a
λ) by lim infy→∞B(y). Then, after sending a, λ→

∞ such that a
λ → 0, we get the desired lower bound for lim infy→∞B(y). The theorem is

proved. •
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Now we shall derive Theorem 9 to which we also refer to as the Theorem of Wiener &

Ikehara. For the sake of convenience, we recall its formulation: Let F (s) =
∑∞

n=1 a(n)n−s

be a Dirichlet series with non-negative real coefficients and absolutely convergent for Re s >

1. Assume that F (s) can be extended to a meromorphic function in Re s ≥ 1 such that

there are no poles except for a possible simple pole at s = 1 with residue r ≥ 0. Then

A(x) :=
∑

n≤x

a(n) ∼ rx.

Proof. Without loss of generality we may suppose that the residue is positive, r > 0,

since otherwise we consider the function F (s) + ζ(s) (which then has residue r + 1 = 1).

Furthermore, we may assume that r = 1 simply by replacing a(n) by a(n)/r. By partial

summation,

F (s) = s

∫ ∞

1

A(x)

xs+1
dx,

resp.

F (s)

s
=

∫ ∞

0

A(exp(y)) exp(−ys) dy

with x = exp(y). Taking all assumptions on F (s) into account it follows from Theorem 35

that

lim
y→∞

A(exp(y)) exp(−y) = 1.

Re-substituting x = exp(y) we get the assertion. •

Our presentation followed Chandrasekharan [5]. The standard reference for Tauberian

theorems is Korevaar’s book [27]. Another interesting approach is offered by M.R. Murty

& V.K. Murty [38].

Appendix D: Artin L-Functions

We have included Artin L-functions for several reasons. Firstly, they are important

objects in Algebraic Number Theory, resp. the analytic theory of algebraic numbers.

Secondly, they are related to certain elements of the Selberg class in a rather sophisticated

way. Exploiting these deep relations, one may hope to prove that they themselves are

elements of the Selberg class too. Our approach, however, is exemplarily, and follows the

articles of Heilbronn [15] and Stark [51].

Already the definition of Artin L-functions is non-trivial. Let L/K be a Galois extension

of number fields with Galois group G. Further, let ρ : G → GLm(V ) be a representation

(group homomorphism) of G on a finite dimensional complex vector space V . Then the

Artin L-function is defined by

L(s, ρ,L/K) =
∏

p

det

(

1 − ρ(σp)

N(p)s

)−1

,(59)

where p runs through the prime ideals of the ring of integers in K, and σP is the Frobenius

automorphism; for a precise definition of Artin L-functions we refer to [38]. To give an

idea about these objects, let us briefly consider an example due to Stark. Assume that

L/Q is normal with Galois group equal to the symmetric group S3 on three letters:

G := {1, (αβγ), (αγβ), (αβ), (αγ), (βγ)}
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say. For instance, one may consider the cubic field K = Q(2
1
3 ) and its normal closure

L = Q(α, e
2πi
3 ) = Q(α, β, γ), where

α = 2
1
3 , β = e

2πi
3 2

1
3 , γ = e

4πi
3 2

1
3 .

Since automorphisms of L are determined by their action on α, β and γ, we find G =

Gal(L/Q) for the Galois group of L. The splitting of primes from Q to K, and likewise from

K to L, is ruled by the Frobenius automorphisms. The conjugacy classes of the symmetric

group on α, β, γ are precisely the conjugacy classes of Frobenius automorphisms arising

from prime numbers; that are

C1 : {1}, C2 : {(αβγ), (αγβ)}, C3 : {(αβ), (αγ), (βγ)}.
For each of them we associated Euler factors corresponding to the splitting of the prime

numbers. Since the field extension K/Q has degree 3, there are the following possibilities

to consider.

• The prime p splits completely into three different prime divisors; e.g., (31) = p1p2p3

with

p1 = (31, α− 4), p2 = (31, α− 7), p3 = (31, α− 20).

In this case the local Euler factor at p is of the form

(

1 − 1

ps

)−3

= det



1 −





1 0 0

0 1 0

0 0 1





1

ps





−1

.

Obviously, the appearing matrix has the eigenvalue +1 with multiplicity three.

This Euler factor corresponds to the class C1.

• The prime p can be factored into a product of two factors, one of first degree and

one of second degree; for example, (5) = p1p2 with

p1 = (5, α− 3), p2 = (5, α2 + 3α+ 9).

Here we have
(

1 − 1

ps

)−1(

1 − 1

p2s

)−1

= det

(

1 − M
1

ps

)−1

,

for any of the matrices

M =





0 1 0

1 0 0

0 0 1



 ,





0 0 1

0 1 0

1 0 0



 , and





1 0 0

0 0 1

0 1 0



 ,

corresponding to C3. The eigenvalues of the (similar) matrices are −1 and +1 with

multiplicities one and two, respectively.

• The prime p is a prime ideal of third degree; e.g., (7) = p. In this case we have
(

1 − 1

p3s

)−1

= det

(

1 − M
1

ps

)−1

for the matrices associated with C2:

M =





0 1 0

0 0 1

1 0 0



 and





0 0 1

1 0 0

0 1 0



 .

Here the eigenvalues of the (similar) matrices are the third roots of unity.



THE SELBERG CLASS OF ZETA- AND L-FUNCTIONS 53

To find a more convenient notation of Artin L-functions, for any representation ρ of G,

we associate a character χ of G by setting

χ(g) = trace(ρ(g))

for g ∈ G. The degree of a character is defined by degχ = χ(1). These characters χ of

G are constant on the conjugacy classes. Two representations are said to be equivalent if

they have the same character. If ρ1 and ρ2 are representations of G with characters χ1

and χ2, then

ρ(g) =

(

ρ1(g) 0

0 ρ2(g)

)

also defines a representation of G with character χ1 + χ2, and in this case ρ is said to be

reducible; any representation which is not reducible is called irreducible. We shall use the

same attributes for the associated character. It turns out that any conjugacy class of G

corresponds to an irreducible representation and there are not more; of course, distinct

irreducible representations are non-equivalent (these observations are analogous to the case

of Dirichlet characters and the group of residue classes of Z). In our example we find for

the the three conjugacy classes of G:

C1 C2 C3

χ1 +1 +1 +1

χ2 +1 +1 −1

χ3 +2 −1 0

Hence, for G = S3, there are three irreducible characters (in some literature ‘simple char-

acters’). For simplicity, we write L(s, χ) for the Artin L-function (59). One can construct

more characters from the irreducible characters listed above, for example, a third degree

character χ related to the permutation representation (αβ). Taking the character relations

into account we find χ = χ1 + χ3. For the related Artin L-functions we note that

L(s, χ) = L(s, χ1 + χ3) = L(s, χ1)L(s, χ3).

For the field L = Q(α, β, γ) there are four subfields up to conjugacy: firstly, the field Q

itself, fixed by all of G, secondly, Q(
√
−3) fixed by G2 := {1, (αβγ), (αγβ)} (corresponding

to the conjugacy class C2), thirdly, K = Q(2
1
3 ) fixed by G3 := {1, (βγ)} (corresponding to

the conjugacy class C3), and finally L fixed just by {1}.

L {1}

K = Q(2
1
3 )

uuuuuuuuuu

G3

(βγ)
rrrrrrrrrrrr

Q(
√
−3)

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

G2

(αβγ),(αγβ)

9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9

Q

χ3

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6 χ2

wwwwwwwww
Gal(L/Q) = S3

9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9

rrrrrrrrrrr
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We obtain the following factorizations of the associated Dedekind zeta-functions into prod-

ucts of Artin L-functions to L/Q:

ζ(s) = ζQ(s) = L(s, χ1),

ζQ(
√
−3)(s) = L(s, χ1)L(s, χ2),

ζ
Q(2

1
3 )

(s) = L(s, χ1)L(s, χ3),

ζL(s) = L(s, χ1)L(s, χ2)L(s, χ3).

We observe that any of the Dedekind zeta-functions on the left-hand side is divisible by the

Riemann zeta-function. It follows from these factorizations and the analytic behaviour of

Dedekind zeta-functions that each of the involved Artin L-functions with χ 6= χ0 possesses

a meromorphic continuation to the whole complex plane; the only possible poles can occur

at zeros of other Artin L-functions. Furthermore, one can deduce functional equations

of the Riemann-type. For instance, in our example we may deduce directly from the

functional equations for the Dedekind zeta-function

asΓ(s)L(s, χ3) = a1−sΓ(1 − s)L)1 − s, χ)

with some constant a which can be computed by means of Algebraic Number Theory; in a

similar manner further identities hold for the other Artin L-functions. This is a remarkable

way to deduce analytic properties for L-functions! If L/K is abelian, then it follows from

Artin reciprocity law that L(s,L/K, ρ) coincides with a suitable Hecke L-function. With

(24) we have seen a toy example of this phenomenon in §2 where the Dedekind zeta-

function to a quadratic number field split into the product of the Riemann zeta-function

and a Dirichlet L-function.

The Langlands program has emerged in the late 1960s of the last century in a series

of far-reaching conjectures tying together seemingly unrelated objects in number theory,

algebraic geometry, and the theory of automorphic forms. These disciplines are linked by

Langlands’ L-functions associated with automorphic representations, and by the relations

between the analytic properties and the underlying algebraic structures. There are two

kinds of L-functions: motivic L-functions which generalize Artin L-functions and are de-

fined purely arithmetically, and automorphic L-functions, defined by transcendental data.

In its comprehensive form, an identity between a motivic L-function and an automorphic

L-function is called a reciprocity law. Langlands’ reciprocity conjecture claims, roughly,

that every L-function, motivic or automorphic, is equal to a product of L-functions at-

tached to automorphic representations. One instance is Wiles’ et al. celebrated proof of

the Shimura-Taniyama conjecture on the modularity of elliptic curves with Fermat’s last

theorem on the integer solutions of the diophantine equation Xn + Y n = Zn as corollary;

see . For an introduction to the Langlands program we refer to the excellent surveys of

Gelbart [12] and M.R. Murty [35]. This is the universe of the Selberg class S and the

general converse problem whether S is built exactly from the automorphic L-functions

may be regarded as an analytic version of the Langlands program.
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