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Abstract. In this paper, we examine John Tate’s seminal work calculating

functional equations for zeta functions over a number field k. Tate examines

both ‘local’ properties of k, completed with respect to a given norm, and
‘global’ properties. The global theory examines the idele and adele groups of

k as a way of encoding information from all of the completions of k into single

structures, each with its own meaningful topology, measure, and character
group. Finally, Tate uses techniques from Fourier analysis, both on the local

fields and on the adele group to find functional equations for the zeta functions

he defines.
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2 JOHN BINDER

1. Number Fields: Basic Principles

We begin with a few words on assumed prerequisite knowledge. We assume the
reader is familiar with basic point-set topology, group theory, and a little bit of
field theory. We assume the reader is familiar with topological groups, and we
will use the fact that a topological group has a Haar measure that is unique up to
multiplication by a constant. We assume basic properties of characters on those
groups (continuous homomorphisms from the group to C), and how the the topology
on the group itself relates to the property of the character group. We assume basic
knowledge of Fourier analysis, especially the Fourier inversion formula.

Over the course of this work, there will be a number of facts from algebraic
number theory that we ask the reader to take as fact. When this happens, we will
provide references for further reading.

Throughout this paper, I have followed Tate’s Thesis as given in Cassel’s and
Frohlich. Otherwise, I have used Lang’s Algebraic Number Theory and Ramakrish-
nan’s Fourier Analysis on Number Fields as the main reference works.

With those formalities out of the way, we start with a definition:

Definition 1.1. A finite extension k/Q is called a number field.

The most important subset of k will be the collection of integral elements. We
define these elements below:

Definition 1.2. Let k be a number field. We say an element x is integral in k (or
an integer in k) if x satisfies a monic polynomial with coefficients in Z.

We prove an alternate, slightly more workable definition.

Proposition 1.3. For a number field k, x ∈ k is integral if and only if there is a
finitely-generated Z-module M ⊂ k with xM ⊂M .

Proof. On the one hand, if x satisfies xn + an−1x
n−1 + . . . + a1x + a0, then the

submodule M generated by 1, x, . . . , xn−1 satisfies the requirements. On the other
hand, if M = 〈v1, . . . , vm〉, then for each 1 ≤ i ≤ m, x satisfies vix = ai1v1 + . . .+
aimvm. It follows that x is an eigenvalue of [aij ], so that it satisfies the characteristic
polynomial of that matrix. �

Corollary 1.4. Given a number field k, the collection of integers is a subring of
k.

Proof. If xM ⊂ M and yN ⊂ N , where both are finitely generated, then MN is
finitely generated (multiplication is inherited from k) and is fixed by both x + y
and xy. �

Henceforth, we will use O to denote the ring of integers in k. We prove:

Proposition 1.5. The ring O is an integral domain whose field of fractions is
precisely k.

Proof. Since O ⊂ k, and k has no zero divisors, neither does O. Since k is closed
under division and O is contained in k, then so is its field of fractions. On the other
hand, let α ∈ k satisfy the integral polynomial anxn + an−1x

n−1 + . . .+ a1x+ a0.
Then anα satisfies yn+an−1y

n−1 + . . .+a1a
n−2
n y+a0a

n−1
n , so that α is the quotient

of an integral element in k and a rational integer. �



TATE’S THESIS ON ZETA FUNCTIONS ON NUMBER FIELDS 3

Further properties of O (for instance, that it is Noetherian), can be found in the
first chapter of Lang.

Throughout this work, we will examine the ideal structure in O. In particular,
each ideal is an O-module. Therefore, it will be helpful to extend our conception
of ideals to encompass other finitely generated O modules. We therefore introduce
the concepts of inverse and fractional ideals.

Definition 1.6. Let I ⊂ O be an ideal. We define

I−1 = {x ∈ k | ∀y ∈ I, xy ∈ O}
Definition 1.7. Let I and J be ideals in O. Then we define a I/J = IJ−1 = {xy |
x ∈ I, y ∈ J−1}. Such a structure is called a fractional ideal.

We may multiply fractional ideals in the obvious manner: as subsets of k. The
ring O itself is clearly the identity under this multiplication. Finally, it takes some
work to show that I · I−1 = O, so that every fractional ideal has an inverse. We
refer the reader to the first chapter of Lang for a proof. Once we accept this, we
have that the set of fractional ideals in k (excluding k itself and the 0 ideal) form
an abelian group under multiplication. This group is called the ideal group of k.

Without proof, we accept the fact that the ideal group of k is freely generated
by the prime ideals in O (CITE). Specifically, every fractional ideal has a unique
factorization as a product and quotient of prime ideals.

We now consider the principal ideals in O (i.e. the cyclic O-modules). Since O
contains 1, we know that the product of two cyclic modules is again cyclic (and
generated by the product of their generators), and that the inverse of a cyclic
module is cyclic and generated by the inverse of the generator. This leads us to
define:

Definition 1.8. If Γ is the ideal group of k and H is the subgroup of principal
ideals, then Γ/H is known as the ideal class group of k, and |Γ : H| is called the
class number of k.

Showing that the class number is finite is nontrivial. Lang completes the proof
of this fact at the beginning of chapter V.

One ideal in particular will be of great help to us in the future. Consider the
trace map from k to Q. Then:

Definition 1.9. We define the inverse different of k as the set

D−1 = {x ∈ k | ∀y ∈ O, Tr(xy) ∈ Z}
Proposition 1.10. The set D−1 is a proper O-submodule of k containing O.

Proof. Given a, b ∈ D−1, Tr((a+ b)x) = Tr(ax+ bx) = Tr(ax)+Tr(bx) ∈ Op for all
x ∈ O. Similarly, if y ∈ O, then Tr(axy) ∈ Z⇒ ax ∈ D−1, so D−1 is an O-module.
To see that it is proper, note that if x ∈ Qp, then Tr(x) = nx (n = [k : Q]), so
simply pick x where nx 6∈ Z.

To see D−1 ⊃ O, it suffices to show that Tr(x) ∈ Z for all x ∈ O. Recall
that Tr(x) is an integral multiple of the second coefficient in the minimal monic
polynomial mx of x. Let g be the result of ‘clearing the denominators’ in mx. By
hypothesis, x satisfies a monic polynomial f with integral coefficients. Then g | f .
By Gauss’ lemma, their quotient has integral coefficients. This must mean that
g is monic, so that g = mx, so that mx has integral coefficients, completing the
proof. �
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2. Norms and Completions on Number Fields

All mathematical facts unproved in this section may be found in the beginning
chapters of Lang.

We wish to ascribe a metric to k and then complete k with respect to that
metric. Just as all norms on Q are either the standard archimedean norm or the
p-adic norm for a prime p, there are two types of norms on k: archimedean norms
and ℘-adic norms (which Tate calls discrete norms).

We define both types of norms here:
First, the archimidean norms. Note that, as a purely algebraic structure, k is

isomorphic to some algebraic subfield of C. To ascribe an archimedean norm to k,
we simply pick one of these isomorphic subfields of C and use the induced Euclidean
norm. Furthermore, this norm depends on the embedding we choose even though
the algebraic structures remain unchanged. Therefore, a number field k may have
a number of archimedean norms, and the completion of the field with respect to
that norm is either R or C. In particular, if k = Q(α), then k will have one real
completion for each real Galois conjugate of α and one complex completion for each
complex conjugate pair of Galois conjugates. (¡–confusing?)

Second, the ℘-adic or discrete norms. These will require some heavier mathe-
matical lifting. We begin with a definition:

Definition 2.1. Let ℘ be a prime ideal in O. We define N℘, called the norm of
℘, as the number of cosets of ℘ in O.

We can extend the norm to all fractional ideals as a homomorphism on the ideal
group.

We localize O with respect to ℘ by considering the fraction ring O℘ = {ab | a ∈
O, b ∈ O\℘}. Then ℘O℘ is the unique maximal ideal in O℘, and it is generated by
a single element π (we refer the reader to Lang’s sections 1.6 and 1.7 for a discussion
of Dedekind rings, discrete valuation rings, and a proof of this fact). We define the
℘-adic norm on k as follows: if x = πv · ab where a, b ∈ O \ ℘, then |x|℘ = (N℘)−v.
This is entirely analogous to the p-adic norm on Q.

If k℘ is a field with a ℘-adic norm, the ideal structure is considerably simplified
by the fact that the ring of integers O℘ consists precisely of those elements of norm
≤ 1. In particular, we have

Proposition 2.2. Let ℘ be a prime ideal in O and let k be complete with respect
to the ℘-adic norm. Then all proper O℘ modules of k are of the form ℘k for some
k ∈ Z. In particular, all ideals in O are of the form ℘k for k ∈ N.

Proof. It suffices to show that if M is an O, x ∈ M , and |y| ≤ |x|, then y ∈ M .
Fortunately, M is closed under multiplication by O, and

∣∣∣y
x

∣∣∣ ≤ 1⇒ y

x
∈ O ⇒ y ∈

M . The second statement follows because all ideals are submodules. �

We say a prime ideal ℘ ⊂ O lies above the prime p ∈ Z if ℘∩Z = (p). Then the
℘-adic absolute value, restricted to Q, is a constant power of the p-adic absolute
value, so that the two absolute values induce the same topology. It follows that
completing Q with respect to the ℘-adic absolute value yields Qp, so that k℘ ⊃
Qp. In particular, this allows us to define a trace map from k℘ to Q℘, and a
corresponding definition of a local inverse different:
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Definition 2.3. Let ℘ lie over p. Then the local inverse different of k℘ is defined
as

D−1
℘ = {x ∈ k | ∀y ∈ O℘, Tr(xy) ∈ Op}

Where Op is the p-adic ring of integers.

Following the proof of proposition 1.10, we have that the local inverse different
is a proper O℘-submodule of k that contains the local ring of integers. With
proposition 2.1 in hand, we have that the local inverse different must be equal
to ℘k for some non-positive integer k.

Finally, we present one more definition and extraordinary fact:

Definition 2.4. A prime ℘ is called ramified if it satisfies the three equivalent
conditions:

• The prime ℘ divides the global different D in the ideal group.
• If ℘ lies above p, then ℘2 ∩ Z 6= (p).
• The local different D℘ is strictly contained in the local ring of integers O℘.

A prime not satisfying these conditions is called unramified.

Proving that these three properties are equivalent takes a bit of work. For a full
discussion of ramification, we invite the reader to see Cassels and Frohlich, pages
18-22. Lang includes a further discussion relating the ramified primes to the global
different.

The remarkable fact to take away from this ‘profinition’ is that, for all but finitely
many primes ℘, we have D℘ = O℘ (since only finitely many primes divide the global
different). This fact will be of great use to us when we examine the global theory.

3. The Local Theory

Throughout this section, we work locally in a field k completed with respect
to a given norm (we will examine means of simultaneously examining information
from all norms simultaneously when we consider the global theory). In general, we
denote a given ℘-adic completion by k℘ with localized ring of integers O℘ and local
inverse different D−1

℘ . In this section, however, we drop the pesky subscript and
simply use k, O, and D−1 respectively.

We wish to do Fourier analysis on k. Therefore, we must first examine the
characters of the additive group of k (henceforth denoted k+).

3.1. The Additive Characters. We begin with a definition:

Definition 3.1. A character on a topological group G is a continuous homomor-
phism from G to S1.

The characters on a locally compact group G form a group under multiplication.
We call this group Ĝ, and ascribe to it the compact-open topology. We assume
basic knowledge of how the topology on G relates to the topology on Ĝ. We also

assume the Pontryagin duality, which says ̂̂G ∼= G, where the characters on Ĝ are
induced by evaluation of a member of Ĝ at an element of G. We refer the reader
to the third chapter of Ramakrishnan for further explanation.

In this section, we wish to examine the character group k̂+ of k+.

Proposition 3.2. The character group k̂+ is nontrivial.
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Proof. We will construct a special character χ for each completion.
If k is real, define Λ(x) = −x. If k is complex, define Λ(x) = −2Re(x) = −Tr(x).

In either case, Λ is nontrivial, continuous, and additive.
If k is ℘-adic, with ℘ lying above p, then k is a finite extension of Qp, so there is a

continuous, additive trace map from k to Qp. Once in Qp, we have a map λ : Qp →
R given by the tail of a number’s p-adic expansion. That is, if x =

∑∞
j=v ajp

j , then
we set λ(x) =

∑−1
j=v ajp

j . It is easy to check that this map is both continuous and
additive modulo 1. We therefore set Λ(x) = λ(Tr(x)) in the ℘-adic case. The map
Λ is again nontrivial since λ’s kernel is precisely the p-adic integers, and it is both
continuous and additive.

In all cases, we set χ(x) = e−2πiΛ(x), giving us our desired nontrivial character.
�

From here, we have

Theorem 3.3. The topological groups k̂+ and k+ are isomorphic.

Proof. We will show the map η 7→ χ(ηx) is an isomorphism from k+ to its character
group. This function is clearly a character. We have χ((η1+η2)x) = χ(η1x)·χ(η2x).
Since this holds for all x, this map is a homomorphism. For η 6= 0, η · k = k, and
since χ is nontrivial, so is χ(ηx), so that the map is injective.

To prove surjectivity, we first show that the characters of the form x 7→ χ(ηx) are
dense in the character group. Let H be the subgroup consisting of these characters,
and let I be its topological closure in the character group. Then k̂+/I is itself a
topological group. Assume I 6= k̂+, so that k̂+/I is not the trivial group. Then,
there is a nontrivial character on k̂+ that is trivial on I. By the Pontryagin duality,
this character consists of evaluation at a certain y ∈ k+. Since this character is
trivial on I, then we must have χ(y · x) trivial. This is possible only if y = 0. But
evaluation at 0 always yields 1, so that the only trivial character on I is trivial on
all of k̂+. It follows that I is the entirety of the character group.

Finally, we wish to prove the bicontinuity of this map, proving that H is locally
compact, and therefore closed, in the character group, completing the proof. Let
B = {x ∈ k | |x| ≤ M}. As η → 0, then ηB → 0, so that χ(ηB) → 1 in
C. Since this we may use this to map any such B into any open neighborhood
of 1 in C, then χ(ηx) approaches the identity in the character group under the
compact-open topology. On the other hand, let x0 be a fixed element of k with
χ(x0) 6= 1. As χ(η · x) approaches the identity character, eventually we must have
χ(ηB) closer to 1 than χ(x0). This implies that x0 6∈ ηB, which is only possible if |η
is sufficiently small. Therefore, the map is bicontinuous, so that k+ is algebraically
and topologically isomorphic to its character group. �

In the case that our norm is ℘-adic, the local inverse different plays a particularly
important role:

Proposition 3.4. For all η ∈ O, the character x 7→ χ(ηx) is trivial on D−1.

Proof. Let ℘ lie above p, and note that Tr(y) ∈ Op ⇒ χ(y) = 1, so that if x ∈ D−1,
η ∈ O, then χ(ηx) = 1. �

In future calculations, we would like to talk about the size of D−1 relative to O.
Therefore, we define D as the inverse ideal of D−1; then the quantity ND, or the
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number of cosets of D in O, is well-defined, and the number of distinct additive
translates of O inside D−1 will be ND. Since D is a power of ℘, we also have that
ND will be some power of N℘.

3.2. Additive Haar Measure and Absolute Value. A Haar measure on a lo-
cally compact groupG is a measure onG for which compact sets have finite measure,
open sets have positive measure, and the measure is invariant under multiplication
by a group element. The existence of a Haar measure, and its uniqueness up to
a multiplicative constant, is assumed. We refer the interested reader to the first
chapter of Ramakrishnan for further explanation.

Let µ be a Haar measure on k. By examining this Haar measure, we can define
the absolute value of an element x ∈ k by the amount it ‘stretches’ a set. That
is, we can define |x| such that µ(xM) = |x|µ(M). Such a quantity is well-defined,
since µx(M) := µ(xM) is itself an additive Haar measure, and the Haar measure is
unique up to a constant. Moreover, this quantity is multiplicative, since µ(xyM) =
|x|µ(yM) = |x||y|µ(M).

From this perspective, it is clear that the ‘natural’ absolute value depends on the
completion in which we work. When k is a real field, we define |x| as the standard
real absolute value. When k is complex, we use the square of the standard absolute
value.

For ℘-adic k, we defined |πva| = (N℘)−v, where a is a unit in O (we denote the
group of units in O by U). We will show here that this absolute value is ‘natural’
from the above perspective. If |x| = (N℘)−v, then x is in the annulus ℘v \ ℘v+1,
so that xO = ℘v. If v ≥ 0, then there are exactly N℘v cosets of ℘v in O, so that
µ(xO)
µ(O) = N℘−v = |x|. If v < 0, it suffices to examine x−1.

3.3. Self-Dual Additive Haar Measures. The ‘big idea’ behind Tate’s thesis
is that we can find functional equations for zeta functions by applying Fourier
analysis. Recall the definition of a Fourier transform over a self-dual group:

Definition 3.5. Let f ∈ L1(G) (that is, |f | is integrable). Then we define

f̂(y) =
∫
G

f(x)χ(xy) dx

Moreover, for functions f such that f̂ is also L1, we have the following fact from
Fourier analysis, proved in section 3.3 of Ramakrishnan):

(3.6) ˆ̂
f(x) = n · f(−x) for some constant n

For future calculations, it will be important to define a Haar measure dx such
that the constant in the above equation is 1. To this end, we set

• dx = standard Lesbegue measure for real k
• dx = twice standard Lesbegue measure for complex k
• dx such that O gets measure ND−1/2 for ℘-adic k

Proposition 3.7. If we define dx as above, we have ˆ̂
f(x) = f(−x).

Proof. By equation 3.6, it is sufficient to check only one function. For real k, we
use f(x) = e−πx

2
. For complex k, we use f(x) = e−π|x|. For ℘-adic k, we use the

characteristic function of O.
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To save space, we will only carry out computations for the latter case. We have

f̂(y) =
∫
O
χ(xy) dx

If we define χy(x) = χ(xy), then χy is trivial on O if and only if y ∈ D−1. Since χy
is a character and O is an additive subgroup, then this integral will be 0 if x 6∈ D−1,
and it will be µ(O) = ND−1/2 if x ∈ D−1.

Then
ˆ̂
f(x) =

∫
D−1
ND−1/2χ(xy) dy

As before, this character is trivial on the domain if and only if x ∈ O, in which case
the integral comes to ND−1/2µ(D−1) = ND−1/2((µ(O)(ND)) = 1. Otherwise, if
the character is nontrivial, then the integral is 0 since D−1 is an additive subgroup,
so that ˆ̂

f(x) = f(−x), and the measure is self-dual. �

Note in particular that D = O for all but finitely many primes, so that µ(O) = 1
in all but finitely many ℘-adic extensions. This will be of use in the global theory.

3.4. Multiplicative Haar Measure. We will characterize the multiplicative Haar
measure with respect to the absolute values we defined in section 3.2.

Proposition 3.8. The measure µ∗(M) =
∫
M

dx

|x|
is a multiplicative Haar measure.

Proof. Because µ(xM) = |x|µ(M), we have
∫
f(x) dx = |a|

∫
f(ax) dx. Specifically,

for any f , we have ∫
f(x)

dx

|x|
= |a|

∫
f(ax)

dx

|ax|
=
∫
f(ax)

dx

|x|

Therefore, the measure d∗x = dx
|x| is invariant under multiplicative translations.

Taking f to be the characteristic function of M proves the proposition. �

For archimedean k, the measure d∗x = dx
|x| will suffice. However, when k is ℘-

adic, then the subgroup of elements in absolute value 1 in k, henceforth denoted U ,
is simultaneously compact and open. We wish for U to have the same multiplicative
measure as O has additive measure, so that in particular we have µ∗(U) = 1 for all
but finitely many completions. Therefore, in the ℘-adic case, we set

d∗x =
N℘
N℘− 1

dx

|x|

3.5. Multiplicative Characters. In this section, we discuss the the characters
on the multiplicative group k∗ of k. The major difference between theory of the
multiplicative characters and the additive characters is that we will now allow
functions from k∗ to all of C, instead of restricting our range to the circle of elements
with absolute value 1. We begin with some notation:

Definition 3.9. We call a character c unitary if |c(x)| = 1 for all x ∈ k∗. Otherwise,
we call it a quasi-character.

Definition 3.10. We call a quasi-character c unramified if it is trivial on U . Oth-
erwise, we call it ramified.
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Since U is multiplicative in all cases, and the elements of absolute value 1 are
the maximal compact subgroup of C, then all characters on U are unitary.

We begin by classifying the unramified quasi-characters.

Proposition 3.11. The unramified quasi-characters are those characters of the
form x → |x|s, where s is determined uniquely if k is archimedean or determined
up to an integer multiple of 2πi

log(N℘) if k is ℘-adic.

Proof. If c is trivial on U , then it must be constant on all sets with the same absolute
value, so that c(x) is actually a quasi-character on the group of values attained by
the absolute value function. In the archimedean case, the value group is R+

×. We
leave it as an exercise that the quasi-characters on R+

× are those specified.
On the other hand, in the ℘-adic case, the value group is restricted to integer

powers of N℘. Therefore, for any x ∈ k∗, s ∈ C, we have

|x|s+2πi/log(N℘) = |x|s · |x|2πi/log(N℘) = |x|s · (N℘)v·2πi/log(N℘)

= |x|s · elog(N℘)·v·2πi/log(N℘) = |x|s

since v ∈ Z. �

From a geometric standpoint, n the archimedean case, the space of unramified
quasi-characters looks like a copy of the complex plane. On the other hand, since
the quasi-characters in the ℘-adic case are only defined modulo a real multiple of
i, then the space of quasi-characters in this space is an infinite cylinder.

Armed with this knowledge, we wish to examine the space of all quasi-characters.
To this end, we call two quasi-characters equivalent if their quotient is unramified.
Such a relation is clearly an equivalence relation. To define an equivalence class,
we need simply to understand how a quasi-character acts on U ; once this is ac-
complished, we can map x ∈ k∗ down to x̃ ∈ U using x̃ = x/|x| the real case,
x̃ = x/

√
|x| in the complex case, and x̃ = x/πv where π is the generator of ℘ from

before and v is the ℘-adic valuation of x, in the ℘-adic case. Then x̃ = x on U , and
so given any quasi-character c whose restriction to U is c̃, then the quasi-character
x 7→ c(x)/c̃(x̃) is unramified and hence is of the form |x|s, with s determined as
above. It follows that the space of quasi-characters is a collection of the above
surfaces, with each surface indexed by a character c̃ on U .

Specifically, this tells us that, for any quasi-character c, that |c(x)| = ||x|s| =
|x|σ, for σ = Re(s). We call σ the exponent of c.

Finally, we examine the characters c̃.
In the real case, U = {±1}, so that there are precisely two characters on U : the

identity character and the trivial character. Therefore, the space of quasi-character
in the real case is a pair of complex planes.

In the complex case, U is the circle of absolute value 1. The characters on
this subgroup are of the form x 7→ e2πinx, n ∈ Z. Therefore, the space of quasi-
characters here is a countable set of complex planes indexed by the integers.

In the ℘-adic case, we accept as fact that the subsets 1 + ℘n are multiplicative
subgroups of U for n ≥ 1. Pick a ball around 1 in C not containing any nontrivial
multiplicative subgroups: then for sufficiently large n, c̃(1+℘n) must be inside this
ball, and therefore must be 1. Let n be minimal so that c̃(1 + ℘n) = 1; then ℘n is
called the conductor of c̃. The collection of characters on U with conductor ℘n is
actually the collection of characters on the quotient group U/(1 + ℘n); since this
group is finite, there are finitely many such characters. Since there are countably
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many possibilities for the conductor, then there are only countably many characters
on U . It follows that the space of quasi-characters in the ℘-adic case is a countable
collection of cylinders.

3.6. Local Zeta Functions. We begin with a definition:

Definition 3.12. For a sufficiently nice function f : k∗ → C, and a quasi-character
c of exponent > 0, we define

ζ(f, c) =
∫
k∗
f(x)c(x) d∗x

The term ‘sufficiently nice’ differs by author. Tate uses the space of functions f
where both f and f̂ are continuous and in L1(k+), and f(x)|x|σ, f̂(x)|x|σ ∈ L1(k∗).
Sally, on the other hand, restricts the analysis to a space of test functions, such
as the Schwartz space on R or C, or the space of locally constant, compactly
supported functions on ℘-adic fields. The latter approach has the advantage that
those function spaces are easy to work with, invariant under the Fourier transform,
and dense in Lp spaces for 1 ≤ p < ∞. For the analysis present this paper, either
definition will suffice, so we will use Sally’s simpler definition. Call this space S.

Recall that each equivalence class of quasi-characters is a surface in the shape
of either the whole complex plane, or a quotient group of the complex plane. In
this context, it is reasonable to apply ideas such as analytic continuation (in the
sense of complex analysis) to functions on the character group. At least, if we have
a function on the character space, we may speak of analytic continuation from one
subset of an equivalence class to a larger subset.

We would like to apply these ideas to the local zeta functions. First, we need for
ζ(f, c) to be holomorphic in the domain of characters with exponent > 0. However,
because of the restrictions we placed on f , the integral

∫
f(x)c(x) d∗x is absolutely

convergent, so that the function it defines is holomorphic in the character group.
Finally, we give a definition and prove the Main Lemma of the local theory:

Definition 3.13. For a quasi-character c, define ĉ(x) = |x|c(−1(x). We should
remark that ĉis not the Fourier Transform of c as a function on k+, but rather a
sort of inverse character.

We note that, if c has exponent σ, then ĉ has exponent 1− σ. Then we hwve

Theorem 3.14. Then for any f , g ∈ S, and c with exponent between 0 and 1 we
have

ζ(f, c)ζ(ĝ, ĉ) = ζ(g, c)ζ(f̂ , ĉ)
Specifically, we have ζ(f, c) = ρ(c)ζ(f̂ , ĉ), where ρ is independent of f .

Proof. We have

ζ(f, c)ζ(ĝ, ĉ) =
∫
f(x)c(x) d∗x

∫
ĝ(y)c−1(y)|y| d∗y

We use the substitution y 7→ xy in the second integral, leaving the integral un-
changed, so that

ζ(f, c)ζ(ĝ, ĉ) =
∫
f(x)c(x) d∗x

∫
ĝ(xy)c−1(xy)|xy| d∗y

=
∫ ∫

f(x)ĝ(xy)c(y−1)|xy| d∗x d∗y
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=
∫ ∫

f(x)
(∫

g(z)χ(xyz) dz
)
c(y−1)|xy| d∗x d∗y

Since dz = K|z| d∗z, for a constant K depending only on k, the above quantity
simplifies to

= K

∫ (∫ ∫
(f(x)g(z)χ(xyz)|xz| d∗x d∗z

)
|y| d∗y

= K

∫ (∫ ∫
(f(x)g(z)χ(xyz)|z|d∗x d∗z

)
|y| d∗y

= K

∫ ∫
f̂(yz)g(z)|yz|c(y−1) d∗x d∗z

Which is known to equal ζ(g, c)ζ(f̂ , ĉ) by the above calculations. Since this holds
for all appropriate functions f , g, then there must be some function ρ depending
only on c such that ζ(f, c) = ρ(c)ζ(f̂ , ĉ). �

This lemma is important because it gives us a means of analytically continuing
our local zeta function, defined only on quasi-characters of exponent σ > 0, to the
space of all quasi-characters. Since (̂c) is again a quasi-character with exponent
1 − σ, and the above formula holds on all quasi-characters in the open region
0 < σ < 1, then the formula gives an analytic continuation, provided we find ρ.
This is the goal of the next section.

3.7. Explicit Calculations for ρ(c). Tate goes through explicit detail in calculat-
ing the functional equations for local zeta functions under real, complex, and ℘-adic
norms. As above, we will not display all calculations. Rather, we will restrict our
attention to the ℘-adic cases, where the calculations are most informative. The
interested reader may examine the real and complex calculations in Tate’s section
2.5.

Recall that the additive Haar measure, dx, is normalized to give the integer ring
O measure of (ND)−1/2, and that d∗x = N℘

N℘−1
dx
|x| gives the multiplicative subgroup

U the same measure.
Recall that two multiplicative characters are equivalent if their quotient is ram-

ified. Let c′ be any unitary character with conductor ℘n. Then c′ is equivalent to
a unitary character c with the same conductor, and with c(π) = 1.

We wish to calculate

ρ(c) =
ζ(f, c)

ζ(f̂ , ĉ)
Since ρ(c) is independent of f , we have the luxury of hand-picking an f that is
sufficiently easy to work with. We set:

fn(x) =

{
χ(−x) if x ∈ D−1℘n,

0 otherwise

Proposition 3.15. We have

f̂n(x) =

{
(ND)−1/2(N℘)−n if x ∈ ℘n + 1,
0 otherwise
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Proof. We have

f̂n(x) =
∫
fn(y)χ(xy) dy =

∫
D−1℘−n

χ(y(x− 1)) dy

This integral will vanish if χ(y(x− 1)) is nontrivial on D−1℘−n, which occurs if
if (x − 1)℘−n 6⊂ O or x 6∈ ℘n + 1. Otherwise, the character in question is trivial
on the additive subgroup, so that the integral in question is simply the additive
measure of the set for x ∈ ℘n. �

For the purpose of our calculations, it will be useful to partition k∗ into the
annuli Av = {|x| = (N℘)−v}, so that Av for large v are close to 0. Note that all
such annuli are multiplicative translates of one another, so that they all have the
same measure under d∗x: ND−1/2.

We now wish to calculate zeta functions on each equivalence class, using the
function fn on all equivalence classes of quasi-characters with conductor ℘n. We
begin with the equivalence class of unramified quasi-conductors: those of the form
| · |s. In this case, f0 is simply the characteristic function of D−1.

Let D = ℘d, so that D−1 = ℘−d = ∪∞v=−dAv. Then we have

ζ(f0, | · |s) =
∞∑

v=−d

∫
Av

|x|s d∗x

=
∞∑

v=−d

(N℘)−vs(ND)−1/2

=
(N℘)ds

1− (N℘)−s
(ND)−1/2

=
(ND)s−1/2

1− (N℘)−s

Recall that f̂0 is (ND)1/2 times the characteristic function of O, and since |̂ · |s =
| · |1−s, we have

ζ(f̂0, |̂ · |s) = ND1/2

∫
O
|x|1−s d∗x

=
∞∑
v=0

(N℘)(s−1)v =
1

1− (N℘)s−1

since Re(s) ¡ 1. Therefore, for the unramified quasi-characters | · |s, we have

ρ(| · |s) = (ND)s−1/2 1− (N℘)s−1

1− (N℘)−s

We now treat the ramified case: let c be a quasi-character of with conductor ℘n,
n ≥ 1, and c(π) = 1. Then

ζ(fn, c| · |s) =
∫
D−1℘−n

χ(−x)c(x)|x|s d∗x =
∞∑

v=−d−n

(N℘)−vs
∫
Av

χ0(−x)c(x) d∗x

We will show that
∫
Av
χ(−x)c(x) d∗x = 0 for all v > −d− n.
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Case 1: v ≥ −d. In this case, Av ⊂ D−1, so that χ is trivial on this annulus,
and the integral is

∫
Av
c(x) d∗x. Using the substitution x 7→ πvx, that c(π) = 1,

and that c is nontrivial on the subgroup U = A0, this integral becomes

=
∫
U
c(πvx) d∗x =

∫
U
c(x) d∗x = 0

Case 2: −d−n < v < −d. To handle this case, we write Av as a disjoint union
of balls x0 +D−1 = x0(1 +℘−d−v). We know χ will be constant on all such subsets
(and = χ(x0)) and then we have∫

x0+D−1
χ(−x)c(x) d∗x = χ(−x0)

∫
x0+D−1

c(x) d∗x

The integral above is 0, because if we apply the substitution x 7→ x0 ·x, we have∫
x0+D−1

c(x) d∗x =
∫

1+℘−d−v

c(x0 · x) d∗x = c(x0)
∫

1+℘−d−v

c(x) d∗x

which is equal to 0 because 1 + ℘−d−v is a subgroup on which c is nontrivial.
We have now shown that

ζ(fn, c| · |s) = (N℘)(d+n)s

∫
A−d−n

χ(−x)c(x) d∗x

where the integral evaluates to some complex constant zc. After we evaluate
ζ(f̂n, ĉ| · |s), we will be able to show that zc is nonzero. However, since f̂n is
(ND)−1/2(N℘)−n times the characteristic function of 1 + ℘n, a subgroup upon
which c is constant, we have

ζ(f̂n, ĉ| · |s) = (ND)−1/2(N℘)−n
∫

1+℘n

c−1(x)|x|1−s = (ND)−1/2(N℘)−n
∫

1+℘n

d∗x

which comes to (ND)−1/2. Therefore, for ramified c, we have

ρ(c| · |s) = (ND)s−1/2(N℘n)szc = N (D℘n)s−1/2(N℘)−n/2zc

The reason we use this convoluted form is to use the following lemma to show that
ρ is nonzero.

Lemma 3.16. For any quasi-character c of exponent 1/2, we have |ρ(c)| = 1.

Proof. If c has exponent 1/2, |c(x)||c̄(x)| = |c(x)|2 = |x| = |c̄(x)||ĉ(x)|, so that
|c̄(x)| = |ĉ(x)|.

On the one hand, we have

ζ(f, c) = ρ(c)ζ(f̂ , ĉ) = ρ(c)ρ(ĉ)ζ( ˆ̂
f, ˆ̂c)

Since ˆ̂
f(x) = f(−x) and ˆ̂c = c, we use the substitution x 7→ −x to find ζ( ˆ̂

f, ˆ̂c) =
c(−1)ζ(f, c). Therefore, ρ(c)ρ(ĉ) = c(−1).

On the other hand, using the substitution x 7→ −x in the formula for f̂ yields
¯̂
f(x) = ˆ̄f(−x). Since ¯̂c = ˆ̄c, we have ζ( ˆ̄f, ˆ̄c) = c(−1)ζ( ¯̂

f, ¯̂c) (using the same substi-
tution as above in the integral defining ζ). This yields

ζ(f, c) = ζ(f̄ , c̄) = ρ(c̄)ζ( ˆ̄f, ˆ̄c) = ρ(c̄)c(−1)ζ (̄̂f, ¯̂c) = ρ(c̄)c(−1)ζ(f̂ , ĉ)

Since ζ(f, c) = ρ(c)ζ(f̂ , ĉ), we have ρ(c̄) = c(−1)ρ(c).
Combining these formulas yields ρ(c)ρ(c) = 1. �
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In particular, the above lemma gives us that zc 6= 0. Since c| · |1/2 has exponent
1/2, then 1 = |ρ(c| · |1/2)| = (N℘)−n/2zc.

The ℘-adic calculations are the most interesting and informative ones, which is
why they have been included. We will state the values of ρ for the archimedean
calculations without proof.

For real completions, there are two equivalence classes, corresponding to the two
characters on {±1}. For the unramified class, we have

ρ(| · |s) = 21−sπ−s cos
(πs

2

)
Γ(s)

whereas for the other equivalence class, where c(−1) = −1, we have

ρ(c| · |s) = −i21−sπ−s sin
(πs

2

)
Γ(s)

For the complex completions, the equivalence classes are indexed by the characters
cn (n ∈ Z on S1, with cn : z 7→ zn. We have

ρ(cn| · |s) = (−i)|n| (2π)1−sΓ (s+ |n|/2)
(2π)sΓ((1− s) + |n|/2)

4. Towards a Global Theory: Restricted Direct Product

It is our goal to look at ‘global’ properties of our number field k, independent of
the norm and completion we ascribe to it. To do this, we use the ‘restricted direct
product’ of locally compact groups in order to examine all of the completions of k
simultaneously.

Henceforth, ‘almost all’ will mean ‘all but finitely many.’

Definition 4.1. Let G℘ be a collection of locally compact groups, almost all of
which have a subgroup H℘ which is simultaneously open and compact. Then we
define their restricted direct product with respect to the subgroups H℘ as

G =
∏
℘

′
G℘ = {x = (. . . , x℘, . . .) | x℘ ∈ G℘ and x℘ ∈ H℘ for almost all ℘}

where the group operation is defined componentwise.

We will examine the topology, characters, and measure on G.

4.1. Topology. Let S be a finite set, and let GS be those elements of G with
x℘ ∈ H℘ for all ℘ 6∈ S. Then GS is isomorphic to

∏
℘∈S G℘ ×

∏
℘ 6∈S H℘. The

former is locally compact, and the latter is compact by Tychonoff’s theorem, so
that GS is locally compact. Moreover, each GS is open in G and G is the union of
the GS , so that G is itself locally compact.

Within each GS , we ascribe the product topology. This induces a topology on
all of G.

It will be important to understand the open sets in G. To do so, it is sufficient
to find a neighborhood basis at 1.

Proposition 4.2. The collection of ‘boxes’ N =
∏
℘N℘, where 1 ∈ N℘ and N℘

open for all ℘ and N℘ = H℘ for almost all ℘ is a neighborhood basis of 1 in G.
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Proof. Because the open sets in GS as a basis for the topology on G, we need only
check that given a set S, then the set of such boxes for which {℘ | N℘ 6= H℘} ⊂ S
is a neighborhood basis in that GS . Since we ascribe the product topology to each
GS , this is true by definition, so every neighborhood of 1 contains such a box. On
the other hand, since N℘ = H℘ for almost all ℘ by hypothesis, then any such box
is a subset of GS , where S is the set of set of indices in which N℘ 6= H℘. Because
GS has the product topology and each N℘ is open, then each such box is open in
GS and therefore in G. �

It will also be necessary to examine the compact sets. We accomplish this task
with another proposition.

Proposition 4.3. A subset of G is relatively compact if and only if it is contained
in some box

∏
℘B℘, where B℘ is compact for all ℘ and B℘ = H℘ for almost all ℘.

Proof. On the one hand, any such box lies in some GS , and is compact in the GS
in which it lies. On the other hand, any compact subset of G is in some GS because
the GS form an open cover of G, and GS1 ∪ GS2 ⊂ GS1∪S2 . Then the projection
of any compact set onto any component is again compact, and any compact set is
contained in the direct product of its projections. �

4.2. Characters. To simplify our analysis of the characters of G, it will be conve-
nient to define yet another subgroup. As above, let S be a finite set of indices, and
let GS ⊂ GS such that x℘ = 1 for all ℘ ∈ S. Specifically, GS is isomorphic to the
direct product

∏
℘6∈S H℘, and we have GS = GS ×

∏
p∈S G℘.

Let c be a quasi-character on G, and let c℘ be the restriction of c to the subgroup
G℘.

Lemma 4.4. If c is quasi-character on G, then c℘ is trivial on H℘ for almost all
℘, and for any x ∈ G, we have

c(x) =
∏
℘

c℘(x℘)

Proof. Let U be a neighborhood of 1 in C×, sufficiently small as to contain no
other subgroups of C×. Because c is continuous, there is a box N =

∏
N℘ such

that c(N) ⊂ U . Since N℘ = H℘ for almost all ℘, then N ⊃ GS for some S, and
then since GS is a subgroup, we must have c(GS) = 1. Specifically, this gives us
that c℘(H℘) = 1 for all ℘ 6∈ S. The second half of the theorem follows immediately
if for any x ∈ G we write x = xS ·

∏
℘∈S x℘, with xS ∈ GS . �

Having characterized the quasi-characters on G, we would like for all functions
of that type to actually be characters. Again, this is taken care of by a simple
lemma.

Lemma 4.5. Let c℘ be a character on G℘ that is trivial on H℘ for almost all ℘.
Then c(x) =

∏
℘ c℘(x℘) is a character on G.

Proof. For a given x, we have x℘ ∈ H℘ for almost all ℘, so that c℘(x℘) = 1 for
almost all ℘. It follows that the product is well-defined, and it is clearly multiplica-
tive.

We must show that this product is continuous. As usual, it is sufficient to prove
continuity at 1. Let S be a finite set containing those ℘ where c℘ is nontrivial
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on H℘. Let U be a neighborhood of 1 in C, and let A be such that A|S| ⊂ U .
Since each c℘ is continuous, we may find an N℘ with c℘(N℘) ⊂ A. If we set
N =

∏
℘∈S N℘ ×

∏
℘ 6∈S H℘, then c(N) ⊂ U , and c is continuous. �

We now restrict our attention from the quasi-characters on G to the unitary
characters on G. Note that c is unitary if and only if c℘ is for all ℘. Let Ĝ be
the character group of G, and let H∗℘ ⊂ Ĝ℘ be the subgroup of characters that are

trivial on H℘, so that H∗℘ ∼= Ĝ℘/H℘ and Ĥ℘
∼= Ĝ℘/H

∗
℘. Specifically, this gives us

that H∗℘ is simultaneously open and compact. First, H℘ is compact, so that Ĥ℘ is
discrete. Since Ĥ℘

∼= Ĝ℘/H
∗
℘, then H∗℘ is open. Second, H℘ is open, so that G℘/H℘

is discrete. Since H∗℘ ∼= Ĝ℘/H℘, then we have H∗℘ compact. The relations between
the topologies of groups and those of their dual groups are proven in proposition
3.2 of Ramakrishnan.

We conclude with a theorem characterizing Ĝ:

Theorem 4.6. The character group Ĝ is isomorphic, both algebraically and topo-
logically, to the restricted direct product of the character groups Ĝ℘ with respect to
the compact, open subgroups H∗℘.

Proof. Letting c = (. . . , c℘, . . .), we use the map c(x) 7→
∏
℘ c℘(x℘). The previous

two lemmas tell us that this map is an algebraic isomorphism, and we must show
that it is also a topological isomorphism. Let B be a compact ‘box’ as described
in proposition 4.3, with 1 ∈ B℘ for all ℘ and B℘ = H℘ for almost all ℘. Then c is
‘close’ to the identity character in the compact-open topology on Ĝ if and only if
c(B) = c(

∏
℘B℘) =

∏
℘ c℘(B℘) is close to 1 in C. By letting x℘ = 1 at all places

except for one, we see that this occurs if and only if c℘(B℘) is close to 1 for all ℘.
Specifically, since H℘ is a subgroup, then we can be ‘close enough’ to 1 in C if and
only if c℘(H℘) = 1 at these primes. Specifically, we have c℘ ∈ H∗℘ for almost all
℘ and c℘(B℘), and c℘ close to 1 in the compact-open topology on Ĝ℘ for all other
places. Specifically, c is close to 1 in Ĝ if and only if (. . . , c℘, . . .) is close to 1 in
the direct product of the Ĝ℘’s (following our characterization of the neighborhood
basis of 1 in proposition 4.2), so the map is bicontinuous. �

4.3. Measure. We wish to create a measure on the restricted direct product that
is, in some sense, the product of the measures on the existing groups. Let µ℘ be
measures on the G℘ (represented by dx℘ in an integral), with µ℘(H℘) = 1 for almost
all ℘. To do this, it is sufficient to fix a measure on each GS . We consider the GS
as the finite direct product

∏
S G℘ ×GS , and set dxS =

∏
S dx℘ × dxS , where dxS

is the measure on the compact group GS such that µS(GS) =
∏
℘ 6∈S µ℘(H℘) which

is actually a finite product. It is easy to check that this measure is independent of
the set of indices we choose, so that it defines a measure on all of G.

Let f be an L1 function on G. Then
∫
f(x) dx is the limit of the integrals of

f over compact subsets B ⊂ G. From proposition 4.3, we know that all compact
subsets of G are contained in a GS , so that we have, in some sense,∫

G

f(x) dx = lim
S

∫
GS

f(x) dx
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where the limit is taken as S gets larger. Rigorously, given any neighborhood
U of

∫
f(x) in C, there is a set S(U) such that for all larger sets S we have∫

GS
f(x) dx ∈ U .

This gives us an easy means of calculating integrals of certain functions:

Proposition 4.7. For each ℘, let f℘ ∈ L1(G℘) be a continuous function, and let
f℘(H℘) = 1 for almost all ℘. Define f(x) =

∏
℘ f℘(x℘). Then∫

G

f(x) dx =
∏
℘

(∫
G℘

f℘(x℘) dx℘

)
Proof. Let S be any set of indices containing those places where either f℘(H℘) 6= 1
or µ℘(H℘) 6= 1. Then we have

∫
GS

f(x) dx =
∫
GS

f(x) dxS =
∫
GS

∏
℘∈S

f℘(x℘)

∏
℘∈S

dx℘ · dxS


Since f = 1 on GS , this is equal to

= µ(GS) ·
∏
℘∈S

(∫
G℘

f℘(x℘) dx℘

)
=
∏
℘∈S

(∫
G℘

f℘(x℘) dx℘

)
since S contains all indices for which H℘ has a measure other than 1, so that
µ(GS) = 1.

This statement holds for all ‘sufficiently large’ S. Taking limits in the manner
described above completes the proof. �

In particular, the proposition above allows us to easily study Fourier analysis on
these restricted direct products and to find a dual measure to the measure we have
described on G. In this section, we restrict our attention to unitary characters on
G. For each ℘, let dc℘ be the dual measure to dx℘ (denoted by µ̂℘ outside of an
integral).

Let f℘ be the characteristic function of H℘, so that f̂℘ is µ℘(H℘) times the
characteristic function of H∗℘ (since the integral defining the Fourier transform is
nonzero if and only if the character in question is trivial on H℘). In particular,
because µ and µ̂ are dual, we have µ℘(H℘)µ̂℘(H∗℘) = 1, so that µ̂℘(H∗℘) = 1 for
almost all ℘. In particular, this gives us that the measure dc on Ĝ, defined as the
restricted direct product measure over the Ĝ℘’s with the measures dc℘, is well-
defined.

Finally, we have:

Proposition 4.8. The measure dc as defined above is dual to the measure dx.

Proof. From abstract Fourier analysis, we know that ˆ̂
f(−x) differs from f(x) by

a multiplicative constant, and so it suffices to check one function. Let f℘ be the
characteristic function of H℘, and let f(x) =

∏
℘ f℘(x℘). Then, from proposition

4.7, we have

f̂(c) =
∫
f(x)c(x) dx =

∏
℘

∫
f℘(x℘)c℘(x℘) =

∏
℘

f̂℘(c℘)
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Applying the above calculation to f̂(c), we have that ˆ̂
f(x) =

∏
℘

̂̂
f℘(x). Since we

chose dx and dc to be dual, we know that ̂̂f℘(x℘) = f℘(−x℘), whence the theorem
follows. �

5. The Global Theory

For the rest of the paper, ℘ represents any norm on k, whether ℘-adic for an
actual prime ideal or an archimedean norm. By abuse of notation, we call an
archimedean norm a ‘prime at infinity.’

Having discussed the properties of local completions of k, we wish to study the
global properties of k. To do this, we consider a restricted direct product of the
additive and multiplicative subgroups of k, as follows.

Definition 5.1. The adele group, A, of k is the restricted direct product of the
additive groups of the completions k℘, relative to the subgroups O℘ of integral
elements. We shall denote the generic adele by x = (. . . , x℘, . . .).

We should note that Tate uses the term ‘valuation vector’ instead of newer term
‘adele’, and uses V to denote the group they form.

Definition 5.2. The idele group, II, of k is the restricted direct product of the
multiplicative groups of the completions k℘, relative to the subgroups U℘ of multi-
plicative units. We shall denote the generic idele by a = (. . . , a℘, . . .).

Remark 5.3. Recall that, to define a restricted direct product, we needed only for
a compact, open subgroup H℘ to exist in almost all places. When considering
the adele and idele groups, the subgroups O℘ and U℘ are defined only for non-
archimedean places. Moreover, recall that we have µ(O℘) = µ∗(U℘) = 1 for almost
all ℘, and that all additive measures on k℘ were chosen to be self-dual.

5.1. The Additive Theory: The Adele Group. We begin with a remarkable
fact: since k+

℘ is naturally its own character group, and χ℘(ηx) is trivial on O℘ for
η ∈ D−1

℘ , then Â is the restricted direct product of the additive groups k+
℘ with

respect to the subgroups D−1
℘ . However, since D−1

℘ = O℘ in almost all places, then
the character group Â is isomorphic to A as a topological group.

To get at the underlying mathematics a little bit more, we set χ0(x) =
∏
℘ χ℘(x℘),

where χ0 is the basic global character on A. Moreover, we define multiplication on
the adele group in the obvious way:

xy = (. . . , x℘, . . .)(. . . , y℘, . . .) = (. . . , x℘y℘, . . .)

In particular, this offers us the natural way to define the isomorphism between A
and its character group:

Theorem 5.4. The adele group A is isomorphic to its character group if identify
an element y ∈ A with the character x 7→ χ0(xy).

Furthermore, recall that we picked each local measure dx℘ to be self-dual, so the
same will be true of our restricted direct product measure dx on A. Formally, we
have

Theorem 5.5. Let f ∈ L1(A). We define the Fourier transform

f̂(y) =
∫
f(x)χ0(xy) dx
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Then ˆ̂
f(x) = f(−x)

It will be necessary to understand how k is embedded in its adele group A. Given
ξ ∈ k, we identify ξ with the adele (ξ, ξ, ξ, . . .) (we know such an element is actually
an adele because ξ = a/b, where a, b ∈ O. Then ξ 6∈ O℘ ⇒ ℘ | (b), which only
occurs for finitely many primes). Then k rests as a subgroup in A.

To identify the properties of k as a subgroup, we would like to find an appropriate
representation for the quotient space A/k. That is, we want to find a set D such
that we have A = ∪ξ∈k(ξ + D), and the union is disjoint. Such a set D will be
called a ‘fundamental domain’ for A mod k.

Let S∞ be the set of archimedean (infinite) primes, and consider the subgroup
AS∞ (i.e, those elements such that x℘ ∈ O℘ for all discrete primes ℘). We have

Lemma 5.6. With AS∞ as above, we have k ∩ AS∞ = O and k + AS∞ = A.

Proof. The first statement follows because an element of k is integral at each prime
if and only if it is actually in the ring of integers of k.

To prove the second statement, let (. . . , x℘, . . .) be an adele. Then x℘ ∈ O℘ at
almost all places, and it is our goal to add an element of k to this adele to move
it into O℘ at all finite places. We will correct it one place at a time. Pick ℘ such
that x℘ 6∈ O℘. Our goal is to find a y℘ ∈ k so that first, y℘ +x℘ ∈ O℘, and second,
y℘ ∈ Oq for all q 6= ℘. First, pick y′℘ ∈ k ∩ (−x℘ + O℘: this will serve as our
‘first approximation.’ We have finite set S of discrete places such that, for q ∈ S
y′℘ 6∈ Oq. Let Nq = −ordq(y′℘), and let N = −ord℘(y′℘). By the Chinese Remainder
Theorem (discussed in Lang, section 1.4), there is an a ∈ O such that, first, a ∈ qNq

for all q ∈ S, and second, a ∈ 1 + ℘N .
Let y℘ = a·y′℘, and we must now show that the necessary conditions are satisfied.

For ℘, we note that y℘ ∈ (−x℘ + O℘)(1 + ℘ord℘(x℘)) = −x℘ + O℘, so the first
condition is satisfied. For q ∈ S, we picked a to be sufficiently close to 0 in kq so
that y℘ ∈ Oq. And, for q 6∈ S, since a, y′℘ ∈ Oq, then so is y℘. This completes the
proof. �

From here, it should be clear that AS∞ should play a role in helping us to find our
fundamental domain D. Let A∞ be the finite cartesian product of the archimedean
completions of k, and let x∞ be the projection of x into A∞. Let k = Q(α). If α has
r1 real Galois conjugates and r2 pairs of complex Galois conjugates, then there will
be precisely r1 real completions of k and r2 complex completions, since each root
of the generating equation must be mapped to another root by any automorphism.
Therefore, A∞ is will have dimension r1 + 2r2 over R, which is the degree [k : Q].

Let {ω1, . . . , ωn} be a basis for the ring of integers O over Z, and let ω∞i be the
embedding of these ωi in the n-space A∞. Consider the ‘box’

D∞ ⊂ A∞ = {
n∑
i=1

tiω
∞
i | 0 ≤ t1 < 1}

Finally, let

D = D∞ ×
∏
℘ 6∈S∞

H℘ ⊂ AS∞

Then
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Proposition 5.7. The set D, as given above, is a fundamental domain for A mod
k. That is, D+ k = A, and each element of A can be written uniquely as a sum of
an element of D and and element of k.

Proof. First, from the second part of lemma 5.6, we know that any element of A
can be brought into AS∞ by subtracting an element of k. Since k∩AS∞ = O, then
this element must be unique modulo O. Once we are in AS∞ , we must adjust the
infinite component of our adele so that it is in D∞, by the way we picked D∞,
there is a unique element of O by which we may translate in order to do so. �

Tate also goes through considerable detail in showing that D has volume 1 by
explicitly evaluating the determinant of the matrix formed by the ω∞i ’s. We omit
this part of the proof because a purely algebraic proof, based solely on Fourier
analysis, will arise in the next section. The reader interested in the geometric proof
should see Lemma 4.1.4 and Theorem 4.1.3 in Tate. Lang provides good further
explanation in chapter V, section 2.

With facts about D in hand, we may now talk about how k lies in A. Since D
has an interior, then k must be a discrete subgroup. On the other hand, since D is
relatively compact, then A mod k must be compact.

Finally, we wish to see how the character group behaves on A mod k. Specifically,
we want to find a ‘dual group’ for k: that is, a group k̃ ⊂ A such that χ0(xy) = 1
for all y ∈ k̃, x ∈ k.

Lemma 5.8. χ0(ξ) = 1 for all ξ ∈ k.

Proof. Recall that χ0 was the product of local characters, each of whom depended
on the quantity λp(Tr℘(ξ)), where ℘ lies above p. Therefore, it is sufficient to show∑
℘ λp(Tr℘(ξ)) is integral. We have

∑
℘

λp(Tr℘(ξ) =
∑
p

λp

∑
℘|p

Tr℘(ξ)


Here, we import a fact from the classical theory, which states that:∑

℘|p

Tr℘(ξ) = Tr(ξ), so that
∑
℘

λp(Tr℘(ξ)) =
∑
p

λp(Tr(ξ))

(this fact is proven in chapter 12, section 3 of Lang’s Algebra). Then Tr(ξ) = r
is rational, so it suffices to show that

∑
p λ(r) is integral for all prime q. Clearly,

for p 6= q λp(r) is integral with respect to q since λp(r) is a sum of fractions with
denominators equal to powers of p. Therefore, we must only check λq and the
infinite prime. But for the infinite prime, λ(r) = −r, and λq(r)− r is integral with
respect to q by definition. �

Finally, we have

Theorem 5.9. The dual group k̃ = k

Proof. We defined k̃ as the dual group to A mod k, so k̃ is discrete. We consider
the group k̃ mod k. This is contained in the compact group A mod k and is
therefore compact, which means it must be finite.

On the other hand, it is easy to check that k̃ is a vector space over k. Because
the index of k in k̃ is finite, and k is itself infinite, then k̃ cannot have dimension
> 1 over k. It follows that k̃ = k. �
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This fact will be of great importance when we apply Fourier analysis to the adele
group in two sections.

5.2. The Multiplicative Theory: The Idele Group. In this section, we exam-
ine the global multiplicative theory via the idele group, I. We first note that there
is a continuous homomorphism from the idele group into the ideal group (with the
discrete topology), given by:

ϕ(a) =
∏
℘ 6∈S∞

℘ord℘(a℘)

with kernel IS∞ (those ideles whose coordinates are units at all non-archimedean
places).

From our section on general restricted direct products, we know that the quasi-
characters on I are c(a) =

∏
℘ c℘(a℘), where c℘ is unramified (trivial on U℘) at

almost all places. We choose a measure d∗a =
∏
℘ d
∗a℘.

As with the adele group, we embed k∗ in I by α 7→ (α, α, α, . . .). Then ϕ(α) is the
principal ideal αO. Moreover, we note that αD is a fundamental domain for k in A,
since D is. Therefore, we may write αD = ∪(αD∩ξ+D) and D = ∪(D∩−ξ+αD),
where ξ ranges over elements of k, and both unions are disjoint. Each piece of αD
is a translate by ξ of the corresponding piece of D, so two corresponding pieces have
the same measure. It follows that µ(αD) = µ(D), so that |α| = 1 for all nonzero
α ∈ k.

We call J the subgroup of I of elements with absolute value 1. As with the
additive theory, we wish to find a fundamental domain for J with respect to k∗,
since this will tell us important information about how k∗ lies in J topologically.
As above, the archimedean primes will play a crucial role in this analysis. Consider
the subgroup JS∞ ≤ J of ideles whose coordinates are units at all discrete places
and which have absolute value 1. Pick one archimedean prime ℘0 and let S′∞ =
S∞ \{℘0}, and let |S′∞| = r. We then have a continuous, surjective homomorphism
l : JS∞ → Rr, given by l(b) = (log|b℘1 |, . . . , log|b℘r

|).
As above, we have JS∞ ∩ k∗ = U , since those elements of k∗ that are units in

all discrete completions are the units in O. If we restrict l to k∗, the kernel of l is
precisely the roots of unity in k, since these are the only elements that have absolute
value 1 in all embeddings of k into C (This theorem is due to Kronecker, and has
been proved more recently by Joel Spencer and Gerhard Greither). In particular,
if ε1, . . . , εr are a minimum generating set for U modulo the roots of unity, then
l(ε1),. . ., l(εr) is a basis for l(U) over Z in Rr.

Let P be the parallelotope spanned by the l(εi) (i.e. P = {
∑
til(εi) | 0 ≤ ti <

1}). Define l−1(P ) as the subset of JS∞ on which l(b) ∈ P . Let E0 be the subset
of l−1(P ) such that 0 ≤ argb℘0 <

2π
w , where w is the number of roots of unity in k.

Let h be the class number of k, and let b1, . . . , bh be ideles in J such that
ϕ(b1), . . . , ϕ(bh) are elements of distinct ideal classes. Finally, we set E = ∪hi=1E0bi,
and claim:

Proposition 5.10. The set E is a fundamental domain for the k in J , in the sense
that

J = ∪α∈k∗αE0

and the union is disjoint.
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Proof. Note that, since multiplication by k does not change the ideal class of ϕ(b),
then αb may lie in only one of bhE0’s. We may therefore assume b corresponds to
the principle ideal class.

Since b℘ is a unit at all but finitely many places, we can multiply by an element
of k∗, unique up to units, that brings b℘ into the units at all places, and so bringing
b into IS∞ . Now, if we examine our embedding of J∞ into Rr, we see may multiply
by a unit, unique modulo the roots of unity, that will bring the image of the J∞

component (under l) into our parallelotope. Finally, we need to adjust the ℘0

component, at this point using only the roots of unity. But since we wish to only
change the argument so that it is between 0 and 2π/w, there is a unique root of
unity by which we may multiply to accomplish this. Thus, there is a unique α ∈ k
such that αb ∈ E. �

The volume of E will appear in the functional equation of the global zeta func-
tions we find, but is otherwise unimportant. We omit the calculations of this
volume (the interested reader should see pages 336-8 of Cassels and Frohlich), and,
following Tate, denote the volume by κ.

Having found a fundamental domain, we now see exactly how k∗ rests inside
the idele group. First, because E has an interior, then k∗ is discrete inside J and
therefore inside I. Second, because E is relatively compact, then J mod k∗ is
compact.

These topological properties give us further information about the quasi-characters
on I. For our analysis, as in the additive theory, we will be interested in those
quasi-characters that are trivial on k∗. Since J mod k∗ is compact, then all such
characters will be unitary on J .

To find all of the quasi characters on I, it is helpful to express it as a direct
product J × T , where T represents the possible absolute values taken on the idele
group. We construct T as follows: consider the archimedean prime ℘0, and let
T = {(t, 1, 1, . . .) | t ∈ R+}, whose absolute value is t if ℘0 is real and t2 if ℘0 is
complex. It is easy to see that T ∩ J = {1} and TJ = I, so that I = T × J .

We ascribe the multiplicative measure dt
t to T , and then to J we ascribe the

unique measure d∗b so that d∗a = d∗b · dtt .
Therefore, to examine the quasi-characters on I, we let ã be the projection of a

onto J , and let c̃ be a character on J . Then, since T ∼= R+
×, all quasi-characters on

T are of the form t 7→ ts for some s ∈ C. Therefore, all quasi-characters on I are of
the form a 7→ c(a) = c̃(ã) · |a|s.

As in the local theory, we call σ = Re(s) the exponent of c. We call a character
unramified if it is trivial on J , and we call two characters equivalent if their quotient
is unramified. In particular, each equivalence class of quasi-characters is of the form
{c̃(ã)|a|s | s ∈ C} and is therefore isomorphic to C+.

Again, as in the local theory, it is now clear what we mean when we speak of a
holomorphic function of quasi-characters, or of analytic continuation in the domain
of quasi-characters (of course, we must have analytic continuation separately in
each equivalence class).

5.3. Fourier Transforms on A and the Riemann-Roch Theorem. We call a
function ϕ on A periodic if, for ξ ∈ k, we have ϕ(x + ξ) = ϕ(x). In particular, a
periodic function on A a function on the quotient group A mod k, and is uniquely
determined by its action on D.
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The quotient group A/k is itself a topological group. We ascribe to it that
Haar measure induced by the existing measure on D. Specifically, we ascribe that
measure which gives the whole group a measure of 1.

By theorem 5.9, we know that k is the dual group of D. We therefore have the
following definition of Fourier transforms for periodic functions:

Definition 5.11. Given ξ ∈ k and a continuous function ϕ on A mod k, we write

ϕ̂(ξ) =
∫
D

ϕ(x)χ0(ξx) dx

Because the dual group of A is different from the dual group of A/k, we use
different definitions for Fourier transforms, even though a function on A/k induces
a periodic function on A. We shall have a proposition relating the two quantities
momentarily.

First, however, we check that the Fourier inversion formula holds:

Lemma 5.12. For a continuous, periodic function ϕ(x) for which
∑
ξ∈k |ϕ̂(ξ)| <

∞, we have ˆ̂ϕ(x) = ϕ(−x). That is:

ϕ(x) =
∑
ξ∈k

ϕ̂(ξ)χ0(−ξx)

Proof. The second condition assures that the Fourier transform is actually in l1(k).
Since we know that the Fourier inversion formula holds up to a constant, it suffices
to check only one function.

Let ϕ(x) take the value of 1 uniformly. Since χ0 is periodic and nontrivial on
A, it is nontrivial on D, so that χ0(ξx) is nontrivial for nonzero ξ on the group
A mod k. Therefore, ϕ̂(ξ) is 0 for ξ 6= 0 and µ(D) for ξ = 0. Then ˆ̂ϕ = µ(D)
uniformly. We shall see shortly that µ(D) = 1. �

From here, we have:

Lemma 5.13. Let f(x) be a continuous, L1 function on A, such that the sum∑
η∈k

f(x+ η) is absolutely, uniformly convergent on D. Then, for the periodic func-

tion ϕ(x) =
∑
η∈k

f(x + η), we have, for all ξ ∈ k, ϕ̂(ξ) = f̂(ξ) (where ϕ̂ is as in

definition 5.8, and f̂ is as in theorem 5.5).

Proof.

ϕ̂(ξ) =
∫
D

ϕ(x)χ0(ξx) dx =
∫
D

∑
η∈k

f(x+ η)χ0(ξx)

 dx

We may interchange the sum and the integral since the sum converges uniformly
and D has finite measure (indeed, it is contained in a compact set), leaving

=
∑
η∈k

(∫
D

f(x+ η)χ0(ξx) dx
)

=
∑
η∈k

(∫
D+η

f(x)χ0(ξ(x− η)) dx
)

=
∑
η∈k

(∫
D+η

f(x)χ0(ξx) dx
)
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Since χ0(ξη) = 1. Finally, we have

=
∫

A
f(x)χ0(ξx) dx = f̂(ξ)

�

If we combine the last two lemmas and put x = 0 in lemma 5.9, we have an
analogue of the Poisson summation formula:

Theorem 5.14. Let f(x) be continuous and in L1(A), with f̂ ∈ l1(k). Then∑
ξ∈k

f̂(ξ) =
∑
ξ∈k

f(ξ)

First, this gives us an easy way to show that µ(D) = 1. Had we not assumed
this, from the Poisson formula we would have µ(D)

∑
f(ξ) =

∑
f̂(x). Applying

the Poisson formula twice would yield µ(D)2 = 1⇒ µ(D) = 1.
Finally, we wish to see how the Poisson formula acts when we ‘stretch’ A via

multiplication by an element. We would like this action to be an automorphism.
Clearly, multiplication by any element is an additive homomorphism. Let a =
(. . . , a℘, . . .) be such an element. Then this multiplication is invertible if there is a
b = (. . . , b℘, . . .) ∈ A where a℘b℘ = 1. First and foremost, we need b℘ 6= 0 at all
places. Secondly, we need b℘ ∈ O℘ for almost all ℘, so that for almost all ℘, we
have both a℘ and a−1

℘ ∈ O. Indeed, this occurs if and only if a℘ ∈ U at almost all
places, or if a is an idele.

For an idele a, define |a| such that µ(aM) = |a|µ(M) (such a constant exists
because µ(a·) is a Haar measure). We then have

Proposition 5.15. For an idele a, we have |a| =
∏
℘ |a℘| (really a finite product

since |a℘| = 1 almost everywhere).

Proof. Pick a compact ‘box’ of the form N =
∏
℘N℘. Then, using proposition 4.7,

we have ∫
N

dx =
∏
℘

∫
N℘

dx

and ∫
aN

dx =
∏
℘

∫
a℘N℘

dx =
∏
℘

|a℘|
∫
N℘

dx

whence the proposition follows. �

We conclude with the ‘crown jewel’ of this section, the Riemann-Roch theorem:

Theorem 5.16. Let f(x) ∈ L1(A) be continuous, with
∑
ξ∈k

f(a(x + ξ)) uniformly,

absolutely convergent on D for all ideles a, and f̂(ax) ∈ l1(k) for all ideles a. Then
we have

1
|a|
∑
ξ∈k

f̂(ξ/a) =
∑
ξ∈k

f(ξa)



TATE’S THESIS ON ZETA FUNCTIONS ON NUMBER FIELDS 25

Proof. Let g(x) = f(ax). Using the substitution η 7→ aη in the formula for f̂ , we
have ĝ(x) = f̂(ax)/|a|. This gives us that g satisfies the conditions of the Poisson
formula above, leaving∑

ξ∈k

ĝ(ξ) =
∑
ξ∈k

g(ξ), so that
1
|a|
∑
ξ∈k

f̂(ξ/a) =
∑
ξ∈k

f(ξa)

�

5.4. Zeta Functions, Analytic Continuation, and the Functional Equa-
tion. We finally come to the payoff: defining, and finding functional equations for,
global zeta functions. Let f : A→ C satisfy the following conditions:

• f and f̂ are both continuous and in L1(A)
•
∑
ξ∈k

f(a(x+ ξ)) and
∑
ξ∈k

f(a(x+ ξ)) converge absolutely for each idele a and

adele x, and the convergence is uniform for ordered pairs (a, x) ∈ K ×D,
where K is a compact subset of I and D is the additive fundamental domain
of k in A.

• For σ > 1, f(a)|a|σ, f̂(a)|a|σ ∈ L1(I)
The first two conditions ensure that we may apply the Riemann-Roch theorem.

The latter allows us to define zeta functions that are holomorphic on a subset of
each equivalence class.

Definition 5.17. For a function f with the above properties, we define ζ(f, c), a
function of quasi-characters c, as

ζ(f, c) =
∫
f(a)c(a) d∗a

Again, because the third condition assures that this integral will be absolutely
convergent for c with exponent > 0, we immediately see that ζ(f, c) is holomorphic
in the domain of quasi-characters of positive exponent.

Finally, we state and prove the Main Theorem of the global theory, giving an
analytic continuation for the zeta functions to the entirety of the domain of quasi-
characters.

Theorem 5.18. As in the local theory, let ĉ(a) = |a|c−1(a). Then our zeta func-
tions have an analytic continuation from the domain of characters of exponent > 1
to the domain of all characters. The continuation is entire on every equivalence
class except for the class of unramified characters. On this equivalence class, the
function has simple poles at s = 0 and s = 1 of residues κf(0) and −κf̂(0). The
continuation satisfies the functional equation

ζ(f, c) = ζ(f̂ , ĉ)

Proof. Recall our decomposition I = J × T . We set

ζt(f, c) =
∫
J

f(tb)c(tb) d∗b

in order to write (using Fubini)

ζ(f, c) =
∫
f(a)c(a) d∗a =

∫ ∞
0

(∫
J

f(tb)c(tb)d∗b
)
dt

t
=
∫ ∞

0

ζt(f, c)
dt

t
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The key step of the proof involves using the Riemann-Roch theorem to find a
functional equation for ζt

Lemma 5.19. For all quasi-characters c, we have the functional equation:

ζt(f, c) + f(0)
∫
E

c(tb) d∗b = ζ1/t(f̂ , ĉ) + f̂(0)
∫
E

ĉ

(
1
t
b

)
d∗b

Proof. Because E is a fundamental domain for k∗ in J , we have

ζt(f, c) + f(0)
∫
E

c(tb) d∗b =
∑
α∈k∗

∫
αE

f(tb)c(tb) d∗b+ f(0)
∫
E

c(tb) d∗b

Using the substitution b 7→ αb in each integral (under which the measure d∗b is
invariant), and using the fact that c(α) = 1, we have

=
∑
α∈k∗

∫
E

f(αtb)c(αtb) + f(0)
∫
E

c(tb) d∗b

=
∑
α∈k∗

∫
E

f(αtb)c(tb) + f(0)
∫
E

c(tb) d∗b

=
∫
E

(∑
α∈k∗

f(αtb)

)
c(tb) d∗b+ f(0)

∫
E

c(tb) d∗b

Where the interchange is justified because the sum is uniformly convergent by
hypothesis. Since k = k∗ ∪ {0}, we have

=
∫
E

∑
ξ∈k

f(ξtb)

 c(tb) d∗b

We apply the Riemann-Roch theorem to find:

=
∫
E

∑
ξ∈k

f̂

(
ξ

tb

) 1
|tb|

c(tb) d∗b

Finally, applying the substitution b 7→ 1/b, under which d∗b is invariant, leaves

=
∫
E

∑
ξ∈k

f̂

(
ξb

t

) ĉ

(
1
t
b

)
d∗b

Reversing the steps completes the proof. �

With this in hand, it seems natural to calculate
∫
E
c(tb). We note that

∫
E
c(tb) =

c(t)
∫
E
c(b). This is the integral over J/k∗ of a character on this group, so the

integral is 0 if the character is nontrivial on J (c is ramified) and the volume of E
(= κ) if c is unramified. In the former case, we have c(t) = |t|s = ts, so that we
have:

(5.20)
∫
E

c(tb) d∗b =

{
κts if c unramified,
0 if c ramified

Finally, to attack the main proof, we write

ζ(f, c) =
∫ 1

0

ζt(f, c)
dt

t
+
∫ ∞

1

ζt(f, c)
dt

t
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The second integral comes to
∫
|a|>1

f(a)c(a) d∗a. The first integral clearly converges
where the exponent of c is > 1 because ζ(f, c) converges there. Meanwhile, it will
converge even more easily if the exponent is lower since we integrate where |a| > 1.
Therefore, it is convergent for all c and defines a holomorphic function in this
domain.

To handle the first integral, we use lemma 5.19 and equation 5.20 to write∫ 1

0

ζt(f, c)
dt

t
=
∫ 1

0

ζ1/t(f̂ , ĉ)
dt

t
+

[[
κf̂(0)

∫ 1

0

(
1
t

)1−s
dt

t
− κf(0)

∫ 1

0

ts
dt

t

]]
where the statement in brackets is to be included only on the unramified equivalence
class. In particular, for characters of exponent > 1, we have Re(s) > 1, so that
the two integrals inside the brackets converge. Calculating these integrals, and
applying the substitution t 7→ 1/t in the integral outside the brackets (under which
the measure dt/t is invariant) yields∫ 1

0

ζt(f, c)
dt

t
=
∫ ∞

1

ζt(f̂ , ĉ)
dt

t
+

[[
κf̂(0)
s− 1

− κf(0)
s

]]
The same logic that showed the first integral to be holomorphic also shows the

second integral to be holomorphic. Therefore, this expression gives us an analytic
continuation from the domain of quasi-characters of exponent > 1 to the entire
domain. Since the bracketed expression comes into play only on the unramified
equivalence class, then ζ is entire on all ramified equivalence classes, and has simple
poles at 0 and 1 of residue −κf(0) and κf̂(0) respectively.

Moreover, noting that the expression is completely unchanged by the transfor-
mation (f, c) 7→ (f̂ , ĉ) (since this also takes s to 1 − s), the zeta functions satisfy
the functional equation:

ζ(f, c) = ζ(f̂ , ĉ)
To quote Tate: ‘The Main Theorem is proved!’ �

6. Connections to Classical Theory, and Why We Care

We will not fully expound upon the connection between Tate’s thesis and the
‘classical’ theory of zeta functions on number fields. The reader interested in pur-
suing the full version should see the final chapter of Tate’s thesis itself, where he
provides an explanation.

As usual, we begin with a definition.

Definition 6.1. Let k be a number field. Then we define

ζk(s) =
∑
a

1
Nas

where the sum is taken over all ideals a in the ring of integers O.

The absolute convergence of this sum in the domain Re(s) > 1 is a keystone
of the classical theory. Tate does not prove this fact himself. Rather, he cites
Landau’s ‘Algebraische Zahlen’, second edition, pages 55 and 56. Even so, if we
accept the absolute convergence of the sum, we may express the zeta function as
an Euler product:

ζk(s) =
∏
℘

1
1−N℘−s



28 JOHN BINDER

where the product is taken over all prime ideals ℘ ⊂ O.
The ‘big idea’ is that we can pick a special function f such that ζ(f, c) looks like

ζk(s). In this case, let c be in the unramified equivalence class of quasi-characters
on the idele group I, so that c(a) = |a|s. We may also write c as a product of local
quasi-characters c℘(a℘) = |a℘|s.

For all archimedian places, pick f℘ so that the local zeta function ζ℘(f℘, c℘) is
nontrivial on the unramified equivalence class , and on the discrete places, let f℘
be the characteristic function of O℘. Let f(x) =

∏
℘ f℘(x℘). Then proposition 4.7

gives us that
ζ(f, c) =

∏
℘

ζ℘(f℘, c℘)

For all discrete places, we have that

ζ℘(f℘, | · |s) =
∞∑
v=0

µ∗(Av)(N℘)−vs =
ND−1/2

1− (N℘)−s

Therefore, we have

ζ(f, | · |s) =
∏

℘ archimedian

ζ℘(f℘, | · |s)
∏

℘ discrete

ND−1/2

1− (N℘)−s

= ζk(s)
∏

℘ archimedian

ζ℘(f℘, | · |s)
∏

℘ discrete

ND−1/2

Since all measures were chosen to be self dual, we have f̂ =
∏
℘ f̂℘, and then

applying proposition 4.7 again gives us

ζ(f̂ , |̂ · |s) =
∏
℘

ζ℘(f̂℘, |̂ · |s)

Since, at the discreet places, f̂℘ is ND1/2 times the charactersitic function of
D−1, then calculating ζ(f̂ , ĉ) by summing a geometric series as above yields

ζ(f̂℘, |̂ · |s) = ζ(f̂℘, | · |1−s) = ND−1/2ND1−s ND−1/2

1− (N℘)1−s =
ND−s

1− (N℘)1−s

So that

ζ(f̂ , |̂ · |s) =
∏

℘ archimedian

ζ(f̂ , |̂ · |s)
∏

℘ discrete

ND−s

1− (N℘)1−s

= ζk(1− s)
∏

℘ archimedian

ζ(f̂ , |̂ · |s)
∏

℘ discrete

ND−s

Using the functional equations ζ(f, c) = ζ(f̂ , ĉ) and ζ℘(f℘, c℘) = ρ℘(c℘)ζ(f̂℘, ĉ℘),
and the values for ρ(| · |s) expressed in section 3.7, we have

ζk(1− s) = ζk(s)
∏

℘ discrete

(ND)s−1/2
℘

∏
℘ archimedean

ρ℘(| · |s)

= ζk(s)
(

21−sπ−s cos
(πs

2

)
Γ(s)

)r1 (
−i (2π)1−sΓ (s+ 1/2)

(2π)sΓ((1− s) + 1/2)

)r2 ∏
℘ discrete

(ND)s−1/2
℘

These functional equations, as well as the functional equations for more general
‘classical’ zeta functions Tate describes in the final chapter of his thesis, were already
known. Why, then, should we care about Tate’s thesis?
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Even though Tate’s thesis dealt with an ‘old’ subject, the means by which Tate
explored the material was new. Tate was not the first to work with adele groups or
idele groups on fields. However, his thesis was among the first to examine Fourier
analysis on these groups and to use Fourier analysis as a means to examining zeta
functions.

Harmonic analysis over number fields is now an important area of number theory,
and is studied by our own Paul Sally.
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