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MATRIX ULTRASPHERICAL POLYNOMIALS: THE 2× 2

FUNDAMENTAL CASES

INÉS PACHARONI AND IGNACIO ZURRIÁN

Abstract. In this paper, we exhibit explicitly a sequence {Pw} of 2×2 matrix
valued orthogonal polynomials with respect to a weight Wp,n, for any pair of

real numbers p and n such that 0 < p < n. This weight reduces if and only
if p = n/2, and the entries of Pw are expressed in terms of the Gegenbauer
polynomials Cλ

k
. Also the corresponding three-term recursion relations are

given and we make some studies of the algebra D(W ). The development of
this work was motivated by results on spherical functions of fundamental type
associated with the pair (SO(n+ 1), SO(n)).

1. Introduction

The theory of special functions is closely connected with the theory of the har-
monic analysis on homogeneous spaces. Among the classical (scalar valued) families
of orthogonal polynomials with rich and deep connections to several branches of
mathematics the Jacobi polynomials occupy a distinguished role.

On the two dimensional sphere S2 = SO(3)/SO(2), the harmonic analysis with
respect to the action of the orthogonal group is contained in the classical theory
of the spherical harmonics. In spherical coordinates the spherical functions are
the Legendre polynomials Pw(cos θ). Also the zonal spherical functions of the n-
dimensional sphere Sn are given, in spherical coordinates, in terms of Gegenbauer
(or ultraspherical) polynomials Cλ

w(cos θ), with λ = n−1
2 . More generally, the zonal

spherical functions on a Riemannian symmetric space of rank one can always be
expressed in terms of the classical Gauss hypergeometric functions. In the compact
case we have Jacobi polynomials.

This fruitful connection between special functions and representation theory of
Lie groups is also present in the matrix case: the matrix valued spherical functions
of any K-type are closely related to matrix valued orthogonal polynomials. In this
way several examples of matrix orthogonal polynomials with a differential operator
have been obtained by focusing on a group representation approach. See for example
[12], [14], [22], [23], [21], [10], [17], [25], [18].

The examples of matrix orthogonal polynomials introduced here are motivated
by the spherical functions of fundamental K-type associated with the n-dimensional
sphere Sn ≃ G/K, where (G,K) = (SO(n + 1), SO(n)). These matrix valued
spherical functions were studied in [30] and [32].
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Given an integer n ≥ 3, we consider the irreducible representations π of K with
fundamental highest weights, which are parameterized by the ℓ-tuples

mπ = (1, . . . , 1︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
ℓ−p

) ∈ Z
ℓ, ℓ = [n/2], 0 < p < n/2− 1.

For each w ∈ N0 and δ = 0, 1, we have an irreducible spherical function Φw,δ, of
type mπ. In [31] these functions are studied in detail. The restriction of Φw,δ to
the subgroup A, corresponding to the Cartan decomposition G = KAK gives rise
a vector valued function Pw,δ, which is an eigenfunction of a certain second order
differential operator with matrix coefficients, the restriction of the Casimir operator
of G. The spherical functions {Φw,δ}w,δ are orthogonal with respect to a certain
natural inner product among these functions.

In [25], the spherical functions of any K-type were considered in the particular
case of n = 3. See also [17] and [18] for the pair (SU(2) × SU(2), SU(2)), which is
closely related to the pair (SO(4), SO(3)).

In the present paper, we introduce the following sequences {Pw}w≥0 of 2 × 2
matrix valued polynomials on [−1, 1] whose entries are given in terms of the classical
Gegenbauer polynomials:

Pw(x) =




1
n+1 C

n+1

2
w (x) + 1

p+w C
n+3

2

w−2(x)
1

p+w C
n+3

2

w−1(x)

1
n−p+w C

n+3

2

w−1(x)
1

n+1 C
n+1

2
w (x) + 1

n−p+w C
n+3

2

w−2(x)




for real parameters p and n such that 0 < p < n.
We shall prove that {Pw}w≥0 are orthogonal with respect to the weight matrix

W (x) = Wp,n = (1 − x2)
n
2−1

(
p x2 + n− p −nx

−nx (n− p)x2 + p

)
, x ∈ [−1, 1].

We will see that the weight reduces to scalar cases if and only if p = n/2. On
the other hand, it is easy to verify that, by changing p by n − p, the weights are
conjugated, namely

( 0 1
1 0 )Wp,n ( 0 1

1 0 )
∗
= Wn−p,n.

Now we discuss briefly the content of the paper. In Section 2 we recall the general
notions of matrix valued orthogonal polynomials and some results from [15] about
the differential operators having the matrix valued orthogonal polynomials Pw as
eigenfunctions. In Section 3 we introduce some background about matrix valued
spherical functions for a pair (G,K) and the particular case (SO(n+ 1), SO(n)).

In Section 4 we prove that our polynomials Pw satisfy PwD = ΛwPw, where D
is the (right-hand side) hypergeometric differential operator

D =

(
d2

dx2

)
(1 − x2)−

(
d

dx

) (
(n+ 2)x+ 2

(
0 1
1 0

))
−
(
p 0
0 n− p

)
,

and the eigenvalue is the diagonal matrix

Λw(D) =

(
−w(w + n+ 1)− p 0

0 −w(w + n+ 1)− n+ p

)
.

In Section 5 we prove the three-term recursion relation satisfied by {Pw}w≥0.
We also consider the sequence of monic orthogonal polynomials {Qw} and exhibit
its corresponding three-term recursion relation.



MATRIX ULTRASPHERICAL POLYNOMIALS: THE 2 × 2 FUNDAMENTAL CASES 3

Section 6 is focused on the study of the algebra D(W ). The first attempt to go
beyond the issue of the existence of one non trivial element inD(W ) and to study the
full algebra is undertaken in [2]. In the example considered in [29], the conjecture
set forth in [2] is proved and the structure of the algebra is studied in detail. In
our case D(W ) is a noncommutative algebra. We give a basis {D1, D2, D3, D4, I}
of the subspace of the differential operators in D(W ) of order at most two. The
differential operators D1 and D2 are symmetric operators, while D3 and D4 are
not. We conjecture that, the full algebra D(W ) is a polynomial algebra in these
four differential operators of order two.

2. Background on matrix valued orthogonal polynomials

The theory of matrix valued orthogonal polynomials, without any consideration
of differential equations, goes back to [19] and [20]. In [3], the study of the matrix
valued orthogonal polynomials that are eigenfunctions of certain second order dif-
ferential operators was started. The first explicit examples of such polynomials are
given in [12], [11], [13] and [5]. See also [6], [7], [8], [1], [2], [4] and the references
given there.

Let W = W (x) be a weight matrix of size N on the real line, that is a complex
N × N matrix valued integrable function on the interval (a, b) such that W (x)
is positive definite almost everywhere and with finite moments of all orders. Let
MatN(C) be the algebra of all N × N complex matrices and let MatN (C)[x] be
the algebra over C of all polynomials in the indeterminate x with coefficients in
MatN(C). We consider the following Hermitian sesquilinear form in the linear
space MatN (C)[x]:

〈P,Q〉 = 〈P,Q〉W =

∫ b

a

P (x)W (x)Q(x)∗ dx.

The following properties are satisfied, for all P,Q,R ∈ MatN (C)[x], a, b ∈ C, T ∈
MatN(C)

(1) 〈aP + bQ,R〉 = a〈P,R〉+ b〈Q,R〉,
(2) 〈TP,R〉 = T 〈P,R〉,
(3) 〈P,Q〉∗ = 〈Q,P 〉,
(4) 〈P, P 〉 ≥ 0. Moreover, if 〈P, P 〉 = 0, then P = 0.

Given a weight matrix W one can constructs sequences of matrix valued orthog-
onal polynomials, that is sequences {Pn}n≥0, where Pn is a polynomial of degree n
with nonsingular leading coefficient and 〈Pn, Pm〉 = 0 for n 6= m.

We observe that there exists a unique sequence of monic orthogonal polynomials
{Qn}n≥0 in MatN (C). Moreover, any other sequence of orthogonal polynomials in
MatN(C)[x] is of the form Pn(x) = AnQn(x), for some An ∈ GLN (C).

By following a standard argument, given for instance in [19] or [20], one shows
that the monic orthogonal polynomials {Qn}n≥0 satisfies a three-term recursion
relation

xQn(x) = AnQn−1 +BnQn(x) +Qn+1(x), n ≥ 0,

where Q−1 = 0 and An, Bn are matrices depending on n and not in x.

Two weights W and W̃ are said to be similar if there exists a nonsingular matrix
M , which does not depend on x, such that

W̃ (x) = MW (x)M∗, for all x ∈ (a, b).
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Notice that if {Pn}n≥0 is a sequence of orthogonal polynomials with respect to W ,

and M ∈ GLN (C), then {PnM
−1}n≥0 is orthogonal with respect to W̃ = MWM∗.

A weight matrix W reduces to a smaller size if there exists a nonsingular matrix
M such that

MW (x)M∗ =

(
W1(x) 0

0 W2(x)

)
, for all x ∈ (a, b),

where W1 and W2 are weights of smaller size.

In the study of matrix valued orthogonal polynomials it is important the study
of differential operators having them as eigenfunctions.

Let D be an right-hand side ordinary differential operator with matrix valued
polynomial coefficients Fi(x) of degree less than or equal to i of the form

(1) D =
s∑

i=0

∂iFi(x), ∂ =
d

dx
,

with the action of D on a polynomial function P (x) given by

PD =

s∑

i=0

∂i(P )(x)Fi(x).

We say that the differential operator D is symmetric if 〈PD,Q〉 = 〈P,QD〉, for all
P,Q ∈ MatN (C)[x]. It is matter of a careful integration by parts to see that the
condition of symmetry for a differential operator of order two is equivalent to a set
of three differential equations involving the weight W and the coefficients of the
differential operator D.

Proposition 2.1 ([13] or [5]). Let W (x) be a weight matrix supported on (a, b).
Let D = ∂2F2(x) + ∂F1(x) +F0 as in (1). Then D is symmetric with respect to W
if and only if 




F2W = WF ∗
2

2(F2W )′ − F1W = WF ∗
1

(F2W )′′ − (F1W )′ + F0W = WF ∗
0

with the boundary conditions

lim
x→a,b

F2(x)W (x) = 0, lim
x→a,b

(
F1(x)W (x) −WF ∗

1 (x)
)
= 0.

3. Spherical functions associated with the n-dimensional spheres

Let G be a locally compact unimodular group and let K be a compact subgroup

of G. Let K̂ denote the set of all equivalence classes of complex finite dimensional
irreducible representations of K; for each δ ∈ K̂, let ξδ denote the character of δ,
d(δ) the degree of δ, i.e. the dimension of any representation in the class δ, and
χδ = d(δ)ξδ. We shall choose once and for all the Haar measure dk on K normalized
by
∫
K dk = 1.

We shall denote by V a finite dimensional vector space over the field C of com-
plex numbers and by End(V ) the space of all linear transformations of V into V .
Whenever we refer to a topology on such a vector space we shall be talking about
the unique Hausdorff linear topology on it.

Definition 3.1. A spherical function Φ on G of type δ ∈ K̂ is a continuous function
on G with values in End(V ) such that
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i) Φ(e) = I (I= identity transformation),
ii) Φ(x)Φ(y) =

∫
K χδ(k

−1)Φ(xky) dk, for all x, y ∈ G.

The reader can find a number of general results in [27] and [9]. For our purpose
it is appropriate to recall the following facts.

A spherical function Φ : G −→ End(V ) is called irreducible if V has no proper
subspace invariant by Φ(g) for all g ∈ G.

If G is a connected Lie group, it is not difficult to prove that any spherical
function Φ : G −→ End(V ) is differentiable (C∞), and moreover that it is analytic.
Let D(G) denote the algebra of all left invariant differential operators on G and let
D(G)K denote the subalgebra of all operators in D(G) that are invariant under all
right translations by elements in K.

In the following proposition (V, π) will be a finite dimensional representation of

K such that any irreducible subrepresentation belongs to the same class δ ∈ K̂.

Proposition 3.2. A function Φ : G −→ End(V ) is a spherical function of type δ
if and only if

i) Φ is analytic,

ii) Φ(k1gk2) = π(k1)Φ(g)π(k2), for all k1, k2 ∈ K, g ∈ G, and Φ(e) = I,
iii) [DΦ](g) = Φ(g)[DΦ](e), for all D ∈ D(G)K , g ∈ G.

This result is a combination of results from [27], the reader can also see Propo-
sition 2.3 in [25].

Spherical functions of type δ arise in a natural way upon considering represen-
tations of G (see Section 3 in [27]). If g 7→ τ(g) is a continuous representation of
G, say on a finite dimensional vector space E, then

Pδ =

∫

K

χδ(k
−1)τ(k) dk

is a projection of E onto PδE = E(δ). If Pδ 6= 0 the function Φ : G −→ End(E(δ))
defined by

Φ(g)a = Pδτ(g)a, g ∈ G, a ∈ E(δ),

is a spherical function of K-type δ.
If the representation τ is irreducible then the associated spherical function Φ is

also irreducible. Conversely, any irreducible spherical function on a compact group
G arises in this way from a finite dimensional irreducible representation of G.

The spherical functions that motivated this paper are those of fundamental K-
type associated with the n-dimensional sphere Sn ≃ G/K, where (G,K) = (SO(n+
1), SO(n)). These matrix valued spherical functions were studied in [30] and [32]
and that, due to results obtained in [31], they also corresponds to spherical functions
of the pair (SO(n + 1),O(n)). See also [25] and [17] for the spherical functions of
any K-type in the particular case of n = 3.

The fundamental representations π of K are parameterized by the ℓ-tuples

mπ = (1, . . . , 1︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
ℓ−p

) ∈ Z
ℓ,

with ℓ = [n/2], and 0 < p < n/2− 1.
Given a nonnegative integer w and δ = 0, 1, we can consider Φw,δ, the irreducible

spherical function of type π associated with the irreducible representation τ ∈
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ŜO(n+ 1) of highest weight of the form

mτ = (w + 1, 1, . . . , 1︸ ︷︷ ︸
p−1

, δ, 0, . . . , 0︸ ︷︷ ︸
ℓ′−p−1

) ∈ Z
ℓ′ , with ℓ′ =

[
n+1
2

]
.

From the representation theory of Lie groups we know that the spherical func-
tions {Φw,δ}w,δ are orthogonal with respect to a certain natural inner product
among spherical functions. Therefore, after an accurate conjugation, one obtains
vector-valued functions {Pw,δ}w,δ that are orthogonal with respect to a matrix-
weight W . The very well known fact that the spherical functions are eigenfunctions
of the Casimir operator on G makes the function Pw,δ into an eigenfunction of a
certain differential operator D.

4. Matrix valued orthogonal polynomials associated with the

n-dimensional spheres

Motivated by the results obtained in [30] we introduce the following family of
polynomials, for w ∈ N0

(2) Pw(x) =




1
n+1 C

n+1

2
w (x) + 1

p+w C
n+3

2

w−2(x)
1

p+w C
n+3

2

w−1(x)

1
n−p+w C

n+3

2

w−1(x)
1

n+1 C
n+1

2
w (x) + 1

n−p+w C
n+3

2

w−2(x)




with parameters p, n ∈ R such that 0 < p < n. Here Cλ
n(x) denotes the n-th

Gegenbauer polynomial

Cλ
n(x) =

(2λ)n
n!

2F1

(
−n, n+ 2λ
λ+ 1/2

;
1− x

2

)
, x ∈ [−1, 1],

as usual, we assume Cλ
n(x) = 0 if n < 0. We recall that Cλ

n is a polynomial of

degree n, with leading coefficient 2n(λ)n
n! .

Let us observe that the deg(Pw) = w and the leading coefficient of Pw is a
nonsingular scalar matrix

(3)
2w(n+1

2 )w

(n+ 1)w!
Id =

1

w!
2w−1(n+3

2 )w−1 Id,

where (a)w = a(a+ 1) . . . (a+ w − 1) denotes the Pochhammer’s symbol.

We start by proving that the polynomials Pw given in (2) are eigenfunctions of
the following differential operator D.

Theorem 4.1. For each w ∈ N0, the matrix polynomial Pw is an eigenfunction of

the differential operator

D = ∂2 (1− x2)− ∂
(
(n+ 2)x+ 2 ( 0 1

1 0 )
)
−
( p 0
0 n−p

)
,

with eigenvalue

Λw(D) =

(
−w(w + n+ 1)− p 0

0 −w(w + n+ 1)− n+ p

)
.
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Proof. We need to verify that

PwD = ΛwPw.

We will need to use the following properties of the Gegenbauer polynomials (for the
first three see [16] page 40, and for the last one see [26], page 83, equation (4.7.27))

(1− x2)
d2

dx2
Cλ

m(x) − (2λ+ 1)x
d

dx
Cλ

m(x) +m(m+ 2λ)Cλ
m(x) = 0,(4)

d

dx
Cλ

m(x) = 2λCλ+1
m−1(x),(5)

2(m+ λ)xCλ
m(x) = (m+ 1)Cλ

m+1(x) + (m+ 2λ− 1)Cλ
m−1(x),(6)

(m+ 2λ− 1)

2(λ− 1)
Cλ−1

m+1(x) = Cλ
m+1(x)− xCλ

m(x).(7)

Also we have (combining (6) and (7))

(8) (m+ λ)Cλ−1
m+1(x) = (λ − 1)

(
Cλ

m+1(x)− Cλ
m−1(x)

)
.

The entry (1, 1) of the matrix PwD − ΛwPw is

(1− x2)(Pw)
′′
11 − (n+ 2)x(Pw)

′
11 − 2(Pw)

′
12 + w(w + n+ 1)(Pw)11

= (1− x2)

(
1

n+1 C
n+1
2

w + 1
p+wC

n+3
2

w−2

)′′

− (n+ 2)x

(
1

n+1 C
n+1
2

w + 1
p+wC

n+3
2

w−2

)′

− 2
p+w

(
C

n+3
2

w−1

)′

+ w(w + n+ 1)

(
1

n+1 C
n+1
2

w + 1
p+wC

n+3
2

w−2

)
.

From (4) we get

(1 − x2)
(
C

n+1
2

w

)′′
− (n+ 2)x

(
C

n+1
2

w

)′
+ w(w + n+ 1)C

n+1
2

w = 0,

(1− x2)
(
C

n+3
2

w−2

)′′
− (n+ 4)x

(
C

n+3
2

w−2

)′
+ (w − 2)(w + n+ 1)C

n+1
2

w−2 = 0,

and from (5)
(
C

n+3
2

w−2

)′
= (n+ 3)C

n+5
2

w−2 .

Therefore the entry (1,1) of PwD − ΛwPw, multiplied by (p+ w)/2 is

−(n+ 3)C
n+5
2

w−2 + xC
n+5
2

w−3 + (w + n+ 1)C
n+3
2

w−2 = 0.

This last identity follows from equation (7) with λ = n+5
2 and m = w − 3.

From the previous verifications, by changing p by n− p, it follows that the entry
(2, 2) of PwD − ΛwPw is zero.

The entry (1, 2) of PwD − ΛwPw is

(1− x2)(Pw)
′′
12 − (n+ 2)x(Pw)

′
12 − 2(Pw)

′
11 +

(
w(w + n+ 1)− n+ 2p

)
(Pw)12,

if we multiply it by (p+ w) we get

(1− x2)
(
C

n+3
2

w−1

)′′
− (n+ 2)x

(
C

n+3
2

w−1

)′
+ (w(w + n+ 1)− n+ 2p)C

n+3
2

w−1

− 2 (p+w)
n+1

(
C

n+1
2

w

)′
− 2
(
C

n+3
2

w−2

)′
.

(9)
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From (4) with λ = n+3
2 and m = w − 1 we get

(1 − x2)
(
C

n+3
2

w−1

)′′
= (n+ 4)x

(
C

n+3
2

w−1

)′
− (w − 1)(w + n+ 2)C

n+3
2

w−1 .

From (5) we have 1
n+1

(
C

n+1
2

w

)′
= C

n+3
2

w−1 and
(
C

n+3
2

w−2

)′
= (n+3)C

n+5
2

w−3 . By replac-

ing in (9) we get

(10) 2x
(
C

n+3
2

w−1

)′
− 2(w − 1)C

n+3
2

w−1 − 2(n+ 3)C
n+5
2

w−3 .

Now from (5) and (7) we have the following identity

x
(
C

n+3
2

w−1

)′
= (n+ 3)C

n+5
2

w−2 = (n+ 3)C
n+5
2

w−1 − (w + n+ 2)C
n+3
2

w−1 .

Thus (10) becomes

2(n+ 3)
(
C

n+5
2

w−1 − C
n+5
2

w−3

)
− 2(2w + n+ 1)C

n+3
2

w−1 = 0,

which follows from (8) with λ = n+5
2 and m = w − 2.

To complete the proof of the theorem we need to verify that the entry (2, 1)
of PwD − ΛwPw is zero. This leads us to made exactly the same computation by
changing p by n− p. �

We introduce the weight matrix

(11) W (x) = Wp,n = (1− x2)
n
2−1

(
p x2 + n− p −nx

−nx (n− p)x2 + p

)
, x ∈ [−1, 1].

Proposition 4.2. For n 6= 2p the weight W (x) does not reduce to a smaller size.

Proof. Assume that there exists a nonsingular matrix M such that

MW (x)M∗ =

(
w1(x) 0

0 w2(x)

)
.

The entry (1, 2) of MW (x)M∗ is

x2
(
pm11m21+(n−p)m12m22

)
−
(
m11m22+m12m21

)
nx+(n−p)m11m21+pm12m22.

From here we see that

m11m22 +m12m21 = 0,(12)

pm11m21 + (n− p)m12m22 = 0,(13)

(n− p)m11m21 + pm12m22 = 0.(14)

By combining equations (13) and (14) we have that (n−2p)m11m21 = 0. If p 6= n−p,
by using (12) we obtain that detM = 0, which is a contradiction. �

Remark 4.3. For n = 2p the weight matrix W reduces to a scalar weights. In fact
by taking M =

(
1 1
−1 1

)
we have that

MW (x)M∗ = 2p (1− x2)
n
2−1

(
(1 − x)2 0

0 (1 + x)2

)
.

Remark 4.4. We have that the weight matrices Wp,n and Wn−p,p are conjugated
to each other. In fact, by taking M = ( 0 1

1 0 ) we get

MWp,nM
∗ = Wn−p,n.
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From Proposition 2.1 and following straightforward computations, we can prove
the following result.

Proposition 4.5. The differential operator

D = ∂2 (1− x2)− ∂
(
(n+ 2)x+ 2 ( 0 1

1 0 )
)
−
( p 0
0 n−p

)

is symmetric with respect to the weight function W (x).

Remark. Let us mention that the result in Proposition 4.5, for group parameters p
and n, is also a direct consequence of the representation theory of Lie groups. This
is because the Casimir operator is symmetric with respect to the L2-inner product
for matrix valued functions on G, and the differential operator D and the weight
W are closely related with them.

In the scalar case, if D is a symmetric differential operator with respect to W
and {Pn} is a family of eigenfunctions of D with different eigenvalues, then the
sequence {Pn} is automatically orthogonal with respect to W . In the matrix case
this is not always true because

Λn〈Pn, Pm〉 = 〈PnD,Pm〉 = 〈Pn, PmD〉 = 〈Pn, Pm〉Λm,

does not imply that 〈Pn, Pm〉 = 0, for n 6= m.

Theorem 4.6. The matrix polynomials {Pw}w≥0 are orthogonal polynomials with

respect to the matrix valued inner product

〈P,Q〉 =
∫ 1

−1

P (x)W (x)Q(x)∗ dx.

Proof. We know that Pw is a polynomial of degree w and its leading coefficient is
a nonsingular diagonal matrix (see (3)). We only have to verify that for w 6= w′,
〈Pw, Pw′〉W = 0. Since Pw is an eigenfunction of the differential operator D, which
is symmetric with respect to W , we have that

Λw〈Pw, Pw′〉 = 〈PwD,Pw′〉 = 〈Pw, Pw′D〉 = 〈Pw , Pw′〉Λw′ .

Therefore, for i, j = 1, 2 we have λw,i〈Pw,i, Pw′,j〉 = λw′,j〈Pw,i, Pw′,j〉, where Pw,i

is the i-th row of the matrix polynomial Pw,

λw,1 = −w(w + n+ 1)− p, λw,2 = −w(w + n+ 1)− n+ p

and

〈Pw,i, Pw′,j〉 =
∫ 1

−1

Pw,i(x)W (x)P ∗
w′ ,j(x) dx ∈ C.

It is not difficult to verify that λw,i 6= λw′,j , for w 6= w′ or i 6= j. Then we have

(15) 〈Pw,i, Pw′,j〉 = 0 for w 6= w′ or i 6= j.

Therefore 〈Pw, Pw′〉 = 0, for w 6= w′, which concludes the proof of the theorem. �

Remark 4.7. When we consider the polynomials Pw given by the spherical functions
on Sn ≃ SO(n+ 1)/SO(n), the parameters p and n are integers such that 0 < p <
[n/2]. The sequence defined by (2) has a larger set of parameters.

For the case p, n ∈ N and 0 < p < [n/2], the δ-th row of Pw is a scalar multiple of
the polynomial Pw,δ related to the the spherical function Φw,δ (see last paragraph
in Section 3). In fact, from Theorem 4.1 we have that the δ-th row of Pw is a
polynomial eigenfunction of the differential operator D and from [30, Theorem 6.3]
we know that such eigenfunction is unique up to scalar.
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5. Three-term recursion relation

The main result of this section is the obtaining of a three-term recursion relation
satisfied by the sequence of orthogonal polynomials studied in this paper. We give
a proof of it by using some properties of the Gegenbauer polynomials.

We would like to point out that it would be also possible to obtain this kind
of result, for integers parameters p and n, from the representation theory of Lie
groups. See for example [22] and [24] for the cases of the complex projective plane
and the complex hyperbolic plane.

Theorem 5.1. The orthogonal polynomials {Pw}w≥0 satisfy the three-term recursion

relation

xPw(x) = AwPw−1(x) +BwPw(x) + CwPw+1(x),

where

Aw =

(
(n+w)(p+w−1)(n−p+w+1)
(p+w)(n−p+w)(2w+n+1) 0

0 (n+w)(p+w+1)(n−p+w−1)
(p+w)(n−p+w)(2w+n+1)

)
,

Bw =

(
0 −p

(p+w)(p+w+1)
−(n−p)

(n−p+w)(n−p+w+1) 0

)
, Cw = w+1

2w+n+1I.

Proof. We recall that the three-term recursion relation for Gegenbauer polynomials
Cλ

m(x) is

(16) 2(m+ λ)xCλ
m(x) = (m+ 1)Cλ

m+1(x) + (m+ 2λ− 1)Cλ
m−1(x).

Let λ = n+3
2 . To verify the (1, 1)-entry of the equation in the statement of the

theorem we need to prove that

x
(

1
n+1C

λ−1
w (x) + 1

p+wCλ
w−2(x)

)

= (n+w)(p+w−1)(n−p+w+1)
(2w+n+1)(p+w)(n−p+w)

(
1

n+1C
λ−1
w−1(x) +

1
p+wC

λ
w−3(x)

)

− p
(p+w)(p+w+1)(n−p+w)C

λ
w−1(x)

+ w+1
2w+n+1

(
1

n+1C
λ−1
w+1(x) +

1
p+w+1C

λ
w−1(x)

)
.

(17)

From (16) we have

(2w + n+ 1)xC
n+1
2

w (x) = (w + 1)C
n+1
2

w+1 (x) + (w + n)C
n+1
2

w−1 (x),

(2w + n− 1)xC
n+3
2

w−2 (x) = (w − 1)C
n+3
2

w−1 (x) + (w + n)C
n+3
2

w−3 (x).

By replacing these identities in (17), it is enough to verify that

(w+n)
(n+1)(2w+n+1)

(
−1 + (p+w−1)(n−p+w−1)

(p+w)(n−p+w)

)
Cλ−1

w−1(x)

+
(
− p

(p+w)(p+w+1)(n−p+w) +
w+1

(2w+n+1)(p+w+1) − w−1
(p+w)(2w+n−1)

)
Cλ

w−1(x)

+ (n+w)
p+w

(
( n−p+w−1
(2w+n+1)(n−p+w) − 1

2w+n−1

)
Cλ

w−3(x) = 0.

(18)

Thus, by using the relation (8) among Gegenbauer polynomials

(19) Cλ−1
m (x) = λ−1

m+λ−1

(
Cλ

m(x)− Cλ
m−2(x)

)
,
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with λ = n+3
2 and m = w−1, the identity in (18) follows after some straightforward

computations.
Now we will verify that the (1, 2)-entry of the equation in the statement of the

theorem holds. We need to verify

1
p+w xCλ

w−1(x) =
(n+w)(n−p+w+1)

(p+w)(2w+n+1)(n−p+w)C
λ
w−2(x)

− p
(p+w)(p+w+1)

(
1

n+1C
λ−1
w (x) + 1

n−p+wCλ
w−2(x)

)
+ w+1

(2w+n+1)(p+w+1)C
λ
w(x)

(20)

with λ = n+3
2 .

From (19) we have 1
n+1 C

λ−1
w = 1

2w+n+1

(
Cλ

w −Cλ
w−1

)
. Thus, the right-hand side of

(20) is

(
(n+w)(n−p+w+1)

(p+w)(2w+n+1)(n−p+w) +
p
(
(n−p+w)−(2w+n+1)

)
(p+w)(p+w+1)(2w+n+1)(n−p+w)

)
Cλ

w−2(x)

+

(
−p+(p+w)(w+1)

)
(p+w)(2w+n+1)(p+w+1)C

λ
w(x) =

n+w+1
(p+w)(2w+n+1)C

λ
w−2(x) +

w
(p+w)(2w+n+1)C

λ
w(x)

From the recursion relation (16) with λ = n+3
2 and m = w − 1, we obtain

n+w+1
(p+w)(2w+n+1)C

λ
w−2(x) +

w
(p+w)(2w+n+1)C

λ
w(x) =

1
p+w xCλ

w−1(x),

which proves (20).
For the entries (2, 2) and (2, 1) we proceed in a similar way, by observing that we

need to do the same computations that in the cases (1, 1) and (1, 2) respectively,
changing p by n− p. This concludes the proof of the theorem. �

The monic sequence of matrix orthogonal polynomials is given by

(21) Qw =
w!(n+ 1)

2w
(
n+1
2

)
w

Pw, w ≥ 0.

From Theorem 5.1 we easily obtain the corresponding recursion relation for the
monic sequence of orthogonal polynomials.

Corollary 5.2. The monic sequence of orthogonal polynomials {Qw} satisfies the

following three-term recursion relation

xQw(x) = ÃwQw−1(x) + B̃wQw(x) +Qw+1(x),

where

Ãw =

(
w(n+w)(p+w−1)(n−p+w+1)

(p+w)(n−p+w)(n+2w−1)(n+2w+1) 0

0 w(n+w)(p+w+1)(n−p+w−1)
(p+w)(n−p+w)(n+2w−1)(n+2w+1)

)
,

B̃w =

(
0 −p

(p+w)(p+w+1)
−(n−p)

(n−p+w)(n−p+w+1) 0

)
.

We conclude this section with the first polynomials of the sequence of monic
polynomials {Qw}w. We recall that our original polynomials Pw are a multiple of
Qw, see (21).
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Q0 = Id, Q1 =

(
x 1

p+1
1

n−p+1 x

)
,

Q2 =



x2 − p

(n+3)(p+2)
2

p+2x

2
n−p+2x x2 − p

(n+3)(n−p+2)


 ,

Q3 =




x3 − 3(p+1)
(n+5)(p+3)x

3
p+3x

2 − 3
(n+5)(p+3)

3
n−p+3x

2 − 3
(n+5)(n−p+3) x3 − 3(n−p+1)

(n+5)(n−p+3)x


 .

Remark 5.3. Observe that from (15) and (21) we have that 〈Qw, Qw〉 is always a
diagonal matrix. Moreover one can verify that

〈Qw, Qw〉 = ‖Qw‖2 =
π2[w/2]Γ(n/2 + 1 + [w/2])

w!(n + 2w + 1)Γ((n+ 3)/2)

[(w−1)/2]∏

k=1

(n+ 2k + 1)

×
(

p (n−p+w+1)
p+w 0

0 (n−p)(p+w+1)
n−p+w

)
.

6. The algebra D(W )

The theory of matrix valued orthogonal polynomials, without any consideration
of differential equations, goes back to [19] and [20]. The study of the matrix valued
orthogonal polynomials that are eigenfunctions of certain second order differential
operators started in [3].

We consider right-hand side differential operators

(22) D =
s∑

i=0

∂iFi(x), ∂ =
d

dx
,

with the action of D on the polynomial P (x) given by

(PD)(x) =

s∑

i=0

∂i(P )(x)Fi(x).

We consider the following subalgebra of the algebra of all right-hand side differ-
ential operators with coefficients in MatN (C)[x],

D = {D =
∑s

i=0 ∂
iFi : Fi ∈ MatN (C)[x], degFi ≤ i}.

Proposition 6.1 ([15], Propositions 2.6 and 2.7). Let W = W (x) be a weight matrix

of size N and let {Qn}n≥0 be the sequence of monic orthogonal polynomials in

MatN(C)[x]. If D is a right-hand side ordinary differential operator of order s, as
in (22), such that

QnD = ΛnQn, for all n ≥ 0,

with Λn ∈ MatN (C), then Fi = Fi(x) =
∑i

j=0 x
jF i

j , F
i
j ∈ MatN (C), is a polyno-

mial and deg(Fi) ≤ i. Moreover D is determined by the sequence {Λn}n≥0 and

(23) Λn =

s∑

i=0

[n]iF
i
i , for all n ≥ 0,
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where [n]i = n(n− 1) · · · (n− i+ 1), [n]0 = 1.

Given a matrix-weight W the algebra

D(W ) = {D ∈ D : PnD = Γn(D)Pn, Γn(D) ∈ MatN(C), for all n ≥ 0}
is introduced in [15], where {Pn}n≥0 is any sequence of matrix valued orthogonal
polynomials with respect to W .

We observe that the definition of D(W ) depends only on the weight matrix W
and not on the particular sequence of orthogonal polynomials, since two sequences
{Pw} and {Qw} of matrix orthogonal polynomials with respect to the weight W
are related by Pw = AwQw, for some invertible matrices Aw for w ≥ 0 (see [15,
Corollary 2.5]).

Proposition 6.2 ([15], Proposition 2.8). The mapping D 7→ Γn(D) is a represen-

tation of D(W ) in C
N for each n ≥ 0. Moreover the sequence of representations

{Γn}n≥0 separates the elements of D(W ) .

We remark that the result in Proposition 6.2 says that the map

D 7→ (Γ0(D),Γ1(D),Γ2(D), . . . . . . )

is an injective morphism of D(W ) into MatN(C)N0 , the direct product of infinite
copies, indexed by N0, of the algebra MatN(C). In particular, if D1, D2 ∈ D(W )
then

(24) D1 = D2 if and only if Γn(D1) = Γn(D2) for all n ≥ 0.

For any D ∈ D(W ) there exists a unique differential operator D∗ ∈ D(W ), the
adjoint of D in D(W ), such that

〈PD,Q〉 = 〈P,QD∗〉,
for all P,Q ∈ MatN (C)[x]. See Theorem 4.3 and Corollary 4.5 in [15].

The map D 7→ D∗ is a *-operation in the algebra D(W ). Moreover it is showed
that S(W ), the set of all symmetric operators in D(W ), is a real form of the space
D(W ), i.e.

D(W ) = S(W ) ⊕ iS(W ),

as real vector spaces. In particular to determine the algebra D(W ) it is equivalent
to determine all symmetric operators S(W ).

In particular we have

Corollary 6.3. A differential operator D ∈ D(W ) is a symmetric operator if and

only if

Λw(D)〈Qw, Qw〉 = 〈Qw, Qw〉Λw(D)∗

for all w ≥ 0.

Also it is worth to recall the following important result from [15].

Proposition 6.4 (Proposition 2.10). If D ∈ D is symmetric then D ∈ D(W ).

Starting with [12], [10] and [5] one has a growing collection of weight matrices
W for which the algebra D(W ) is not trivial, i.e. does not consist only of scalar
multiples of the identity operator. The first attempt to go beyond the issue of
the existence of one non trivial element in D(W ) and to study the full algebra is
undertaken in [2]. In the example considered in [29], the conjecture set forth in [2]
is proved and the structure of the algebra is studied in detail.
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In this section we discuss some properties of the structure of this algebra for our
weight matrix

W (x) = (1− x2)
n
2−1

(
p x2 + n− p −nx

−nx (n− p)x2 + p

)
, 2p 6= n.

We observe that in this particular case, our polynomials {Pw}w,

Pw(x) =




1
n+1 C

n+1

2
w (x) + 1

p+w C
n+3

2

w−2(x)
1

p+w C
n+3

2

w−1(x)

1
n−p+w C

n+3

2

w−1(x)
1

n+1 C
n+1

2
w (x) + 1

n−p+w C
n+3

2

w−2(x)




and the monic orthogonal polynomials {Qw}w,

Qw =
w!(n+ 1)

2w
(
n+1
2

)
w

Pw,

have the same sequence of eigenvalues, since they are related by a scalar multiple.

First of all we have that the space of differential operators of order zero in
D(W ) consists of scalar multiplies of the identity operator. In fact, a differential
operator of order zero having the sequence of monic orthogonal polynomials {Qw}w
as eigenfunctions, is a constant matrix L such that

QwL = Λw Qw, for all w ≥ 0.

From (23) we have that Λw = L for every w. When w = 1, we obtain that the
entries of L satisfy L11 = L22 and (p + 1)L12 = (n − p + 1)L21. Thus, looking at
the case w = 2 we get (n− 2p)L12 = 0. Therefore we obtain that any operator of
order zero L in D(W ) is a multiple of the identity matrix.

Now we will study differential operators of order at most two in the algebra
D(W ). Let {Qw} the monic sequence of orthogonal polynomials with respect to W
and D a differential operator in D. From Proposition 6.1 we have

D = ∂(A2x
2 +A1x+A0) + ∂(B1x+B0) + C ∈ D(W )

if and only if

(25) QwD =
(
w(w − 1)A2 + wB1 + C

)
Qw for all w ≥ 0.

Here A2, A1, A0, B1, B0, C are 2×2 complex matrices. Let us denote Qw,j the coef-
ficients of the polynomial Qw, i.e: Qw =

∑w
j=0 Qw,j x

j , with Qw,w = I. Therefore

D ∈ D(W ) if and only if

j(j − 1)Qw,jA2 + j(j + 1)Qw,j+1A1 + (j + 1)(j + 2)Qw,j+2A0 + jQw,jB1

+ (j + 1)Qw,j+1B0 +Qw,jC −
(
w(w − 1)A2 + wB1 + C

)
Qw,j = 0

for all w ≥ 0 and j = 0, . . . , w. For j = w − 1 and j = 0 we obtain

(w−1)(w − 2)Qw,w−1A2 + w(w − 1)A1 + (w − 1)Qw,w−1B1 + wB0

+Qw,w−1C −
(
w(w − 1)A2 + wB1 + C

)
Qw,w−1 = 0

(26)

and

(27) 2Qw,2A0 +Qw,1B0 +Qw,0C −
(
w(w − 1)A2 + wB1 + C

)
Qw,0 = 0.
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Now from (26) considering w = 1 and w = 2, and from (27) considering w = 2,
we obtain

B0 = (B1 + C)Q1,0 −Q1,0C,

2A1 = (2A2 + 2B1 + C)Q2,1 −Q2,1B1 − 2B0 −Q2,1C,

2A0 = (2A2 + 2B1 + C)Q2,0 −Q2,1B0 −Q2,0C.

From the expression of Q1 and Q2, given at the end of Section 5, we know that

Q1,0 =

(
0 1

p+1
1

n−p+1

)
, Q2,1 =

(
0 2

p+2
2

n−p+2 0

)
, Q2,0 = −p

(n+3)

(
1

(p+2) 0

0 1
(n−p+2)

)
.

By using (21) and (2) it is easy to see that

Qw,w−1 =

(
0 w

p+w
w

n−p+w

)
, for all w ≥ 1.

To determine the matrices A2 = (aij), B1 = (bij) and C = (cij), we first combine
the entries in the diagonal of the matrix (26) to obtain

2(n+ 2)a21 =

(
(n+ p+ 2)b21 − 2c21

)

p+ 1
+

(p+ 2)(p+ w)(2c12 − (n− p)b12)

(n− p+ 1)(n− p+ 2)(n− p+ w)
,

2(n+ 2)a12 =

(
(2n− p+ 2)b12 − 2c12

)

n− p+ 1
+

(n− p+ 2)(n− p+ w)(2c21 − p b21)

(p+ 1)(p+ 2)(p+ w)
.

Since these identities are valid for any w ≥ 3 we conclude that, if n 6= 2p then

2c12 = (n− p)b12 and 2c21 = p b21.

Therefore

b21 = 2(p+ 1)a21 and b12 = 2(n− p+ 1)a12.

By combining the non diagonal entries of (26) we have

(n− 2p+ 1)
(
(n+ 2)a11 − b11

)
= (n− 2p− 1)

(
(n+ 2)a22 − b22

)

and

c11 − c22 = (p+ 1)(p+ 2)a22 − p(p+ 1)a11 + p b11 − (p+ 1)b22.

Equation (27) with w = 3 says that

2Q3,2A0 +Q3,1B0 +Q3,0C −
(
6A2 + 3B1 + C

)
Q3,0 = 0.

Now, by using the expression of Q3 = x3 +Q3,2x
2 +Q3,1x+Q3,0 given at the end

of Section 5, it is not difficult to see that

b11 = (n+ 2)a11.

Thus

b22 = (n+ 2)a22,

c11 − c22 = p(n− p+ 1)a11 − (p+ 1)(n− p)a22.

Therefore, we have obtained that for any differential operator of the form

D = ∂(A2x
2 +A1x+A0) + ∂(B1x+B0) + C ∈ D(W )

the matrices A2, A1, A0, B1, B0, C are given by
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A1 =

(
a11 a12
a21 a22

)
, A2 =

(
a12 − a21 a11 − a22
a22 − a11 a21 − a12

)
, A3 =

(
a22 a21
a12 a11

)
,

B1 =

(
(n+ 2)a11 2(n− p+ 1)a12
2(p+ 1)a21 (n+ 2)a22

)
,

B2 =

(
−p a21 + (n− p+ 2)a12 (n− p+ 2)a11 − (n− p)a22
−p a11 + (p+ 2)a22 (p+ 2)a21 − (n− p)a12

)
,

C =

(
p (n− p+ 1)a11 + c (n− p)(n− p+ 1)a12

p (p+ 1)a21 (p+ 1)(n− p)a22 + c

)
.

for some a11, a12, a21, a22, c ∈ C.

Theorem 6.5. The differential operators of order at most two in D(W ) are of the

form

D = ∂2F2(x) + ∂F1(x) + F0,

where

F2(x) =x2

(
a11 a12
a21 a22

)
+ x

(
a12 − a21 a11 − a22
a22 − a11 a21 − a12

)
+

(
a22 a21
a12 a11

)
,

F1(x) =x

(
(n+ 2)a11 2(n− p+ 1)a12
2(p+ 1)a21 (n+ 2)a22

)

+

(
−p a21 + (n− p+ 2)a12 (n− p+ 2)a11 − (n− p)a22
−p a11 + (p+ 2)a22 (p+ 2)a21 − (n− p)a12

)
,

F0 =

(
p (n− p+ 1)a11 + c (n− p)(n− p+ 1)a12

p (p+ 1)a21 (p+ 1)(n− p)a22 + c

)
.

(28)

with a11, a12, a21, a22, c arbitrary complex numbers.

Proof. We have already proved that any differential operator in D(W ) is of this
form for some constant a11, a12, a21, a22, c ∈ C. Let D2 be the complex vector space
of the differential operators in D(W ) of order at most two. Then we have that

dimD2 ≤ 5.

From Proposition 2.1 it is not difficult to see that a differential operator D of
order two, with coefficients given by (28), is a symmetric operator if and only if

(29) a11, a22, c ∈ R and p a21 = (n− p) a12.

From Proposition 6.4 any symmetric operator D ∈ D belongs to the algebra
D(W ). Thus there exists (at least) five linearly independent symmetric operators
in D(W ). Therefore

dimD2 = 5.

This concludes the proof of the theorem. �

Corollary 6.6. There are no operators of order one in the algebra D(W ).

The elements of the sequence {Qw}w are eigenfunctions of the operators in D(W )
and they satisfy

QwDj = Λw(Dj)Qw, for j = 1, 2, 3, 4, w ≥ 0.
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We explicitly state the eigenvalues Λw using formula (23): for a differential operator
D = ∂2F2 + ∂F1 + F0 we have

Λw(D) = w(w − 1)F 2
2 + wF 1

1 + F 0
0 ,

with F i
i (i=1,2,3) the leading coefficient of the polynomial coefficient Fi of the

differential operator D. Therefore we get

Corollary 6.7. Let D ∈ D(W ), defined as in Theorem 6.5. The matrix monic

orthogonal polynomials {Qw}w satisfy

QwD = Λw(D)Qw, for w ≥ 0,

where the eigenvalue Λw(D) is given by

Λw(D) =

(
(w + p)(w + n− p+ 1)a11 + c (w + n− p)(w + n− p+ 1)a12

(w + p)(w + p+ 1)a21 (w + n− p)(w + p+ 1)a22 + c

)
.

Now we introduce an useful basis for the differential operators of order at most
two in the algebra D(W ): the identity I and

D1 = ∂2

(
x2 x
−x −1

)
+ ∂

(
(n+ 2)x n− p+ 2

−p 0

)
+

(
p (n− p+ 1) 0

0 0

)
,

D2 = ∂2

(
−1 −x
x x2

)
+ ∂

(
0 p− n

p+ 2 (n+ 2)x

)
+

(
0 0
0 (p+ 1)(n− p)

)
,

D3 = ∂2

(
−x −1
x2 x

)
+ ∂

(
−p 0

2(p+ 1)x p+ 2

)
+

(
0 0

p(p+ 1) 0

)
,

D4 = ∂2

(
x x2

−1 −x

)
+ ∂

(
n− p+ 2 2(n− p+ 1)x

0 p− n

)
+

(
0 (n− p)(n− p+ 1)
0 0

)
.

The corresponding eigenvalues are

Λw(D1) =
(
(w+p)(w+n−p+1) 0

0 0

)
, Λw(D2) =

(
0 0
0 (w+p+1)(w+n−p)

)
,

Λw(D3) =
(

0 0
(w+p)(w+p+1) 0

)
, Λw(D4) =

(
0 (w+n−p)(w+n−p+1)
0 0

)
.

Remark 6.8. The differential operator D appearing in Theorem 4.1 is

D = −D1 −D2 + p(n− p)I.

We observe here that, for example,

Λw(D1)Λw(D3) 6= Λw(D3)Λw(D1), for all w ≥ 0.

From Proposition 6.2 we have an isomorphism from the algebra D(W ) into the
algebra Mat2(C)

N0 . This isomorphism is clearly useful in any attempt to get the
structure on our algebra. By using this we obtain that D1D3 6= D3D1. In particular
we get the the following result.

Corollary 6.9. The algebra D(W ) is not commutative.
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By following the same argument, through the sequence of eigenvalues, we obtain
the following relations among the differential operators D1, D2, D3, D4.

D1D2 = 0, D2D1 = 0, D1D3 = 0, D4D1 = 0,

D2D4 = 0, D3D2 = 0, D2
3 = 0, D2

4 = 0,

D3D1 = D2D3 − (n− 2p)D3, D1D4 = D4D2 − (n− 2p)D4,

D3D4 = D2
2 − (n− 2p)D2, D4D3 = D2

1 + (n− 2p)D1.

With the help of symbolic computations, we prove that there are no operators
of order three nor of order five in the algebra D(W ) and we see that the vector
space of differential operators in D(W ) of order four, modulo differential operators
of lower order, has dimension four. All of these operators are generated, in the
algebra sense, by the four second order differential operators D1, D2, D3 and D4

given earlier. We interpret here that the D0 = I is the identity.

Conjecture 6.10.

(1) There are no operators of odd order in D(W ).
(2) The second order differential operators in D(W ) generate the algebra D(W ).

For a differential operator of order two D = ∂2F2 + ∂F1 + F0 ∈ D(W ), the
explicit expression of the adjoint operator D∗ is

(30) D∗ = ∂2G2 + ∂G1 +G0,

where the polynomials Gi, i = 0, 1, 2, are defined by

G0 = 〈Q0, Q0〉Λ0(D)∗〈Q0, Q0〉−1,

G1 = 〈Q1, Q1〉Λ1(D)∗〈Q1, Q1〉−1Q1(x) −Q1(x)G0,

G2 = 〈Q2, Q2〉Λ2(D)∗〈Q2, Q2〉−1Q2(x) − ∂(Q2)G1(x) −Q2(x)G0,

see Theorem 4.3 in [15].

Also from Corollary 4.5 in [15], we obtain the expression for the corresponding
eigenvalues for the adjoint operatorD∗, in terms of the eigenvalues of the differential
operator D and the norm of the polynomials Qw,

Λw(D
∗) = 〈Qw, Qw〉Λw(D)∗〈Qw, Qw〉−1, for all w.

By using the expressions of 〈Qi, Qi〉, given at the end of Section 5, and making
straightforward computations, we can verify that

D∗
1 = D1, D∗

2 = D2, and D∗
3 = p

n−pD4.

Therefore

E3 = (n− p)D3 + pD4 and E4 = i
(
(n− p)D3 − pD4

)

are also symmetric operators, because for any D ∈ D(W ) the operators D + D∗

and i(D −D∗) are symmetric operators.
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Explicitly,

E3 = (n− p)D3 + pD4

= ∂2

(
−x(n− 2p) x2p− n+ p
x2(n− p)− p x(n− 2p)

)
+ ∂

(
2p 2p(n− p+ 1)x

2(p+ 1)(n− p)x 2(n− p)

)

+

(
0 p(n− p)(n− p+ 1)

p(p+ 1)(n− p) 0

)
,

− iE4 = (n− p)D3 − pD4

= ∂2

(
−nx −x2p− n+ p

x2(n− p) + p nx

)
+ ∂

(
−2p(n− p+ 1) −2p(n− p+ 1)x
2(p+ 1)(n− p)x 2(n− p)(p+ 1)

)

+

(
0 −p(n− p)(n− p+ 1)

p(p+ 1)(n− p) 0

)
.

The corresponding eigenvalues are

Λw

(
E3

)
=

(
0 p(n− p+ w)(n− p+ w + 1)

(n− p)(p+ w)(p+ w + 1) 0

)
,

Λw

(
− iE4

)
=

(
0 −p(n− p+ w)(n− p+ w + 1)

(n− p)(p+ w)(p+ w + 1) 0

)
.

Remark 6.11. In [17] the authors study matrix valued orthogonal polynomials re-
lated to spherical functions on the group (SU(2) × SU(2), SU(2)). Particularly, in
Subsection 8.3 an example of a weight matrix of size 3× 3, that reduces to smaller
size, appears. The irreducible 2× 2 block is

W1 = (1− x)1/2(1 + x)1/2
(
4x2 + 3 3

√
2x

3
√
2x x2 + 2

)
, x ∈ [−1, 1].

It is a particular case of the examples considered in the present paper. In fact let
n = 3 and p = 1 in the weight W , given in (11)

W1,3 = (1− x2)1/2
(
x2 + 2 −3x
−3x 2x2 + 1

)
.

Therefore, with L =
(

0
√
2

−1 0

)
we get W1 = LW1,3L

∗.

Let us denote D̃1, D̃2 and D̃3 be the differential operatorsD1,D2 and D3 appear-
ing in Theorem 8.1 in [17]. Then we have the following relations with our operators
D1, D2,D3 and D4 for n = 3 and p = 1

D̃1 = L(D1 +D2 − 3)L−1, D̃2 = LD2L
−1, D̃3 = −

√
2L(2D3 +D4)L

−1.
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