
A CHARACTERIZATION OF ULTRASPHERICAL POLYNOMIALS

MICHAEL ANSHELEVICH

ABSTRACT. We show that the only orthogonal polynomials with a generating function of the form
F
(
xz − αz2

)
are the ultraspherical, Hermite, and Chebyshev polynomials of the first kind. The

generating function for the Chebyshev case is non-standard, although it is easily derived from the
usual one.

1. THE QUESTION

Hermite polynomials Hn(x) are one of the most important families of orthogonal polynomials in
mathematics, appearing in probability theory, mathematical physics, differential equations, combi-
natorics, etc. One of the simplest ways to construct them is through their generating function,

∞∑
n=0

1

n!
Hn(x)z

n = exp
(
xz − z2/2

)
.

On the other hand, Chebyshev polynomials of the second kind Un(x) are another important fam-
ily of orthogonal polynomials (appearing in numerical analysis, for example), with a generating
function

∞∑
n=0

Un(x)z
n =

1

1− xz + z2
.

Note that both of these functions have the form F (xz − αz2), with F (z) = ez, respectively, F (z) =
1

1−z .

Question 1. What are all the orthogonal polynomials with generating functions of the form

F
(
xz − αz2

)
for some number α and function (or, more precisely, formal power series) F ?

A reader interested in further context and background for this question may want to start by reading
Section 5.

2. THE METHOD

The following is the first fundamental theorem about orthogonal polynomials.

Theorem (Favard’s theorem). Let {P0(x), P1(x), P2(x), . . .} be a monic orthogonal polynomial
family. That is,
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• Each Pn is a polynomial of degree exactly n (polynomial family).
• Each

Pn(x) = xn + lower order terms

(monic).
• For some non-decreasing function M with limx→−∞M(x) = 0, limx→∞M(x) = 1, and

infinitely many points of increase (equivalently, for some probability measure supported on
infinitely many points) the Stieltjes integral∫ ∞

−∞
Pn(x)Pk(x) dM(x) = 0

for all n 6= k (orthogonal).

Then there exist real numbers {β0, β1, β2, . . .} and positive real numbers {ω1, ω2, ω3, . . .} such that
the polynomials satisfy a three-term recursion relation

xPn = Pn+1 + βnPn + ωnPn−1

(to make the formula work for n = 0, take P−1 = 0).

Actually, Favard’s theorem also asserts that the converse to the statement above is true: if we
have a monic polynomial family satisfying such a recursion, these polynomials are automatically
orthogonal for some M(x), and the case of M with only finitely many points of increase can also
be included. See [Chi78, Chapter 1] or [Ism05, Chapter 2] for the proof. We only need the “easy”
direction stated above, which we now prove.

Proof. Every polynomial P of degree k is a linear combination of {Pi : 0 ≤ i ≤ k}. Therefore P
is orthogonal to all Pn with k < n. Since

xPn(x) = xn+1 + lower order terms,

we can expand

xPn(x) = Pn+1(x) + cn,nPn(x) + cn,n−1Pn−1(x) + . . .+ cn,1P1(x) + cn,0P0(x)

for some coefficients cn,n, . . . , cn,0. On the other hand, for k < n− 1 orthogonality implies

cn,k

∫ ∞
−∞

Pk(x)Pk(x) dM(x) =

∫ ∞
−∞

(
xPn(x)

)
Pk(x) dM(x) =

∫ ∞
−∞

Pn(x)
(
xPk(x)

)
dM(x) = 0

since deg (xPk) < n. Since M has infinitely many points of increase, Pk cannot be zero at all of
those points, and as a result ∫ ∞

−∞
P 2
k (x) dM(x) > 0.

Therefore cn,k = 0 for k < n− 1, so in fact

xPn(x) = Pn+1(x) + cn,nPn(x) + cn,n−1Pn−1(x)
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only. Denoting βn = cn,n and ωn = cn,n−1, we get the formula. It remains to note that

cn,n−1

∫ ∞
−∞

Pn−1(x)Pn−1(x) dM(x) =

∫ ∞
−∞

Pn−1(x)
(
xPn(x)− Pn+1(x)− cn,nPn(x)

)
dM(x)

=

∫ ∞
−∞

Pn−1(x)
(
xPn(x)

)
dM(x)

=

∫ ∞
−∞

(
xPn−1(x)

)
Pn(x) dM(x)

=

∫ ∞
−∞

Pn(x)Pn(x) dM(x).

Since both
∫∞
−∞ P

2
n−1(x) dM(x) and

∫∞
−∞ P

2
n(x) dM(x) are positive, so is ωn = cn,n−1. �

3. EXAMPLES

Good references for polynomial families are Wikipedia and [KS98]. Beware that in the following
examples, we use for monic polynomials the notation which usually appears for other normaliza-
tions, so our formulas may differ from the references by a re-scaling.

Example 1. The orthogonality relation for the Hermite polynomials is

(1)
∫ ∞
−∞

Hn(x)Hk(x)

(
1√
2π
e−x

2/2

)
dx = 0.

Thus they are orthogonal with respect to the normal (Gaussian) distribution. They satisfy a recursion

xHn(x) = Hn+1(x) + nHn−1(x).

Example 2. The orthogonality relation for the Charlier polynomials is

(2)
∞∑
i=0

Cn(i)Ck(i)

(
e−1

1

i!

)
= 0,

so that

M(x) = e−1
[x]∑
i=0

1

i!
,

which is sometimes also written as

dM(x) = e−1
∞∑
i=0

1

i!
δi(x).

Thus the Charlier polynomials are orthogonal with respect to the Poisson distribution. They satisfy
a recursion

xCn(x) = Cn+1(x) + (n+ 1) Cn(x) + n Cn−1(x).

Example 3. The Legendre polynomials are the family of orthogonal polynomials a student is most
likely to encounter in an undergraduate course. In a linear algebra course, one sees them in the
applications of the Gram-Schmidt formula, since their orthogonality relation is simply∫ 1

−1
Pn(x)Pk(x) dx = 0.
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In a differential equations course, one sees them as a solution of the Legendre equation. This
equation, in turn, arises after the separation of variables in the heat equation or Laplace’s equation
in three dimensions, or on a sphere. The recursion satisfied by the Legendre polynomials is

xPn(x) = Pn+1(x) +
n2

4n2 − 1
Pn−1(x)

Example 4. The ultraspherical (also called Gegenbauer) polynomials C(λ)
n are orthogonal with

respect to
M(x) = (1− x2)λ−

1
2

(with integration restricted to [−1, 1]) for λ > −1
2
, λ 6= 0. Note that the Legendre polynomials are a

particular case corresponding to λ = 1
2
. Just as the Legendre polynomials are related to the sphere,

the other ultraspherical families for half-integer λ are related to higher-dimensional spheres. They
satisfy a recursion

(3) xC(λ)
n (x) = C

(λ)
n+1(x) +

n(n+ 2λ− 1)

4(n+ λ− 1)(n+ λ)
C

(λ)
n−1(x),

see Section 1.8.1 of [KS98]. Another important special case are the Chebyshev polynomials of the
second kind Un, which correspond to λ = 1 and are orthogonal with respect to

√
1− x2.

For λ = 0, the coefficient ω1 as written in formula (3) is undefined. The polynomials orthogonal
with respect to 1√

1−x2 are the Chebyshev polynomials of the first kind Tn, for which the recursion
(3) holds for n ≥ 2 (with λ = 0), but

xT1(x) = T2(x) +
1

2
T0(x).

Remark 1. Suppose {Pn} form a monic orthogonal polynomial family, with orthogonality given
by a function M and the recursion

(4) xPn = Pn+1 + βnPn + ωnPn−1.

Then for r 6= 0, the polynomials
Qn(x) = rnPn(x/r)

are also monic, orthogonal with respect to N(x) =M(x/r), and satisfy

xQn = Qn+1 + rβnQn + r2ωnQn−1.

Indeed, from equation (4),

rn+1(x/r)Pn(x/r) = rn+1Pn+1(x/r) + βnr
n+1Pn(x/r) + ωnr

n+1Pn−1(x/r),

which implies the recursion for {Qn}.

4. THE RESULT

Theorem 1. Let α > 0 and F (z) =
∑∞

n=0 cnz
n be a formal power series with c0 = 1, c1 = c 6= 0.

Define the polynomials {Pn : n ≥ 0} via

(5) F
(
xz − αz2

)
=
∞∑
n=0

cnPn(x)z
n

(if cn = 0, Pn is undefined). These polynomials form an orthogonal polynomial family (which is
automatically monic) if and only if
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• {Pn} are re-scaled ultraspherical polynomials,

Pn(x) = C(λ)
n

(√
b

4α
x

)
,

for λ > −1
2
, λ 6= 0, and b > 0. In this case

F (z) = 1 +
c

λb

(
1

(1− bz)λ
− 1

)
for c 6= 0. The choice c = λb gives simply F (z) = 1

(1−bz)λ .
• {Pn} are re-scaled Chebyshev polynomials of the first kind,

Pn(x) = Tn

(√
b

4α
x

)
,

for b > 0. In this case

F (z) = 1 +
c

b
ln

(
1

1− bz

)
for c 6= 0. The choice c = b gives simply F (z) = 1 + ln

(
1

1−bz

)
.

• {Pn} are re-scaled Hermite polynomials,

Pn(x) = Hn

(√
a

2α
x

)
for a > 0. In this case

F (z) = 1 +
c

a
(eaz − 1)

for c 6= 0. The choice c = a gives simply F (z) = eaz.

Remark 2. If equation (5) holds, so that

1 +
∞∑
n=1

cn
(
xz − αz2

)n
= F

(
xz − αz2

)
= 1 +

∞∑
n=1

cnPn(x)z
n,

then clearly also

1 +
∞∑
n=1

Ccn
(
xz − αz2

)n
= FC

(
xz − αz2

)
= 1 +

∞∑
n=1

CcnPn(x)z
n

for any C 6= 0 and FC(z) = 1 + C(F (z) − 1). This is the source of the free parameter c in the
theorem.
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Proof of the Theorem. Using the binomial formula, expand

F
(
xz − αz2

)
=
∞∑
n=0

cn
(
xz − αz2

)n
=
∞∑
n=0

cnx
nzn −

∞∑
n=1

cnn(xz)
n−1αz2 + . . .

= 1 +
∞∑
n=1

(
cnx

n − α(n− 1)cn−1x
n−2
)
zn + . . .

If for some n ≥ 2, cn = 0 while cn−1 6= 0, then comparing the coefficients of zn in the preceding
equation and expansion (5), we see that the coefficient is non-zero on the left and zero on the
right. So all cn 6= 0, and we may denote dn = cn

cn−1
. Then the same coefficient comparison gives

P0(x) = 1, and for n ≥ 1

Pn(x) = xn − α(n− 1)d−1n xn−2 + . . .

Using this equation for both n and n+ 1, we then get

xPn = xn+1 − α(n− 1)d−1n xn−1 + . . .

= Pn+1 − α(n− 1)d−1n xn−1 + αnd−1n+1x
n−1 + . . .

If we want the polynomials to be orthogonal, by Favard’s theorem they have to satisfy a three-term
recursion relation

xPn = Pn+1 + βnPn + ωnPn−1

(note that {Pn} are clearly monic). We see that βn = 0, and

ωn = α
(
nd−1n+1 − (n− 1)d−1n

)
for n ≥ 1.

Now expanding further in the binomial formula,
∞∑
n=0

cn
(
xz − αz2

)n
=
∞∑
n=0

cnx
nzn −

∞∑
n=1

cnn(xz)
n−1αz2 +

∞∑
n=2

cn
n(n− 1)

2
(xz)n−2

(
αz2
)2

+ . . .

= 1 + c1xz +
(
c2x

2 − αc1
)
z2 +

(
c3x

3 − 2αc2x
)
z3

+
∞∑
n=4

(
cnx

n − α(n− 1)cn−1x
n−2 + α2 (n− 2)(n− 3)

2
cn−2x

n−4
)
zn + . . .

Thus

P0(x) = 1, P1(x) = x, P2(x) = x2 − αd−12 , P3(x) = x3 − 2αd−13 x

and for n ≥ 4,

Pn(x) = xn − α(n− 1)d−1n xn−2 + α2 (n− 2)(n− 3)

2
d−1n d−1n−1x

n−4 + . . .
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Therefore for n ≥ 4,

xPn − Pn+1 − ωnPn−1 =
(
α2 (n− 2)(n− 3)

2
d−1n d−1n−1 − α2 (n− 1)(n− 2)

2
d−1n+1d

−1
n

− α
(
(n− 1)d−1n − nd−1n+1

)
α(n− 2)d−1n−1

)
xn−3 + . . . ,

a formula which also holds for n = 3. For this to be zero we need
(n− 3)

2
d−1n d−1n−1 −

(n− 1)

2
d−1n+1d

−1
n −

(
(n− 1)d−1n − nd−1n+1

)
d−1n−1 = 0,

or
(n− 3)

2
dn+1 −

(n− 1)

2
dn−1 −

(
(n− 1)dn+1 − ndn

)
= 0.

Thus for n ≥ 3,
(n+ 1)dn+1 = 2ndn − (n− 1)dn−1.

The general solution of this recursion is

ndn = a+ b(n− 1)

for n ≥ 2. Since all dn 6= 0, a, b cannot both be zero. Therefore

cn =
a+ b(n− 1)

n
cn−1 =

∏n−1
i=1 (a+ ib)

n!
c1 =

∏n−1
i=1 (a+ ib)

n!
c

for n ≥ 2 and

F (z) = 1 + cz + c
∞∑
n=2

∏n−1
i=1 (a+ ib)

n!
zn.

If a 6= 0, b 6= 0, then

F (z) = 1 + c
∞∑
n=1

∏n−1
i=0 (−a/b− i)

an!
(−bz)n

= 1 +
c

a

(
(1− bz)−a/b − 1

)
= 1 +

c

a

(
1

(1− bz)a/b
− 1

)
.

(6)

If a = 0, b 6= 0, then

(7) F (z) = 1 + c

∞∑
n=1

bn−1

n
zn = 1− c

b
ln(1− bz) = 1 +

c

b
ln

(
1

1− bz

)
,

which can also be obtained from the preceding formula by using L’Hôpital’s rule. Finally, if a 6= 0,
b = 0, then

(8) F (z) = 1 + c
∞∑
n=1

an−1

n!
zn = 1 +

c

a
(eaz − 1) .

Moreover,

ωn = αn
(n− 1)b+ 2a

((n− 1)b+ a)(nb+ a)
.

Since for orthogonality, we need ωn ≥ 0, clearly b ≥ 0. If b = 0, then

ωn =
2α

a
n > 0
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as long as a > 0. The polynomials with this recursion re-scaled Hermite polynomials. We recall
[KS98, Section 1.13] that the generating function for standard (monic) Hermite polynomials is

∞∑
n=0

1

n!
Hn(x)z

n = exp
(
xz − z2/2

)
,

which is of the form (5) with F (z) = ez, and the generating function (8) is obtained from it by a
re-scaling and a shift from Remark 2.

If b > 0, a 6= 0, we denote λ = a/b and get

ωn =
α

b

n(n+ 2λ− 1)

(n+ λ− 1)(n+ λ)
.

Since
ω1 =

α

b

2

1 + λ
,

we have λ > −1. Since

ω2 =
α

b

2(1 + 2λ)

(1 + λ)(2 + λ)
,

we have moreover λ > −1
2
. It is now easy to see that this condition suffices for the positivity of

all ωn; indeed, the corresponding polynomials are re-scaled ultraspherical polynomials. We recall
[KS98, Section 1.8.1] that the generating function for standard (monic) ultraspherical polynomials
is

∞∑
n=0

2n
∏n−1

i=0 (λ− i)
n!

C(λ)
n (x)zn =

1

(1− 2xz + z2)λ
,

which is of the form (5) with F (z) = 1
(1−2z)λ , and the generating function (6) is obtained from it by

a re-scaling and a shift from Remark 2.

Finally, if b > 0, λ = a = 0, then
ωn =

α

b
for n ≥ 2, but ω1 = 2α

b
. These are precisely recursion coefficients for the re-scaled Chebyshev

polynomials of the fist kind. The standard generating function [KS98, Section 1.8.2] for (monic)
Chebyshev polynomials of the first kind is

∞∑
n=0

2nTn(x)z
n =

1− xz
1− 2xz + z2

,

so it is not of the form (5). However,
∞∑
n=1

2nTn(x)z
n−1 =

1

z

(
1− xz

1− 2xz + z2
− 1

)
=

x− z
1− 2xz + z2

.

Term-by-term integration with respect to z gives

C +
∞∑
n=1

2n

n
Tn(x)z

n = −1

2
ln
(
1− 2xz + z2

)
=

1

2
ln

(
1

1− 2 (xz − z2/2)

)
.

with C = 0, which is of the form (5) with F (z) = 1
2
ln
(

1
1−2z

)
. The generating function (7) is

obtained from it by a re-scaling and a shift from Remark 2. �
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5. THE HISTORY

The question of characterizing various classes of orthogonal polynomials has a long and distin-
guished history, see [AS90] for an excellent survey up to 1990. The study of general polynomial
families goes back to Paul Appell in 1880 [App80], who looked at polynomials with generating
functions of the form

∞∑
n=0

1

n!
Pn(x)z

n = A(z) exp(xz)

for some function A(z). These are now called Appell polynomials. Later, they were generalized to
Sheffer families with generating functions

(9)
∞∑
n=0

1

n!
Pn(x)z

n = A(z) exp(xU(z))

for some functions A(z), U(z). The prototypical “orthogonal polynomials characterization result”
is Meixner’s 1934 description of all orthogonal polynomials with the Sheffer-type generating func-
tions [Mei34]. On the other hand, among Appell polynomials, only Hermite polynomials are or-
thogonal. See Figure 1.

OrthogonalSheffer

Appell H

Meixner

FIGURE 1. The relationship between the class of orthogonal polynomials and Shef-
fer, Appell and Meixner classes. “H” stands for Hermite.

Example 5. One way to state Meixner’s result is that orthogonal polynomials with generating
functions (9) satisfy a three-term recursion

xPn(x) = Pn+1(x) + (na+ β0) Pn(x) + n((n− 1)b+ 1) Pn−1(x),

for some a, b, β0 (up to re-scaling). The functionMa,b,β0 for which these polynomials are orthogonal
can be written down explicitly, but for different values of the parameters these functions look quite
different. For example, for a = b = β0 = 0, we get the Hermite polynomials, with a continuous
orthogonality relation (1). On the other hand, for a = β0 = 1, b = 0, we get the Charlier poly-
nomials, with a discrete orthogonality relation (2). Other polynomials in the Meixner class carry
the names of Laguerre, Krawtchouk, Meixner, and Pollaczek, and are orthogonal with respect to
gamma, binomial, negative binomial, and Meixner distributions.

Besides nice generating functions, the Meixner class has many other characterizations and applica-
tions, see [DKSC08] for an excellent (but advanced) survey. Perhaps for this reason, many general-
izations of this class have been attempted. The most popular of these are probably the q-deformed
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families. One approach (there are several) extends the Sheffer class by looking at the generating
functions of the form

A(z)
∞∏
k=0

1

1− (1− q)U (qkz) z

(after appropriate normalization, one gets the Sheffer form for q → 1). In this case the analog of the
Meixner class are the Al-Salam and Chihara polynomials [ASC87]. For the study of two different
types of q-Appell polynomials, see [AS67, AS95].

A different generalization of the Sheffer class are generating functions of the general Boas-Buck
[BB64] type:

∞∑
n=0

cnPn(x)z
n = A(z)F (xU(z))

for F (z) =
∑∞

n=0 cnz
n with c0 = 1. The usual case corresponds to F (z) = ez. In the Boas-Buck

setting, the problem of describing all orthogonal polynomials is wide open. The Appell-type class
(with U(z) = z) in this case consists of the Brenke polynomials, and at least in that case all the
orthogonal polynomials are known [Chi68].

Now note that in the Sheffer/Meixner case in equation (9), corresponding to F (z) = ez, the gener-
ating function has an alternative form

∞∑
n=0

1

n!
Pn(x)z

n = A(z) exp(xU(z)) = exp(xU(z) + logA(z)).

So another interesting class to look at are (all or just orthogonal) polynomials with generating
functions

∞∑
n=0

cnPn(x)z
n = F (xu(z)−R(z)),

which again gives the Sheffer/Meixner families for F (z) = ez.

The case F (z) = 1
1−z appears in Free Probability [NS06], see Section 3 of [Ans03] for the author’s

description of the “free Meixner class”, which is in a precise bijection with the Meixner class
(except for the binomial case [BB06]). Here again, one can write the generating function in two
ways:

A(z)
1

1− xU(z)
=

1

1−
(
xU(z)
A(z)
− 1−A(z)

A(z)

) .
More generally, Boas and Buck proved the following result.

Theorem. [BB56] The only functions F with F (0) = 1 such that

(10) A(z)F (xU(z)) = F (xu(z)−R(z))
are F (z) = ez and F (z) = 1

(1−z)λ for some λ.

So as an alternative to the Boas-Buck formulation, we are interested in orthogonal polynomials
with generating functions of the form F (xu(z) − R(z)), or at least in the Appell-type subclass
F (xz − R(z)). For general R, even this seems to be a hard question. However, the orthogonal
Appell polynomials are only the Hermite polynomials, with the exponential generating function

exp
(
xz − z2/2

)
.
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On the other hand, the orthogonal free Appell polynomials are only the Chebyshev polynomials of
the second kind, with the ordinary generating function

1

1− (xz − z2)
.

Moreover, R(z) = αz2 appears naturally in combinatorial proofs of the usual, free, and other
central-limit-type theorems (see for example Lecture 8 of [NS06]). Thus it is reasonable to consider
F (xz − αz2) first, which leads to Question 1. Conversely, the answer to that question indicates
that interesting generating functions (and also, potentially, interesting non-commutative probability
theories) arise precisely for F covered by the Boas-Buck theorem above, plus in the exceptional
case F (z) = 1+ log 1

1−z not covered by that theorem. On the other hand, see [ASV86, Dem09] for
some negative results.

Acknowledgments. I am grateful to Harold Boas for a very careful reading of the paper, and for
many valuable comments, including Remark 2.
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(1986), no. 2, 83–88. MR895112 (88e:33009)

[Ans03] Michael Anshelevich, Free martingale polynomials, J. Funct. Anal. 201 (2003), no. 1, 228–261.
MR1986160 (2004f:46079)
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