The Fibonacci Quarterly 1997 (35,2): 156-159

A NOTE ON THE BRACKET FUNCTION TRANSFORM

Pentti Haukkanen

Department of Mathematical Sciences, Univertsity of Tampere,
P.O. Box 607, FIN- 33101 Tampere, Finland
e-mail: mapehau@uta.fi
(Submitted November 1995)
Let $\left(a_{n}\right)$ be a given sequence. The bracket function transform $\left(s_{n}\right)$ is defined by

$$
\begin{equation*}
s_{n}=\sum_{k=1}^{n}\left[\frac{n}{k}\right] a_{k} . \tag{1}
\end{equation*}
$$

Let $S(x)$ denote the formal power series of the sequence $\left(s_{n}\right)$, that is,

$$
S(x)=\sum_{n=1}^{\infty} s_{n} x^{n} .
$$

H. W. Gould [2] pointed out that

$$
\begin{equation*}
S(x)=\frac{1}{1-x} \sum_{n=1}^{\infty} a_{n} \frac{x^{n}}{1-x^{n}} . \tag{2}
\end{equation*}
$$

The aim of this paper is to study the effect of the terms $\frac{1}{1-x}, \frac{1}{1-x^{n}}$, and x^{n} in (2). We replace these terms with the powers $\frac{1}{(1-x)^{r}}, \frac{1}{\left(1-x^{n}\right)^{5}}$, and $x^{\text {th }}$ and find the coefficients of the modified series.

First, we study the effect of the term $\frac{1}{1-x}$. If the term $\frac{1}{1-x}$ is deleted from (2), that is, if

$$
\begin{equation*}
T(x)=\sum_{n=1}^{\infty} a_{n} \frac{x^{n}}{1-x^{n}}, \tag{3}
\end{equation*}
$$

then $T(x)=(1-x) S(x)$ and, consequently,

$$
\begin{equation*}
t_{n}=s_{n}-s_{n-1}=\sum_{k=1}^{n}\left(\left[\frac{n}{k}\right]-\left[\frac{n-1}{k}\right]\right) a_{k}=\sum_{d \mid n} a_{d} \tag{4}
\end{equation*}
$$

(see [2], Eq. (8)). More generally, let

$$
\begin{equation*}
T(x)=\frac{1}{(1-x)^{r}} \sum_{n=1}^{\infty} a_{n} \frac{x^{n}}{1-x^{n}}, \quad r \in \mathbf{R} . \tag{5}
\end{equation*}
$$

What are the coefficients of $T(x)$?
Let $\binom{a}{n}=\frac{a(a-1) \cdots(a-n+1)}{n!}, a \in \mathbf{R}$. Then

$$
\begin{equation*}
\sum_{n=0}^{\infty}\binom{a}{n} x^{n}=(1+x)^{a} \tag{6}
\end{equation*}
$$

(see [1], Eq. (1.1)). Thus,

$$
\begin{equation*}
\frac{1}{(1-x)^{r-1}}=\sum_{n=0}^{\infty}(-1)^{n}\binom{-r+1}{n} x^{n} . \tag{7}
\end{equation*}
$$

It is known (see [2], Eq. (5)) that

$$
\begin{equation*}
\frac{1}{(1-x)\left(1-x^{k}\right)}=\sum_{n=0}^{\infty}\left[\frac{n+k}{k}\right] x^{n}=\sum_{n=0}^{\infty}([n / k]+1) x^{n} \tag{8}
\end{equation*}
$$

Combining (7) and (8) and applying the Cauchy convolution, we obtain

$$
\begin{equation*}
\frac{1}{(1-x)^{r}\left(1-x^{k}\right)}=\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n}(-1)^{r}\binom{-r+1}{i}\left[\frac{n-i+k}{k}\right]\right) x^{n} \tag{9}
\end{equation*}
$$

For the sake of brevity, we write

$$
\begin{equation*}
C(n, k, r)=\sum_{i=0}^{n}(-1)^{i}\binom{-r+1}{i}\left[\frac{n-i+k}{k}\right] \tag{10}
\end{equation*}
$$

Now we use (9) in finding the coefficients of $T(x)$ in (5). In fact,

$$
\begin{aligned}
T(x) & =\sum_{k=1}^{\infty} a_{k} x^{k} \frac{1}{(1-x)^{r}\left(1-x^{k}\right)}=\sum_{k=1}^{\infty} a_{k} x^{k} \sum_{n=0}^{\infty} C(n, k, r) x^{n} \\
& =\sum_{k=1}^{\infty} a_{k} x^{k} \sum_{n=k}^{\infty} C(n-k, k, r) x^{n-k}=\sum_{n=1}^{\infty} x^{n} \sum_{k=1}^{n} C(n-k, k, r) a_{k}
\end{aligned}
$$

which shows that the coefficients of $T(x)$ in (5) are

$$
\begin{equation*}
t_{n}=\sum_{k=1}^{n} C(n-k, k, r) a_{k} \tag{11}
\end{equation*}
$$

where $C(n-k, k, r)$ is as defined in (10). Note that
(i) if $r=1$, then $C(n-k, k, r)=[n / k]$, and thus $t_{n}=s_{n}$, which is the bracket function transform (1),
(ii) if $r=0$, then $C(n-k, k, r)=[n / k]-[(n-1) / k]$, and thus (11) reduces to (4).

Second, we study the effect of the term $\frac{1}{1-x^{n}}$. If the term $\frac{1}{1-x^{n}}$ is deleted from (2), that is, if

$$
\begin{equation*}
T(x)=\frac{1}{1-x} \sum_{n=1}^{\infty} a_{n} x^{n} \tag{12}
\end{equation*}
$$

then

$$
\begin{equation*}
t_{n}=\sum_{k=1}^{n} a_{k} \tag{13}
\end{equation*}
$$

More generally, let

$$
\begin{equation*}
T(x)=\frac{1}{1-x} \sum_{n=1}^{\infty} a_{n} \frac{x^{n}}{\left(1-x^{n}\right)^{s}}, s \in \mathbb{R} \tag{14}
\end{equation*}
$$

What are the coefficients of $T(x)$?
By (6) we obtain

$$
\frac{1}{(1-x)\left(1-x^{k}\right)^{s}}=\left(1+x+x^{2}+\cdots\right)\left(1-\binom{-s}{1} x^{k}+\binom{-s}{2} x^{2 k}-\cdots\right)=
$$

$$
\begin{aligned}
= & \left(1+x+\cdots+x^{k-1}\right)+\left(1-\binom{-s}{1}\right)\left(x^{k}+x^{k+1}+\cdots+x^{2 k-1}\right) \\
& +\left(1-\binom{-s}{1}+\binom{-s}{2}\right)\left(x^{2 k}+x^{2 k+1}+\cdots+x^{3 k-1}\right)+\cdots \\
= & \sum_{n=0}^{\infty}\left(\sum_{i=0}^{[n / k]}(-1)^{i}\binom{-s}{i}\right) x^{n} .
\end{aligned}
$$

Applying Equation (1.9) of [1], we obtain

$$
\begin{equation*}
\frac{1}{(1-x)\left(1-x^{k}\right)^{s}}=\sum_{n=0}^{\infty}\binom{[n / k]+s}{[n / k]} x^{n} \tag{15}
\end{equation*}
$$

We can use this formula in finding the coefficients of $T(x)$. In fact,

$$
\begin{aligned}
T(x) & =\sum_{k=1}^{\infty} a_{k} x^{k} \frac{1}{(1-x)\left(1-x^{k}\right)^{s}}=\sum_{k=1}^{\infty} a_{k} x^{k} \sum_{n=0}^{\infty}\binom{[n / k]+s}{[n / k]} x^{n} \\
& =\sum_{k=1}^{\infty} a_{k} x^{k} \sum_{n=k}^{\infty}\binom{[n / k]+s-1}{[n / k]-1} x^{n-k}=\sum_{n=1}^{\infty} x^{n} \sum_{k=1}^{n}\binom{[n / k]+s-1}{[n / k]-1} a_{k}
\end{aligned}
$$

which shows that the coefficients of $T(x)$ in (14) are

$$
\begin{equation*}
t_{n}=\sum_{k=1}^{n}\binom{[n / k]+s-1}{[n / k]-1} a_{k} \tag{16}
\end{equation*}
$$

Note that
(i) if $s=1$, then $\binom{[n / k]+s-1}{[n / k]-1}=[n / k]$, and thus $t_{n}=s_{n}$, which is the bracket function transform (1),
(ii) if $s=0$, then $\binom{[n / k]+s-1}{[n / k]-1}=1$, and thus (16) reduces to (13).

Third, we study the effect of the term x^{n}. Let

$$
\begin{equation*}
T(x)=\frac{1}{1-x} \sum_{n=1}^{\infty} a_{n} \frac{x^{t n}}{1-x^{n}}, \quad t \in \mathbb{Z}^{+} \tag{17}
\end{equation*}
$$

Then, by (8),

$$
\begin{align*}
T(x) & =\sum_{k=1}^{\infty} a_{k} x^{t k} \frac{1}{(1-x)\left(1-x^{k}\right)}=\sum_{k=1}^{\infty} a_{k} x^{t k} \sum_{n=0}^{\infty}([n / k]+1) x^{n} \tag{18}\\
& =\sum_{k=1}^{\infty} a_{k} x^{t k} \sum_{n=t k}^{\infty}([(n-t k) / k]+1) x^{n-t k}=\sum_{n=t}^{\infty} x^{n} \sum_{k=1}^{[n / t]}([n / k]-t+1) a_{k}
\end{align*}
$$

which shows that the coefficients of $T(x)$ in (17) are

$$
\begin{equation*}
t_{n}=\sum_{k=1}^{[n / t]}([n / k]-t+1) a_{k} \tag{19}
\end{equation*}
$$

Note that if $t=1$, then $t_{n}=s_{n}$, which is the bracket function transform (1).
What is the effect of deleting the term x^{n} in (2), that is, what are the coefficients of

$$
\begin{equation*}
T(x)=\frac{1}{1-x} \sum_{n=1}^{\infty} a_{n} \frac{1}{1-x^{n}} ? \tag{20}
\end{equation*}
$$

Proceeding in a way similar to that in (18), we obtain the coefficients of $T(x)$ in (20) as

$$
\begin{equation*}
t_{n}=\sum_{k=1}^{\infty}([n / k]+1) a_{k}=s_{n}+a \tag{21}
\end{equation*}
$$

provided that the series $\sum_{k=1}^{\infty} a_{k}$ is convergent and its sum is equal to a.
Finally, we note that the three cases (5), (14), and (17) could be treated simultaneously. In fact, let

$$
\begin{equation*}
T(x)=\frac{1}{(1-x)^{r}} \sum_{n=1}^{\infty} a_{n} \frac{x^{t n}}{\left(1-x^{n}\right)^{s}}, \quad r, s \in \mathbb{R}, t \in \mathbb{Z}^{+} \tag{22}
\end{equation*}
$$

Then

$$
\begin{equation*}
t_{n}=\sum_{k=1}^{[n / t]} C(n-t k, k, r, s) a_{k} \tag{23}
\end{equation*}
$$

where

$$
C(n, k, r, s)=\sum_{i=0}^{n}(-1)^{i}\binom{-r+1}{i}\binom{[(n-i) / k]+s}{[(n-i) / k]} .
$$

This can be proved in a similar way to the above three cases. For the sake of brevity, we omit the details here.

REFERENCES

1. H. W. Gould. Combinatorial Identities. Printed by Morgantown Printing and Binding Co., 1972.
2. H. W. Gould. "A Bracket Function Transform and Its Inverse." The Fibonacci Quarterly 32.2 (1994):176-79.

AMS Classification Numbers: 05A15, 05A19, 11B83
\%\%\%

