Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.1

Generalized Catalan Numbers and Generalized Hankel Transformations

Marc Chamberland and Christopher French
Department of Mathematics and Statistics
Grinnell College
Grinnell, IA 50112
USA
chamberl@math.grinnell.edu
frenchc@math.grinnell.edu

Abstract

Cvetković, Rajković and Ivković proved that the Hankel transformation of the sequence of sums of adjacent Catalan numbers is a sequence of every other Fibonacci number. In this paper, an elementary proof is given and a generalization to sequences of generalized Catalan numbers.

1 Introduction

Given a sequence of numbers $S=\left\{s_{0}, s_{1}, s_{2}, \ldots\right\}$, the Hankel matrix of order n generated by the sequence S is the $n \times n$-matrix whose (i, j)-entry is given by s_{i+j} for $0 \leq i, j \leq n-1$. The Hankel transform of the sequence S is the sequence of determinants of the Hankel matrices generated by S.

Suppose that

$$
a_{n}=\frac{1}{n+1}\binom{2 n}{n}+\frac{1}{n+2}\binom{2 n+2}{n+1},
$$

so that a_{n} is the sum of the $n^{\text {th }}$ and $n+1^{\text {st }}$ Catalan numbers. Then the Hankel transform of $\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$ begins $2,5,13,34, \ldots$ Layman first conjectured in the On-Line Encyclopedia of Integer Sequences ([4], see sequence A001906) that this sequence consists of every other Fibonacci number, and subsequently Cvetković, Rajković and Ivković [2] proved this conjecture. The current paper arose out of an attempt to understand and generalize this result.

The Catalan numbers $c_{n}=\frac{1}{n+1}\binom{2 n}{n}$ uniquely satisfy the nonlinear recurrence relation

$$
c_{n+1}=\sum_{r=0}^{n} c_{n-r} c_{r}, \quad c_{0}=1
$$

This sequence has been generalized to the recurrence relation

$$
c_{n+1, k}=\sum_{r=0}^{\left\lfloor\frac{n}{k-1}\right\rfloor}\left(c_{n-r(k-1), k}\right) *\left(c_{r(k-1), k}\right), \quad c_{0, k}=1 .
$$

When $k=2, c_{n, k}$ is simply the $n^{\text {th }}$ Catalan number. It can be shown ([3]) that

$$
c_{(k-1) n+l-1, k}=\frac{l}{k n+l}\binom{k n+l}{n}, \quad 1 \leq l \leq k-1
$$

Some notation is necessary to state our more general result. Let $a_{n, k}^{\prime}=c_{n, k}+c_{n+1, k}$ and $a_{n, k}^{\prime \prime}=c_{n, k}+c_{n+k-1, k}$. Note that $a_{n, 2}^{\prime}$ and $a_{n, 2}^{\prime \prime}$ both coincide with the sequence a_{n} described above. Let $A_{n, k}^{\prime}$ and $A_{n, k}^{\prime \prime}$ be the $n \times n$-matrices whose (i, j)-entries are given respectively by $a_{(k-1) i+j, k}^{\prime}$ and $a_{(k-1) i+j, k}^{\prime \prime}$ for $0 \leq i, j \leq n-1$. Let $F_{n, k}^{\prime}$ be the sequence determined by the recurrence relation

$$
F_{n+1, k}^{\prime}=F_{n-(k-2), k}^{\prime}+F_{n-(k-1), k}^{\prime}
$$

with initial conditions

$$
F_{1, k}^{\prime}=F_{2, k}^{\prime}=\cdots=F_{k, k}^{\prime}=1
$$

and let $F_{n, k}^{\prime \prime}$ be the sequence determined by

$$
F_{n+1, k}^{\prime \prime}=F_{n, k}^{\prime \prime}+F_{n-(k-1), k}^{\prime \prime}
$$

with the same initial conditions. Note that $F_{n, 2}^{\prime}=F_{n, 2}^{\prime \prime}=F_{n}$ (the $n^{\text {th }}$ Fibonacci number).
We can now state our main theorem:

Theorem 1.1.

$$
\operatorname{det}\left(A_{n, k}^{\prime}\right)=F_{k n+1, k}^{\prime}, \text { and } \operatorname{det}\left(A_{n, k}^{\prime \prime}\right)=F_{k n+1, k}^{\prime \prime} .
$$

Note that when $k=2$, our theorem reduces to the result of Cvetković, Rajković and Ivković [2].

In Section 2, we find $L U$ decompositions of the inverses of a sequence of matrices $C_{n, k}$ obtained from the generalized Catalan numbers. It turns out that these take surprisingly simple forms, and can be used to prove our main result, as seen in Section 3.

2 Generalized Catalan numbers

Definition 2.1. Let $C_{n, k}$ be the $n \times n$ matrix whose (i, j) entry is given by $c_{(k-1) i+j, k}$ for $0 \leq i, j \leq n-1$. Let $L_{n, k}$ be the $n \times n$ matrix whose (i, j) entry is given by $(-1)^{i-j}\binom{i+(k-1) j}{i-j}$ for $0 \leq i, j \leq n-1$. Let $U_{n, k}$ be the $n \times n$ matrix whose (i, j) entry is given by $(-1)^{j-i}\binom{j+\left\lfloor\frac{i}{k-1}\right\rfloor}{ j-i}$ for $0 \leq i, j \leq n-1$.

It is easy to see that $L_{n, k}$ is lower triangular with 1 's on the diagonal and $U_{n, k}$ is upper triangular with 1's on the diagonal. Our goal in this section is to prove that the product $L_{n, k} C_{n, k} U_{n, k}$ is equal to the identity matrix.

Our first step is to show that the product $L_{n, k} C_{n, k}$ is upper triangular with 1's on the diagonal. We will then show that $C_{n, k} U_{n, k}$ is lower triangular with 1's on the diagonal. From these two facts, the result will follow formally.

The proof makes use of certain generating functions.
Definition 2.2. For $1 \leq l \leq k-1$, let $g_{l}(z)=\sum_{n=0}^{\infty} c_{(k-1) n+l-1} z^{n}$, and let $g(z)=g_{1}(z)$.
It follows from the recurrence relation defining $c_{n, k}$ that $g_{l}(z) g(z)=g_{l+1}(z)$ for $1 \leq l \leq$ $k-2$, and also that $g_{k-1}(z) g(z)=\frac{g(z)-1}{z}$. Thus,

$$
\begin{equation*}
g(z)^{l}=g_{l}(z), \quad 1 \leq l \leq k-1 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
g(z)^{k}=\frac{g(z)-1}{z} . \tag{2}
\end{equation*}
$$

Bajunaid, Cohen, Colonna, and Signman [1] prove that the function

$$
\begin{equation*}
f(z):=(1-z) g\left(z(1-z)^{k-1}\right) \tag{3}
\end{equation*}
$$

converges to the constant function at 1 for z close to 0 . This is then used to show that

$$
\sum_{n=\lceil m / k\rceil}^{m}(-1)^{n} c_{(k-1) n, k}\binom{k n-n}{k n-m}=(-1)^{m} .
$$

(Note that the cited reference refers to $c_{(k-1) n, k}$ as $a_{n, k}$.) We use exactly the same technique to prove the following slightly stronger result.

Lemma 2.1. Suppose i and j are nonnegative integers. Then

$$
\sum_{m=0}^{i}(-1)^{i-m}\binom{i+(k-1) m}{i-m} c_{(k-1) m+j, k}= \begin{cases}0, & j<i \\ 1, & j=i\end{cases}
$$

Proof. It follows from Equation 1 that,

$$
\begin{equation*}
f_{l}(z):=(1-z)^{l} g_{l}\left(z(1-z)^{k-1}\right) \tag{4}
\end{equation*}
$$

is equal to $f(z)^{l}$, and therefore (by 3) converges to 1 for z close to 0 . From this, we find that for any $s \geq 0$, the series

$$
\sum_{m=0}^{\infty} c_{(k-1) m+(l-1), k}\left[z(1-z)^{k-1}\right]^{m}(1-z)^{s}=(1-z)^{s-l} f_{l}(z)
$$

converges to $(1-z)^{s-l}$ for z close to 0 . Expanding $(1-z)^{m(k-1)+s}$, we can rewrite this sum as

$$
\sum_{m=0}^{\infty} c_{(k-1) m+(l-1), k}\left(\sum_{t=0}^{m k-m+s}(-1)^{t}\binom{(k-1) m+s}{t} z^{t+m}\right)
$$

$$
=\sum_{n=0}^{\infty}\left(\sum_{m=\left\lceil\frac{n-s}{k}\right\rceil}^{n}(-1)^{n-m}\binom{(k-1) m+s}{n-m} c_{(k-1) m+(l-1), k}\right) z^{n} .
$$

Therefore, if $n>s-l$

$$
\sum_{m=\left\lceil\frac{n-s}{k}\right\rceil}^{n}(-1)^{n-m}\binom{(k-1) m+s}{n-m} c_{(k-1) m+(l-1), k}= \begin{cases}0, & s>l-1 \\ 1, & s=l-1\end{cases}
$$

Now, by the division algorithm, we may write j as $(k-1) r+(l-1)$, for some nonnegative integer r and some l with $1 \leq l \leq k-1$. Letting $s=i-(k-1) r$ and $n=i+r$, gives

$$
\sum_{m=r}^{i+r}(-1)^{i-(m-r)}\binom{(k-1)(m-r)+i}{n-m} c_{(k-1)(m-r)+j, k}= \begin{cases}0, & j<i \\ 1, & j=i\end{cases}
$$

The result now follows by an index shift.
Corollary 2.1. The product $L_{n, k} C_{n, k}$ is upper triangular with 1's on the diagonal.
Proof. The (i, j) entry of $L_{n, k} C_{n, k}$ is

$$
\sum_{m=0}^{n-1}(-1)^{i-m}\binom{i+(k-1) m}{i-m} c_{(k-1) m+j, k}
$$

We now turn to consider the product $C_{n, k} U_{n, k}$.

Lemma 2.2.

$$
\sum_{m=0}^{j} c_{(k-1) i+m, k}(-1)^{j-m}\binom{j+\left\lfloor\frac{m}{k-1}\right\rfloor}{ j-m}=\left\{\begin{array}{cc}
0, & i<j \\
1, & i=j
\end{array}\right.
$$

Proof. By Equation 2

$$
\sum_{l=0}^{k-1}\left(z g\left(z^{k-1}(1-z)\right)\right)^{l}=\frac{\left(z g\left(z^{k-1}(1-z)\right)\right)^{k}-1}{z g\left(z^{k-1}(1-z)\right)-1}=\frac{z^{k} \frac{g\left(z^{k-1}(1-z)\right)-1}{z^{k-1}(1-z)}-1}{z g\left(z^{k-1}(1-z)\right)-1}=\frac{1}{1-z}
$$

for z close to 0 . It follows by Equation 1 that

$$
\sum_{l=0}^{k-1} z^{l} g_{l}\left(z^{k-1}(1-z)\right)=\frac{1}{1-z}
$$

so subtracting 1 , dividing by z, and multiplying by $(1-z)^{s}$ gives

$$
\sum_{l=1}^{k-1}(1-z)^{s} z^{l-1} g_{l}\left(z^{k-1}(1-z)\right)=(1-z)^{s-1}
$$

Now,

$$
\begin{gathered}
(1-z)^{s} z^{l-1} g_{l}\left(z^{k-1}(1-z)\right)=\sum_{p=0}^{\infty} c_{(k-1) p+l-1, k}(1-z)^{p+s} z^{p(k-1)+l-1} \\
=\sum_{p=0}^{\infty} c_{(k-1) p+l-1, k} \sum_{t=0}^{p+s}(-1)^{t}\binom{p+s}{t} z^{p(k-1)+l-1+t} \\
=\sum_{n=0}^{\infty}\left(\sum_{p}(-1)^{n-p(k-1)-(l-1)}\binom{p+s}{n-p(k-1)-(l-1)} c_{(k-1) p+l-1, k}\right) z^{n} .
\end{gathered}
$$

Therefore,

$$
\sum_{l=1}^{k-1}(1-z)^{s} z^{l-1} g_{l}\left(z^{k-1}(1-z)\right)=\sum_{n=0}^{\infty}\left(\sum_{m}(-1)^{n-m}\binom{s+\left\lfloor\frac{m}{k-1}\right\rfloor}{ n-m} c_{m, k}\right) z^{n}
$$

Here, we have used the division algorithm to substitute $m=p(k-1)+l-1$, where $1 \leq l \leq$ $k-1$. So,

$$
\sum_{m}(-1)^{n-m}\binom{s+\left\lfloor\frac{m}{k-1}\right\rfloor}{ n-m} c_{m, k}= \begin{cases}0, & n \geq s>0 \\ 1, & s=0\end{cases}
$$

Letting $s=j-i, n=j+(k-1) i$ and shifting index yields the result.
Corollary 2.2. The product $C_{n, k} U_{n, k}$ is lower triangular with 1's on the diagonal.
Theorem 2.1. The product $L_{n, k} C_{n, k} U_{n, k}$ is equal to the identity matrix.
Proof. By Corollaries 2.1 and 2.2, the products $L_{n, k}^{-1}\left(L_{n, k} C_{n, k}\right)$ and $\left(C_{n, k} U_{n, k}\right) U_{n, k}^{-1}$ are both LU decompositions of $C_{n, k}$. By uniqueness of LU decompositions, $L_{n, k}^{-1}=C_{n, k} U_{n, k}$.

3 Proof of the Main Theorem

In this section, we prove our main result, which will follow from two additional lemmas.
Lemma 3.1. The determinant of the $(n-1) \times(n-1)$ minor of $C_{n, k}$ obtained by removing the final column and the jth row is $\binom{n-1+(k-1) j}{n-1-j}$. The determinant of the $(n-1) \times(n-1)$ minor of $C_{n, k}$ obtained by removing the final row and the ith column is $\binom{n-1+\left\lfloor\frac{i}{k-1}\right\rfloor}{ n-1-i}$.

Proof. Since the determinant of $L_{n, k}$ and $U_{n, k}$ are both 1 , the determinant of $C_{n, k}$ is 1 , so $C_{n, k}^{-1}$ is equal to the adjoint of $C_{n, k}$. Since $C_{n, k}^{-1}=U_{n, k} L_{n, k}$, the final row of the adjoing of $C_{n, k}$ is equal to the final row of $L_{n, k}$ and the final column of the adjoing of $C_{n, k}$ is equal to the final column of $U_{n, k}$. Now the (i, j) entry in the adjoint of $C_{n, k}$ is the product of $(-1)^{i+j}$ and the determinant of the $(n-1) \times(n-1)$ minor of $C_{n, k}$ obtained by removing the i th column and the j th row. The claim follows.

Lemma 3.2. The determinants of $A_{n, k}^{\prime}$ and $A_{n, k}^{\prime \prime}$ are respectively given by

$$
\sum_{i=0}^{n}\binom{n+\left\lfloor\frac{i}{k-1}\right\rfloor}{ n-i}
$$

and

$$
\sum_{j=0}^{n}\binom{n+(k-1) j}{n-j}
$$

Proof. We consider only the determinant of $A_{n, k}^{\prime}$, the other argument being similar. For each j between 1 and $n+1$, let \mathbf{c}_{j} be the column vector consisting of the first n terms in the j th row of $C_{n+1, k}$. Then the j th column vector of $A_{n, k}^{\prime}$ is $\mathbf{c}_{j}+\mathbf{c}_{j+1}$. Therefore, the determinant of $A_{n, k}^{\prime}$ could be written as the sum of the determinants of 2^{n} matrices, where the j th column vector of each matrix is either \mathbf{c}_{j} or \mathbf{c}_{j+1}. Most of these determinants are zero, since the determinant of any matrix with two identical column vectors is zero. The nonzero determinants belong to those matrices whose column vectors are n distinct vectors from the set $\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n+1}\right\}$, in order. But these are just the determinants of the minors of $C_{n+1, k}$ obtained by removing the final row and one of the columns. The result follows by Lemma 3.1.

We now prove Theorem 1.1.
Proof. For $n \geq 0$ and $1 \leq l \leq k$, let $G_{k n+l, k}^{\prime}=\sum_{i=0}^{n}\binom{n+\left\lfloor\frac{i+l-1}{k-1}\right\rfloor}{ n-i}$. We now show that $G_{k n+l, k}^{\prime}=F_{k n+l}^{\prime}$ for all $n \geq 0,1 \leq l \leq k$. This follows from the following three observations.

1. For $1 \leq l \leq k, G_{l, k}^{\prime}=1$.
2. For $1 \leq l \leq k-1$,

$$
\begin{gathered}
G_{k n+l, k}^{\prime}+G_{k n+l+1, k}^{\prime}=\sum_{i=0}^{n}\binom{n+\left\lfloor\frac{i+l-1}{k-1}\right\rfloor}{ n-i}+\sum_{i=0}^{n}\binom{n+\left\lfloor\frac{i+l}{k-1}\right\rfloor}{ n-i} \\
=\sum_{i=0}^{n}\binom{n+\left\lfloor\frac{i+l-1}{k-1}\right\rfloor}{ n-i}+\sum_{i=1}^{n+1}\binom{n+\left\lfloor\frac{i-1+l}{k-1}\right\rfloor}{ n-(i-1)}=\sum_{i=0}^{n+1}\binom{n+1+\left\lfloor\frac{i+l-1}{k-1}\right\rfloor}{ n-i}=G_{k(n+1)+l, k}^{\prime} .
\end{gathered}
$$

3.

$$
\begin{aligned}
& G_{k n+k, k}^{\prime}+G_{k(n+1)+1, k}^{\prime}=\sum_{i=0}^{n}\binom{n+\left\lfloor\frac{i+k-1}{k-1}\right\rfloor}{ n-i}+\sum_{i=0}^{n+1}\binom{n+1+\left\lfloor\frac{i}{k-1}\right\rfloor}{ n+1-i} \\
& =\sum_{i=0}^{n+1}\left(\binom{n+1+\left\lfloor\frac{i}{k-1}\right\rfloor}{ n-i}+\binom{n+1+\left\lfloor\frac{i}{k-1}\right\rfloor}{ n+1-i}\right) \\
& =\sum_{i=0}^{n+1}\binom{n+2+\left\lfloor\frac{i}{k-1}\right\rfloor}{ n+1-i}=\sum_{i=0}^{n+1}\binom{n+1+\left\lfloor\frac{i+k-1}{k-1}\right\rfloor}{ n+1-i}=G_{k(n+1)+k, k}^{\prime} .
\end{aligned}
$$

Now for $n \geq 0$ and $1 \leq l \leq k$, let $G_{k n+l, k}^{\prime \prime}=\sum_{j=0}^{n}\binom{n+(k-1) j+l-1}{n-j}$. We now show that $G_{k n+l, k}^{\prime \prime}=F_{k n+l}^{\prime \prime}$ for all $n \geq 0,1 \leq l \leq k$. This follows from the following three observations.

1. For $1 \leq l \leq k, G_{l, k}^{\prime \prime}=1$.
2. For $1 \leq l \leq k-1$,

$$
\begin{aligned}
G_{k n+l, k}^{\prime \prime}+G_{k(n-1)+(l+1), k}^{\prime \prime} & =\sum_{j=0}^{n}\left(\binom{n+(k-1) j+l-1}{n-j}+\binom{n-1+(k-1) j+l}{n-1-j}\right) \\
= & \sum_{j=0}^{n}\binom{n+(k-1) j+l}{n-j}=G_{k n+l+1, k}^{\prime \prime} .
\end{aligned}
$$

3.

$$
\begin{gathered}
G_{k n+k, k}^{\prime \prime}+G_{k n+1, k}^{\prime \prime}=\sum_{j=0}^{n}\left(\binom{n+(k-1) j+k-1}{n-j}+\binom{n+(k-1) j}{n-j}\right) \\
=\sum_{j=1}^{n+1}\left(\binom{n+(k-1) j}{n-(j-1)}\right)+\sum_{j=0}^{n}\binom{n+(k-1) j}{n-j}=\sum_{j=0}^{n+1}\left(\binom{n+1+(k-1) j}{n+1-j}=G_{k(n+1)+1, k}^{\prime \prime} .\right.
\end{gathered}
$$

The statement of the theorem now follows from Lemma 3.2.

References

[1] I. Bajunaid, J. M. Cohen, F. Colonna and D. Signman, Function series, Catalan numbers, and random walks on trees, Amer. Math. Monthly. 112 (2005), 765-785.
[2] A. Cvetković, P. Rajković and M. Ivković, Catalan numbers, and Hankel transform, and Fibonacci numbers, J. Integer Seq. 5 (2002), no. 1, Article 02.1.3, 8 pp. (electronic).
[3] P. Hilton and J. Pederson, Catalan numbers, their generalization, and their uses, Math. Int. 13 (1991), 64-75.
[4] Neil J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, 2005, published electronically at http://www.research.att.com/~njas/sequences/.

2000 Mathematics Subject Classification: Primary 11B37; Secondary 11B39, 11B75.
Keywords: Generalized Catalan numbers, Hankel transform.
(Concerned with sequence A001906.)

Received August 28 2006; revised version received December 6 2006. Published in Journal of Integer Sequences, December 82006.

Return to Journal of Integer Sequences home page.

