

# Generalized Catalan Numbers and Generalized Hankel Transformations

Marc Chamberland and Christopher French
Department of Mathematics and Statistics
Grinnell College
Grinnell, IA 50112
USA

chamberl@math.grinnell.edu frenchc@math.grinnell.edu

#### Abstract

Cvetković, Rajković and Ivković proved that the Hankel transformation of the sequence of sums of adjacent Catalan numbers is a sequence of every other Fibonacci number. In this paper, an elementary proof is given and a generalization to sequences of generalized Catalan numbers.

# 1 Introduction

Given a sequence of numbers  $S = \{s_0, s_1, s_2, \ldots\}$ , the Hankel matrix of order n generated by the sequence S is the  $n \times n$ -matrix whose (i, j)-entry is given by  $s_{i+j}$  for  $0 \le i, j \le n-1$ . The Hankel transform of the sequence S is the sequence of determinants of the Hankel matrices generated by S.

Suppose that

$$a_n = \frac{1}{n+1} {2n \choose n} + \frac{1}{n+2} {2n+2 \choose n+1},$$

so that  $a_n$  is the sum of the  $n^{\text{th}}$  and  $n+1^{\text{st}}$  Catalan numbers. Then the Hankel transform of  $\{a_0, a_1, a_2, \ldots\}$  begins  $2, 5, 13, 34, \ldots$  Layman first conjectured in the On-Line Encyclopedia of Integer Sequences ([4], see sequence A001906) that this sequence consists of every other Fibonacci number, and subsequently Cvetković, Rajković and Ivković [2] proved this conjecture. The current paper arose out of an attempt to understand and generalize this result.

The Catalan numbers  $c_n = \frac{1}{n+1} \binom{2n}{n}$  uniquely satisfy the nonlinear recurrence relation

$$c_{n+1} = \sum_{r=0}^{n} c_{n-r} c_r, \quad c_0 = 1.$$

This sequence has been generalized to the recurrence relation

$$c_{n+1,k} = \sum_{r=0}^{\lfloor \frac{n}{k-1} \rfloor} (c_{n-r(k-1),k}) * (c_{r(k-1),k}), \quad c_{0,k} = 1.$$

When k = 2,  $c_{n,k}$  is simply the  $n^{th}$  Catalan number. It can be shown ([3]) that

$$c_{(k-1)n+l-1,k} = \frac{l}{kn+l} \binom{kn+l}{n}, \quad 1 \le l \le k-1.$$

Some notation is necessary to state our more general result. Let  $a'_{n,k} = c_{n,k} + c_{n+1,k}$  and  $a''_{n,k} = c_{n,k} + c_{n+k-1,k}$ . Note that  $a'_{n,2}$  and  $a''_{n,2}$  both coincide with the sequence  $a_n$  described above. Let  $A'_{n,k}$  and  $A''_{n,k}$  be the  $n \times n$ -matrices whose (i,j)-entries are given respectively by  $a'_{(k-1)i+j,k}$  and  $a''_{(k-1)i+j,k}$  for  $0 \le i, j \le n-1$ . Let  $F'_{n,k}$  be the sequence determined by the recurrence relation

$$F'_{n+1,k} = F'_{n-(k-2),k} + F'_{n-(k-1),k}$$

with initial conditions

$$F'_{1,k} = F'_{2,k} = \dots = F'_{k,k} = 1,$$

and let  $F''_{n,k}$  be the sequence determined by

$$F_{n+1,k}'' = F_{n,k}'' + F_{n-(k-1),k}''$$

with the same initial conditions. Note that  $F'_{n,2} = F''_{n,2} = F_n$  (the  $n^{th}$  Fibonacci number). We can now state our main theorem:

#### Theorem 1.1.

$$\det(A'_{n,k}) = F'_{kn+1,k}, \text{ and } \det(A''_{n,k}) = F''_{kn+1,k}.$$

Note that when k=2, our theorem reduces to the result of Cvetković, Rajković and Ivković [2].

In Section 2, we find LU decompositions of the inverses of a sequence of matrices  $C_{n,k}$  obtained from the generalized Catalan numbers. It turns out that these take surprisingly simple forms, and can be used to prove our main result, as seen in Section 3.

## 2 Generalized Catalan numbers

**Definition 2.1.** Let  $C_{n,k}$  be the  $n \times n$  matrix whose (i,j) entry is given by  $c_{(k-1)i+j,k}$  for  $0 \le i, j \le n-1$ . Let  $L_{n,k}$  be the  $n \times n$  matrix whose (i,j) entry is given by  $(-1)^{i-j} \binom{i+(k-1)j}{i-j}$  for  $0 \le i, j \le n-1$ . Let  $U_{n,k}$  be the  $n \times n$  matrix whose (i,j) entry is given by  $(-1)^{j-i} \binom{j+\lfloor \frac{i}{k-1} \rfloor}{j-i}$  for  $0 \le i, j \le n-1$ .

It is easy to see that  $L_{n,k}$  is lower triangular with 1's on the diagonal and  $U_{n,k}$  is upper triangular with 1's on the diagonal. Our goal in this section is to prove that the product  $L_{n,k}C_{n,k}U_{n,k}$  is equal to the identity matrix.

Our first step is to show that the product  $L_{n,k}C_{n,k}$  is upper triangular with 1's on the diagonal. We will then show that  $C_{n,k}U_{n,k}$  is lower triangular with 1's on the diagonal. From these two facts, the result will follow formally.

The proof makes use of certain generating functions.

**Definition 2.2.** For 
$$1 \le l \le k-1$$
, let  $g_l(z) = \sum_{n=0}^{\infty} c_{(k-1)n+l-1} z^n$ , and let  $g(z) = g_1(z)$ .

It follows from the recurrence relation defining  $c_{n,k}$  that  $g_l(z)g(z)=g_{l+1}(z)$  for  $1 \leq l \leq k-2$ , and also that  $g_{k-1}(z)g(z)=\frac{g(z)-1}{z}$ . Thus,

$$g(z)^{l} = g_{l}(z), \ 1 \le l \le k - 1$$
 (1)

and

$$g(z)^k = \frac{g(z) - 1}{z}. (2)$$

Bajunaid, Cohen, Colonna, and Signman [1] prove that the function

$$f(z) := (1 - z)g(z(1 - z)^{k-1})$$
(3)

converges to the constant function at 1 for z close to 0. This is then used to show that

$$\sum_{n=\lceil m/k \rceil}^{m} (-1)^n c_{(k-1)n,k} \binom{kn-n}{kn-m} = (-1)^m.$$

(Note that the cited reference refers to  $c_{(k-1)n,k}$  as  $a_{n,k}$ .) We use exactly the same technique to prove the following slightly stronger result.

**Lemma 2.1.** Suppose i and j are nonnegative integers. Then

$$\sum_{m=0}^{i} (-1)^{i-m} \binom{i+(k-1)m}{i-m} c_{(k-1)m+j,k} = \begin{cases} 0, & j < i; \\ 1, & j = i. \end{cases}$$

*Proof.* It follows from Equation 1 that,

$$f_l(z) := (1-z)^l q_l(z(1-z)^{k-1}) \tag{4}$$

is equal to  $f(z)^l$ , and therefore (by 3) converges to 1 for z close to 0. From this, we find that for any  $s \ge 0$ , the series

$$\sum_{m=0}^{\infty} c_{(k-1)m+(l-1),k} [z(1-z)^{k-1}]^m (1-z)^s = (1-z)^{s-l} f_l(z)$$

converges to  $(1-z)^{s-l}$  for z close to 0. Expanding  $(1-z)^{m(k-1)+s}$ , we can rewrite this sum as

$$\sum_{m=0}^{\infty} c_{(k-1)m+(l-1),k} \left( \sum_{t=0}^{mk-m+s} (-1)^t \binom{(k-1)m+s}{t} z^{t+m} \right)$$

$$= \sum_{n=0}^{\infty} \left( \sum_{m=\lceil \frac{n-s}{k} \rceil}^{n} (-1)^{n-m} \binom{(k-1)m+s}{n-m} c_{(k-1)m+(l-1),k} \right) z^{n}.$$

Therefore, if n > s - l

$$\sum_{m=\lceil \frac{n-s}{k} \rceil}^{n} (-1)^{n-m} \binom{(k-1)m+s}{n-m} c_{(k-1)m+(l-1),k} = \begin{cases} 0, & s>l-1; \\ 1, & s=l-1. \end{cases}$$

Now, by the division algorithm, we may write j as (k-1)r+(l-1), for some nonnegative integer r and some l with  $1 \le l \le k-1$ . Letting s=i-(k-1)r and n=i+r, gives

$$\sum_{m=r}^{i+r} (-1)^{i-(m-r)} \binom{(k-1)(m-r)+i}{n-m} c_{(k-1)(m-r)+j,k} = \begin{cases} 0, & j < i; \\ 1, & j = i. \end{cases}$$

The result now follows by an index shift.

Corollary 2.1. The product  $L_{n,k}C_{n,k}$  is upper triangular with 1's on the diagonal.

*Proof.* The (i,j) entry of  $L_{n,k}C_{n,k}$  is

$$\sum_{m=0}^{n-1} (-1)^{i-m} \binom{i+(k-1)m}{i-m} c_{(k-1)m+j,k}.$$

We now turn to consider the product  $C_{n,k}U_{n,k}$ .

#### Lemma 2.2.

$$\sum_{m=0}^{j} c_{(k-1)i+m,k} (-1)^{j-m} \binom{j + \lfloor \frac{m}{k-1} \rfloor}{j-m} = \begin{cases} 0, & i < j; \\ 1, & i = j. \end{cases}$$

*Proof.* By Equation 2

$$\sum_{l=0}^{k-1} \left( zg(z^{k-1}(1-z)) \right)^l = \frac{(zg(z^{k-1}(1-z)))^k - 1}{zg(z^{k-1}(1-z)) - 1} = \frac{z^k \frac{g(z^{k-1}(1-z)) - 1}{z^{k-1}(1-z)} - 1}{zg(z^{k-1}(1-z)) - 1} = \frac{1}{1-z}$$

for z close to 0. It follows by Equation 1 that

$$\sum_{l=0}^{k-1} z^l g_l(z^{k-1}(1-z)) = \frac{1}{1-z},$$

so subtracting 1, dividing by z, and multiplying by  $(1-z)^s$  gives

$$\sum_{l=1}^{k-1} (1-z)^s z^{l-1} g_l(z^{k-1}(1-z)) = (1-z)^{s-1}.$$

Now,

$$(1-z)^{s}z^{l-1}g_{l}(z^{k-1}(1-z)) = \sum_{p=0}^{\infty} c_{(k-1)p+l-1,k}(1-z)^{p+s}z^{p(k-1)+l-1}$$

$$= \sum_{p=0}^{\infty} c_{(k-1)p+l-1,k} \sum_{t=0}^{p+s} (-1)^{t} {p+s \choose t} z^{p(k-1)+l-1+t}$$

$$= \sum_{n=0}^{\infty} \left( \sum_{p} (-1)^{n-p(k-1)-(l-1)} {p+s \choose n-p(k-1)-(l-1)} c_{(k-1)p+l-1,k} \right) z^{n}.$$

Therefore,

$$\sum_{l=1}^{k-1} (1-z)^s z^{l-1} g_l(z^{k-1}(1-z)) = \sum_{n=0}^{\infty} \left( \sum_m (-1)^{n-m} \binom{s + \lfloor \frac{m}{k-1} \rfloor}{n-m} c_{m,k} \right) z^n.$$

Here, we have used the division algorithm to substitute m = p(k-1) + l - 1, where  $1 \le l \le k - 1$ . So,

$$\sum_{m} (-1)^{n-m} \binom{s + \lfloor \frac{m}{k-1} \rfloor}{n-m} c_{m,k} = \begin{cases} 0, & n \ge s > 0; \\ 1, & s = 0. \end{cases}$$

Letting s = j - i, n = j + (k - 1)i and shifting index yields the result.

Corollary 2.2. The product  $C_{n,k}U_{n,k}$  is lower triangular with 1's on the diagonal.

**Theorem 2.1.** The product  $L_{n,k}C_{n,k}U_{n,k}$  is equal to the identity matrix.

*Proof.* By Corollaries 2.1 and 2.2, the products  $L_{n,k}^{-1}(L_{n,k}C_{n,k})$  and  $(C_{n,k}U_{n,k})U_{n,k}^{-1}$  are both LU decompositions of  $C_{n,k}$ . By uniqueness of LU decompositions,  $L_{n,k}^{-1} = C_{n,k}U_{n,k}$ .

#### 3 Proof of the Main Theorem

In this section, we prove our main result, which will follow from two additional lemmas.

**Lemma 3.1.** The determinant of the  $(n-1) \times (n-1)$  minor of  $C_{n,k}$  obtained by removing the final column and the jth row is  $\binom{n-1+(k-1)j}{n-1-j}$ . The determinant of the  $(n-1) \times (n-1)$  minor of  $C_{n,k}$  obtained by removing the final row and the ith column is  $\binom{n-1+\lfloor \frac{i}{k-1} \rfloor}{n-1-i}$ .

Proof. Since the determinant of  $L_{n,k}$  and  $U_{n,k}$  are both 1, the determinant of  $C_{n,k}$  is 1, so  $C_{n,k}^{-1}$  is equal to the adjoint of  $C_{n,k}$ . Since  $C_{n,k}^{-1} = U_{n,k}L_{n,k}$ , the final row of the adjoing of  $C_{n,k}$  is equal to the final row of  $L_{n,k}$  and the final column of the adjoing of  $C_{n,k}$  is equal to the final column of  $U_{n,k}$ . Now the (i,j) entry in the adjoint of  $C_{n,k}$  is the product of  $(-1)^{i+j}$  and the determinant of the  $(n-1) \times (n-1)$  minor of  $C_{n,k}$  obtained by removing the ith column and the jth row. The claim follows.

**Lemma 3.2.** The determinants of  $A'_{n,k}$  and  $A''_{n,k}$  are respectively given by

$$\sum_{i=0}^{n} \binom{n + \lfloor \frac{i}{k-1} \rfloor}{n-i}$$

and

$$\sum_{j=0}^{n} \binom{n+(k-1)j}{n-j}.$$

Proof. We consider only the determinant of  $A'_{n,k}$ , the other argument being similar. For each j between 1 and n+1, let  $\mathbf{c}_j$  be the column vector consisting of the first n terms in the jth row of  $C_{n+1,k}$ . Then the jth column vector of  $A'_{n,k}$  is  $\mathbf{c}_j + \mathbf{c}_{j+1}$ . Therefore, the determinant of  $A'_{n,k}$  could be written as the sum of the determinants of  $2^n$  matrices, where the jth column vector of each matrix is either  $\mathbf{c}_j$  or  $\mathbf{c}_{j+1}$ . Most of these determinants are zero, since the determinant of any matrix with two identical column vectors is zero. The nonzero determinants belong to those matrices whose column vectors are n distinct vectors from the set  $\{\mathbf{c}_1, \mathbf{c}_2, \ldots, \mathbf{c}_{n+1}\}$ , in order. But these are just the determinants of the minors of  $C_{n+1,k}$  obtained by removing the final row and one of the columns. The result follows by Lemma 3.1.

We now prove Theorem 1.1.

*Proof.* For  $n \geq 0$  and  $1 \leq l \leq k$ , let  $G'_{kn+l,k} = \sum_{i=0}^{n} {n+\lfloor \frac{i+l-1}{k-1} \rfloor \choose n-i}$ . We now show that  $G'_{kn+l,k} = F'_{kn+l}$  for all  $n \geq 0$ ,  $1 \leq l \leq k$ . This follows from the following three observations.

- 1. For  $1 \le l \le k$ ,  $G'_{l,k} = 1$ .
- 2. For  $1 \le l \le k 1$ ,

$$G'_{kn+l,k} + G'_{kn+l+1,k} = \sum_{i=0}^{n} \binom{n + \lfloor \frac{i+l-1}{k-1} \rfloor}{n-i} + \sum_{i=0}^{n} \binom{n + \lfloor \frac{i+l}{k-1} \rfloor}{n-i}$$

$$= \sum_{i=0}^{n} \binom{n + \lfloor \frac{i+l-1}{k-1} \rfloor}{n-i} + \sum_{i=1}^{n+1} \binom{n + \lfloor \frac{i-1+l}{k-1} \rfloor}{n-(i-1)} = \sum_{i=0}^{n+1} \binom{n+1 + \lfloor \frac{i+l-1}{k-1} \rfloor}{n-i} = G'_{k(n+1)+l,k}.$$

3.

$$G'_{kn+k,k} + G'_{k(n+1)+1,k} = \sum_{i=0}^{n} \binom{n + \lfloor \frac{i+k-1}{k-1} \rfloor}{n-i} + \sum_{i=0}^{n+1} \binom{n+1 + \lfloor \frac{i}{k-1} \rfloor}{n+1-i}$$

$$= \sum_{i=0}^{n+1} \binom{n+1 + \lfloor \frac{i}{k-1} \rfloor}{n-i} + \binom{n+1 + \lfloor \frac{i}{k-1} \rfloor}{n+1-i}$$

$$= \sum_{i=0}^{n+1} \binom{n+2 + \lfloor \frac{i}{k-1} \rfloor}{n+1-i} = \sum_{i=0}^{n+1} \binom{n+1 + \lfloor \frac{i+k-1}{k-1} \rfloor}{n+1-i} = G'_{k(n+1)+k,k}.$$

Now for  $n \ge 0$  and  $1 \le l \le k$ , let  $G''_{kn+l,k} = \sum_{j=0}^n \binom{n+(k-1)j+l-1}{n-j}$ . We now show that  $G''_{kn+l,k} = F''_{kn+l}$  for all  $n \ge 0$ ,  $1 \le l \le k$ . This follows from the following three observations.

- 1. For  $1 \le l \le k$ ,  $G''_{l,k} = 1$ .
- 2. For  $1 \le l \le k 1$ ,

$$G_{kn+l,k}'' + G_{k(n-1)+(l+1),k}'' = \sum_{j=0}^{n} \left( \binom{n+(k-1)j+l-1}{n-j} + \binom{n-1+(k-1)j+l}{n-1-j} \right)$$

$$= \sum_{j=0}^{n} \binom{n+(k-1)j+l}{n-j} = G_{kn+l+1,k}''.$$

3.  $G''_{kn+k,k} + G''_{kn+1,k} = \sum_{j=0}^{n} \left( \binom{n+(k-1)j+k-1}{n-j} + \binom{n+(k-1)j}{n-j} \right)$  $= \sum_{j=0}^{n+1} \left( \binom{n+(k-1)j}{n-(j-1)} \right) + \sum_{j=0}^{n} \binom{n+(k-1)j}{n-j} = \sum_{j=0}^{n+1} \left( \binom{n+1+(k-1)j}{n+1-j} \right) = G''_{k(n+1)+1,k}.$ 

The statement of the theorem now follows from Lemma 3.2.

## References

- [1] I. Bajunaid, J. M. Cohen, F. Colonna and D. Signman, Function series, Catalan numbers, and random walks on trees, *Amer. Math. Monthly.* **112** (2005), 765–785.
- [2] A. Cvetković, P. Rajković and M. Ivković, Catalan numbers, and Hankel transform, and Fibonacci numbers, J. Integer Seq. 5 (2002), no. 1, Article 02.1.3, 8 pp. (electronic).
- [3] P. Hilton and J. Pederson, Catalan numbers, their generalization, and their uses, *Math. Int.* **13** (1991), 64–75.
- [4] Neil J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, 2005, published electronically at http://www.research.att.com/~njas/sequences/.

2000 Mathematics Subject Classification: Primary 11B37; Secondary 11B39, 11B75.

Keywords: Generalized Catalan numbers, Hankel transform.

(Concerned with sequence <u>A001906</u>.)

Received August 28 2006; revised version received December 6 2006. Published in *Journal of Integer Sequences*, December 8 2006.

Return to Journal of Integer Sequences home page.