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�[...] many an interesting combinatorial problem can be formulated algebraically as
that of transforming a basis into another basis with more desirable properties.�

S. A. Joni, G.-C. Rota, Coalgebras and bialgebras in combinatorics.

Abstract. The ECO method and the theory of Catalan-like numbers introduced
by Aigner seems two completely unrelated combinatorial settings. In this work
we try to establish a bridge between them, aiming at starting a (hopefully)
fruitful study on their interactions. We show that, in a linear algebra context
(more precisely, using in�nite matrices), a succession rule can be translated into
a (generalized) Aigner matrix by means of a suitable change of basis in the vector
space of one-variable polynomials. We provide some examples to illustrate this
fact and apply it to the study of two particular classes of succession rules.

Mathematics Subject Classi�cations (2000). 05A10, 15A04, 15A24, 15A36

1 Introduction
The ECO method was founded in the 90's by a group of researchers, in-

cluding Pinzani, Barcucci, Del Lungo and Pergola [6, 7]. It consists of a purely
combinatorial way of constructing the objects of a given class in such a way that,
if the construction is su�ciently regular and recursive, enumeration follows by
more or less standard methods of combinatorial analysis. More precisely, one
starts by partitioning a class of objects according to their size (suitably de�ned).
The goal is then to perform a sort of local expansion on each object of a given
size, thus producing all the objects of the successive size exactly once. There-
fore a single object produces a set of new objects according to some parameter.
Typically, if such a construction is regular enough, one can encode it using a
succession rule [13, 14], which is a purely formal system, generally expressed as
follows: {

(a)
(k) Ã (e1(k)) · · · (ek(k)) . (1)

This work was partially supported by MIUR project: Automi e linguaggi formali: aspetti
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Here the letters denote positive integers, (a) is called the axiom and (k) Ã
(e1(k)) · · · (ek(k)) is the production of (k). A succession rule can be represented
by means of its generating tree, which is, by de�nition, the in�nite, rooted,
labelled tree whose root is labelled a (like the axiom) and such that every node
labelled k produces k sons, labelled respectively e1(k), . . . , ek(k). One of the
main enumerative information provided by a succession rule is the numerical
sequence of the cardinalities of the levels of the generating tree associated with
the rule: we will refer to such a sequence as the numerical sequence determined
by the succession rule.

The basic reference for the ECO method is [6], in which many examples can
also be found.

The importance of succession rules as a tool for the ECO method has lead
to several investigations to get a better mathematical insight on them. In [12]
the authors de�ne the concept of rule operator, thus translating a succession
rule into a linear operator on one-variable polynomials. In [10] every succession
rule is associated with at least two in�nite matrices: the production matrix,
which is essentially the matrix of the related rule operator with respect to the
canonical basis of polynomials (xn)n∈N, and the ECO matrix, whose (n, k)-entry
is, by de�nition, the number of nodes labelled k at level n in the corresponding
generating tree. We point out that a few instances of the notion of production
matrix appeared for the �rst time in [13] under the name of �transfer matrices�.

Another combinatorial theory dealing with in�nite matrices is Aigner's the-
ory of Catalan-like numbers [2, 3, 4, 15]. The basic idea of [2] is to characterize
those sequences for which the determinants of the Hankel matrices of order 0
are all equal to 1. It is shown that such sequences appear as the �rst column of
certain in�nite matrices, called admissible matrices. These numbers are referred
to with the name of Catalan-like numbers. The reason for this name lies in the
fact that Catalan numbers are the unique sequence whose Hankel determinants
of orders 0 and 1 equal 1.

In [3, 4] Aigner extends this theory by considering a more general kind of
matrices, which we will rename Aigner matrices (instead of the infelicitous name
�recursive matrices� used in [4]). Generalizing the previous de�nition, we will
call Catalan-like numbers every sequence appearing as the �rst column of an
Aigner matrix.

The aim of our work is to provide a �vocabulary� to translate the ECO
method into Aigner's theory, and vice versa. Such a vocabulary turns out to
be based on linear algebra tools, consisting of a suitable change of basis in the
vector space of one-variable polynomials. What we hope to show in this paper
is that the two theories under consideration are, in some algebraic sense, the
two sides of the same medal, which is quite surprising if we think of the very
di�erent starting points, and combinatorial meanings, of such theories.

After a brief survey of the notions we need from the ECO method and
Aigner's theory, we provide the main linear algebra tools to be used in the sequel.
In particular, we de�ne the Aigner basis in the vector space of one-variable
polynomials and prove some of its properties. Next we introduce what we call
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the fundamental change of basis, which is the key ingredient to accomplish our
project, and propose some examples to illustrate our approach. The �nal part
of the work is devoted to the study of two particular cases, for which we are
able to fully describe how to switch from one theory to the other. In the last
section we give some hints for possible, future works.

Before starting, a few words concerning our notations. We have chosen to
use N to denote natural numbers (zero included), whereas N∗ is the set of
natural numbers without zero. The symbol x is used to denote the operator
of multiplication by x, in order to distinguish it from the symbol x, used as
a polynomial variable. The symbol > denotes the transpose of a matrix. The
last remark concerns the way we have chosen to index the lines of our matrices.
Classically, the lines of an Aigner matrix are indexed by N, whereas, in an ECO
matrix, the �rst column is usually column 1 (so that columns are indexed by
N∗). There are clear combinatorial and algebraic reasons for this: the n-th
column of an ECO matrix gives the distribution of label (n) in the generating
tree, whereas the scalar product of the n-th and the m-th rows of an admissible
matrix gives the �rst element of its (n + m)-th row. Unfortunately, keeping
both these conventions would result in a purely formal, but greatly inelegant,
variations of our results: namely, the fundamental change of basis (which is
degree-preserving in our theory) would translate xn into a polynomial of degree
n− 1 (which is pn−1(x), according to the notations of section 3). To avoid this
we have preferred to use N∗ as the set of indices for the lines of Aigner matrices.
In this way the (nice) characteristic algebraic property of admissible matrices
becomes a little bit di�cult to read, but our theory can be described much more
elegantly.

2 Preliminaries on ECO and Aigner matrices
In this section we report the main facts of the two combinatorial theories we

are going to compare.
Consider a succession rule as in (1). Instead of representing it by means of

a generating tree, one can choose linear algebra notations. In the vector space
of one-variable polynomials, de�ne the linear operator L = LΩ on the canonical
basis (xn)n∈N as follows:

L(1) = xa,

L(xk) = xe1(k) + · · ·+ xek(k),

L(xh) = hxh, if (h) is not a label of Ω.

L is called the rule operator associated with Ω (see [12]): it bears all the
enumerative properties of a succession rule and allows to express such properties
using algebraic notations. For example, if (fn)n∈N is the numerical sequence
determined by Ω, then we can �nd fn using the rule operator L of Ω as follows:

fn = [Ln+1(1)]x=1.



232 L. FERRARI AND R. PINZANI

Throughout the present work, we will always deal with a special case, namely
we assume that deg Ln(1) = n. From a combinatorial point of view, this means
that the set of the labels of Ω is N∗ and the maximum label among those
produced by (k) is (k + 1).

The in�nite matrix P = PΩ representing L with respect to the canonical
basis (xn)n∈N is called the production matrix of Ω. Such matrices are extensively
studied in [10]; here we only recall some of their properties.

Let AP be the in�nite matrix whose n-th row vector is given by u>Pn−1

(where u> = (1 0 0 . . . 0 . . .)). Then AP describes the statistic given by the
distribution of the labels at the various levels of the generating tree related to
Ω. Namely, the (n, k) entry of AP is the number of nodes labelled k at level n
of the generating tree of Ω. AP is called the ECO matrix associated with P (or
with Ω), and is also characterized by the matrix equality DAP = AP P , where

D =




0 1 0 0 0 · · ·
0 0 1 0 0 · · ·
0 0 0 1 0 · · ·
0 0 0 0 1 · · ·
0 0 0 0 0 · · ·
...

...
...

...
... . . .




.

In terms of the production matrix P , the sequence (fn)n∈N is nothing else
than the sequence of the row sums of the associated ECO matrix. The or-
dinary and exponential generating functions of Ω are given, respectively, by
fP (t) = u>(I − tP )−1e and FP (t) = u> exp(tP )e, where e is the column vector
(1 1 1 . . . 1 . . .)> and exp(X) denotes the usual matrix exponential of the (in-
�nite) matrix X. In section 5 we deal with some examples of the theory we are
going to develop; in describing such examples we also consider the production
and ECO matrices of some classical succession rules. The reader is invited to
have a look to those example in order to be introduced to these concepts.

In a recent series of nice and well-written papers [2, 3, 4], Martin Aigner
has developed a new theory to deal with numerical sequences somehow linked
to the sequence of Catalan numbers. One of the main tools of this theory is a
particular class of in�nite (triangular) matrices, called admissible matrices in
[2] and renamed with the infelicitous term recursive matrices after [4]. In the
sequel we will use the following terminology.

Consider a lower triangular matrix A = (an,k)n,k∈N∗ with main diagonal
equal to 1. A is called an admissible matrix whenever, for every n,m ∈ N∗,
the (ordinary) scalar product of the n-th and the m-th rows of A gives the �rst
element of the (n + m− 1)-th row; in symbols:

∑

k≥1

an,kam,k = an+m−1,1.

More generally, we de�ne A to be an Aigner matrix when there exists a
sequence of nonnegative integers (Tn)n∈N∗ such that T1 = 1 and Tn|Tn+1 for
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which we have ∑

k≥1

an,kam,kTk = an+m−1,1. (2)

Obviously admissible matrices correspond to Aigner matrices for which Tn

≡ 1.
If A is an Aigner matrix, the sequence (an,1)n∈N∗ is called the sequence of

Catalan-like numbers associated with A. For an extensive study of the algebraic
and enumerative properties of Aigner matrices the reader is referred to [2, 4]
and to the further items cited in the references of the two papers. Here we recall
only those results which we need for our purposes.

Proposition 2.1 ([2, 4]) An Aigner matrix A = (an,k)n,k∈N∗ is uniquely de-
termined by the two sequences (an+1,n)n∈N∗ and (Tn)n∈N∗ . Conversely, to ev-
ery pair of sequences (bn)n∈N∗ and (Tn)n∈N∗ of real numbers there exists an
(and therefore precisely one) Aigner matrix A = (an,k)n,k∈N∗ associated with
(Tn)n∈N∗ and such that an+1,n = bn for all n.

Proposition 2.2 ([2, 4]) Let A = (an,k)n,k∈N∗ be an Aigner matrix associated
with (Tn)n∈N∗ . Set s1 = a2,1, sn = an+1,n − an,n−1 and tn = Tn

Tn−1
, for n ≥ 2.

Then we have

a1,1 = 1, a1,k = 0 (k > 1)
an,k = an−1,k−1 + skan−1,k + tk+1an−1,k+1 (n ≥ 2). (3)

Conversely, if an,k is given by the recursion (3), then A = (an,k)n,k∈N∗ is
an Aigner matrix with Tn = t2 · . . . · tn and an+1,n = s1 + · · ·+ sn.

Setting σ = (sn)n∈N∗ , τ = (tn)n≥2, we say that A = Aσ,τ is the Aigner
matrix of type (σ, τ) when recursion (3) holds for its entries.

It is possible to write (2) in a compact matrix form. De�ne the diagonal
matrix T and the in�nite Hankel matrix of the sequence (an,1)n∈N∗ as follows:

T =




T1 0 0 · · ·
0 T2 0 · · ·
0 0 T3 · · ·
...

...
... . . .


 , H =




a1,1 a2,1 a3,1 · · ·
a2,1 a3,1 a4,1 · · ·
a3,1 a4,1 a5,1 · · ·
...

...
... . . .


 .

Then (2) can be written as ATA> = H. More precisely, we have the follow-
ing characterization.

Proposition 2.3 ([4]) A is an Aigner matrix if and only if ATA> = H with
Tn 6= 0 for all n ≥ 2, T1 = 1. The sequences σ and τ are then given as in
proposition 2.2.

Moreover, if we denote by Hn the n-th Hankel matrix of a sequence (an)n∈N∗

(which is, by de�nition, the submatrix of H consisting of rows and columns 1
to n), we have the following corollary.
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Corollary 2.1 ([4]) A sequence (an)n∈N∗ is Catalan-like if and only if |Hn| 6=
0 for all n ≥ 1.

3 Linear algebra tools
In this section we give some (elementary) linear algebra tools which will be

necessary in the sequel to settle the stated analogy between ECO method and
Aigner's theory of Catalan-like numbers.

In the vector space of one-variable polynomials over the real �eld (to be
denoted R[x]) we de�ne the following polynomial sequences:

p0(x) = 1,

pn(x) = x(x− 1)n−1, ∀n ≥ 1.

It is clear that deg pn(x) = n, so that (pn(x))n∈N constitutes a basis for the
vector space R[x]. We call such a basis the Aigner basis of R[x].
Remark. We recall that the polynomial pn(x) has a very important combinato-
rial meaning: it is the chromatic polynomial of a tree having n vertices (see, for
example, [9]). However, this fact will not be used in this paper.

It is well known that, for any basis of R[x], there exists a unique di�erential1
linear operator mapping the n-th element of the basis into the (n − 1)-th one.
According to [12], we call factorial derivative operator the linear operator:

T : R[x] −→ R[x]
: p0(x) −→ 0,

: pn(x) −→ pn−1(x), n ≥ 1.

The factorial derivative operator can also be nicely performed on the canon-
ical basis of R[x].

Proposition 3.1 For any n ∈ N, T (xn) = 1 + x + · · ·+ xn−1 =
∑n−1

k=0 xk.

Proof. For the �rst values of n, we have T (1) = 0, T (x) = 1, T (x2) = T (p1(x)+
p2(x)) = 1 + x. By induction, suppose that T (xn) = 1 + · · · + xn−1. Observe
that we have the trivial equality T ((x−1)pn(x)) = T (pn+1(x)) = pn(x), whence
T (xpn(x)) = T (pn(x)) + pn(x). By linearity we then have:

T (xp(x)) = T (p(x)) + p(x).

Therefore, in the case p(x) = xn, we get:

T (xn+1) = T (x · xn) = T (xn) + xn

= 1 + · · ·+ xn−1 + xn,

1A polynomial operator is called a di�erential operator when it maps a polynomial of
degree n into a polynomial of degree n− 1 (see [1]).
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which is the thesis. ¤
Some properties of the factorial derivative operator are recorded in [12].
The Aigner basis has a nice behavior with respect to the usual multiplication

operation on polynomials.

Proposition 3.2 Let n,m ≥ 1.

1. pn(x) · pm(x) = xpn+m−1(x);

2. xkpn(x) =
k∑

h=0

(
k

h

)
pn+h(x);

in particular,

xpn(x) = pn+1(x) + pn(x);

3. denoting by x−1 the linear operator de�ned by x−1(p(x)) = p(x)−p(0)
x (so

that x−1 is the usual di�erence quotient operator), it is

x−kpn(x) =
n−k∑

h=0

(−1)n−k−h

(
n− 1− h

k − 1

)
ph(x) (k ≥ 1);

in particular, setting k = 1, we have

x−1pn(x) =
n−1∑

h=0

(−1)n−h−1ph(x) = pn−1(x)− pn−2(x) + pn−3(x)− · · · .

Proof.

1. Trivial.

2. We have immediately:

xkpn(x) = (x− 1 + 1)kpn(x) =
k∑

h=0

(
k

h

)
(x− 1)hpn(x)

=
k∑

h=0

(
k

h

)
x(x− 1)n+h−1 =

k∑

h=0

(
k

h

)
pn+h(x).

3. The equality can be proved by induction on k ≥ 1. The details are left to
the reader. ¤

We close this section by stating a technical result, useful in the computation
of the powers of the factorial derivative operator T , which can be proved by
induction.
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Proposition 3.3 For n, k ∈ N, k ≥ 1, we have:

T k(xn) =
n−k∑

h=0

(
n− h− 1

k − 1

)
xh.

In particular, specializing the above equality, we get:

1. [T k(xn)]x=1 =
(
n
k

)
;

2. [T k(xn)]x=0 =
(
n−1
k−1

)
.

4 The fundamental change of basis
For our purposes, we slightly modify the de�nition of ECO matrix given

in [10], namely we suppose that the n-th row of F (with n ∈ N∗) gives the
distribution of the various labels at level n − 1 of the generating tree of the
rule; thus the (n, k) entry of F is the number of nodes labelled k at level n− 1.
Let Ω be a succession rule as in (1) and suppose that F = (fn,k)n,k∈N∗ is the
ECO matrix associated with Ω, as explained above. We denote by βn(x) the
polynomial canonically associated with the n-th row of F , namely:

βn(x) =
n∑

k=1

fn,kxk (n ≥ 1). (4)

As we have already remarked, we will always assume that deg βn(x) = n.
Now expand the polynomials βn(x) in terms of the Aigner basis, thus obtaining

βn(x) =
n∑

k=1

an,kpk(x). (5)

Clearly, the coe�cients fn,k and an,k are intimately related. In particular,
the following, simple result shows that this setting is the right one to achieve
our project.

Proposition 4.1 The succession (rn)n∈N∗ = (
∑n

k=1 fn,k)n∈N∗ of the row sums
of F is equal to the succession (an,1)n∈N∗ given by the �rst column of the matrix
A = (an,k)n,k∈N∗ . In symbols:

an,1 =
n∑

k=1

fn,k.

Proof. It is obvious that rn = βn(1), whence
∑n

k=1 an,kpk(1) = rn. By the
de�nition of the Aigner basis, it is pk(1) = 0, for k > 1, and p1(1) = 1, and so
rn = an,1, as desired. ¤

The results obtained so far can be naturally expressed also in matrix nota-
tion. Speci�cally, it turns out that the fundamental change of basis described
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in (5) is represented as the multiplication on the right by the Pascal matrix. In
other words, if P =

((
n
k

))
n,k∈N

is the usual Pascal matrix, and F = (fn,k)n,k∈N∗

a given ECO matrix, then the associated matrix A = (an,k)n,k∈N∗ can be ex-
pressed as follows:

A = FP.

So the Pascal matrix P is strictly related to the matrix of the change of basis
from (xn)n∈N to the Aigner basis (pn(x))n∈N, which is precisely the matrix
obtained by P by adding a new �rst row (1 0 0 0 · · · ) and a new �rst column
(1 0 0 0 · · · )>.

Now cards are laid on the table: changing the canonical basis into the Aigner
basis seems to be the �linear algebra� way to switch from the ECO method to
Aigner's theory. At this stage, the following, very natural question can be asked:

1) for which ECO matrices F does it happen that the matrix A is an Aigner
matrix?

Regarding things the other way round, one can start with an Aigner matrix
A and perform the inverse change of basis (from pn(x) to xn). Therefore the
previous question can be inverted:

1) for which Aigner matrices A does it happen that the matrix F is an ECO
matrix?

These two problems seems to be rather di�cult to be tackled in their full
generality. In the rest of the paper we will mainly focus on special examples
to hopefully illustrate the interest of our approach. Finally, we will consider
two particular classes of ECO matrices (namely, those arising from the so-called
factorial succession rules and di�erential succession rules), giving for them a
complete answer to question 1.

Before closing this section, we record some further notations and results
which will be useful in the sequel.

If L is the rule operator associated with Ω, then for the polynomials βn(x)
in (4) we clearly have

βn(x) = Ln(1).

Applying L means to shift from row n to row n + 1 in the ECO matrix
associated with Ω, whence:

L(βn(x)) = βn+1(x). (6)

The coe�cients fn,k and an,k in (4) and (5) can be expressed in linear alge-
braic terms, as the following proposition clari�es.

Proposition 4.2 For n, k ∈ N∗, we have:

1. fn,k =
[

Dk

k! (βn(x))
]

x=0
.
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2. an,k = [T k(βn(x))]x=0.

The easy proof is left to the reader.

Corollary 4.1 For any n, an+1,n = fn+1,n + nfn+1,n+1.

Proof. From the above proposition we have

an+1,n = [Tn(βn+1(x))]x=0 =
n+1∑

k=1

fn+1,k[Tn(xk)]x=0.

Now, recalling proposition 3.3, we get immediately:

an+1,n =
n+1∑

k=1

(
k − 1
n− 1

)
fn+1,k = fn+1,n + nfn+1,n+1,

as desired. ¤

To conclude, we prove the following proposition, concerning the behavior of
a rule operator when applied to the Aigner basis.

Proposition 4.3 For any rule operator L and for any n > 2, we have:

[L(pn(x))]x=1 = 0.

Proof. It is easy to see [12] that, for any rule operator L, it is

[L(p(x))]x=1 = [D(p(x))]x=1.

(This is due to the fact that [L(xk)]x=1 = k = [D(xk)]x=1). Then we get
immediately:

[L(pn(x))]x=1 = [D(pn(x))]x=1 = [Dx(x− 1)n−1]x=1 = 0. ¤

5 Detailed examples
In this section we will provide a detailed analysis of the e�ects of the funda-

mental change of basis in the case of a well-known succession rule determining
Catalan numbers. Then some other examples will be dealt with; for them, we
will only state the main facts (without giving proofs), however, our results can
be checked out by a direct computation or by applying the theory we are going
to develop in the �nal part of our work.
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5.1 Catalan numbers
Let us consider the succession rule

Ω :





(1)
(1) Ã (2)
(k) Ã (2)(3)(4) · · · (k)(k + 1)

,

de�ning Catalan numbers 1, 1, 2, 5, 14, 42, 132, . . . (see, for example, [6]). The
�rst lines of the ECO matrix associated with Ω looks as follows:

F =




1 0 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 · · ·
0 1 1 0 0 0 0 0 · · ·
0 2 2 1 0 0 0 0 · · ·
0 5 5 3 1 0 0 0 · · ·
0 14 14 9 4 1 0 0 · · ·
0 42 42 28 14 5 1 0 · · ·
0 132 132 90 48 20 6 1 · · ·
...

...
...

...
...

...
...

... . . .




.

Applying the fundamental change of basis, one gets the following matrix:

A =




1 0 0 0 0 · · ·
1 1 0 0 0 · · ·
2 3 1 0 0 · · ·
5 9 5 1 0 · · ·
14 28 20 7 1 · · ·
...

...
...

...
... . . .




.

Is A the (unique) admissible matrix for Catalan numbers found in [2]? The
�rst fact suggesting that it could be so follows from the application of corollary
4.1. It is well known [12] that the entries of F are the so-called ballot numbers,
namely:

fn,k =
k − 1
n− 1

(
2n− k − 2

n− k

)
(n, k > 1).

Therefore it follows immediately that, in A, we have:

an+1,n = fn+1,n + nfn+1,n+1

=
n− 1

n

(
n

1

)
+ n · n

n

(
n− 1

0

)
= n− 1 + n = 2n− 1,

which agrees with the (n + 1, n) entry of the admissible matrix for Catalan
numbers. Obviously, this is not enough to conclude, however, it is in fact a
strong hint. To get to the desired result we need to show, for example, that the
coe�cients an,k obey the following recursion (deduced from [2]):

an+1,k = an,k−1 + 2an,k + an,k+1.
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Expressing the an,k's as in proposition 4.2 we then �nd:

[T k(βn+1(x))]x=0 = [(T k−1 + 2T k + T k+1)(βn(x))]x=0,

whence, recalling proposition 3.3:

n+1∑

h=1

(
h− 1
k − 1

)
fn+1,h =

n∑

h=1

((
h− 1
k − 2

)
+ 2

(
h− 1
k − 1

)
+

(
h− 1

k

))
fn,h. (7)

The sum of the binomial coe�cients in the r.h.s. of (7) can be easily simpli-
�ed (using well known properties of the Pascal matrix) to obtain:

n+1∑

h=1

(
h− 1
k − 1

)
fn+1,h =

n∑

h=1

(
h + 1

k

)
fn,h. (8)

To prove equality (8) we make use of the structural properties of the ECO
matrix F , namely the recursion:

fn+1,h = fn,h−1 + fn,h + · · ·+ fn,n

=
n∑

i=h−1

fn,i.

Replacing in the l.h.s. of (8) and interchanging the order of the summations
when necessary, we get:

n∑

h=1

(
h + 1

k

)
fn,h =

n+1∑

h=1

(
h− 1
k − 1

) (
n∑

i=h−1

fn,i

)

=
n∑

i=0

(
i+1∑

h=1

(
h− 1
k − 1

))
fn,i =

n∑

i=0

(
i + 1

k

)
fn,i,

which is an identity (fn,0 = 0 by convention). Therefore, we have formally
proved that switching from the canonical basis to the Aigner basis translates the
ECO matrix F of Catalan numbers into the (unique) admissible matrix A of
Catalan numbers.

5.2 Motzkin numbers
We can use the same approach to deal with Motzkin numbers. Consider the

succession rule

Ω :





(1)
(1) Ã (2)
(k) Ã (1)(2)(3) · · · (k − 1)(k + 1)

.
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Ω determines the sequence of Motzkin numbers ([6]), and its ECO matrix is
the following:

F =




1 0 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
1 0 1 0 0 0 · · ·
1 2 0 1 0 0 · · ·
3 2 3 0 1 0 · · ·
6 7 3 4 0 1 · · ·
...

...
...

...
...

... . . .




.

Applying the fundamental change of basis (or, equivalently, multiplying on
the right by the Pascal matrix P ) we get to the matrix

A =




1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
2 2 1 0 0 0 · · ·
4 5 3 1 0 0 · · ·
9 12 9 4 1 0 · · ·
21 30 25 14 5 1 · · ·
...

...
...

...
...

... . . .




.

It can be proved that A is the unique admissible matrix associated with
Motzkin numbers. However, it will be an immediate consequence of the results
of section 6.

5.3 Bell numbers
The most popular succession rule giving rise to Bell numbers is the following:

Ω :





(1)
(1) Ã (2)
(k) Ã (k)k−1(k + 1)

.

Such a rule describes the usual construction of set partitions, and its ECO
matrix is the following:

F =




1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
0 1 1 0 0 0 0 · · ·
0 1 3 1 0 0 0 · · ·
0 1 7 6 1 0 0 · · ·
0 1 15 25 10 1 0 · · ·
0 1 31 89 65 15 1 · · ·
...

...
...

...
...

...
... . . .




.



242 L. FERRARI AND R. PINZANI

The matrix F is the well-known matrix of the Stirling numbers of the second
kind. Applying the fundamental change of basis leads to the matrix

A =




1 0 0 0 0 · · ·
1 1 0 0 0 · · ·
2 3 1 0 0 · · ·
5 10 6 1 0 · · ·
15 37 31 10 1 · · ·
...

...
...

...
... . . .




.

It is immediately seen that A is not an admissible matrix. Nevertheless,
the elements of the main diagonal are all equal to 1, so A may be an Aigner
matrix. Indeed, it can be shown that A is the Aigner matrix of type (σ, τ),
where σ = (k)k∈N∗ and τ = (k − 1)k≥2 [4]. This is our �rst example of an
Aigner matrix which is not admissible and is linked to an ECO matrix by the
fundamental change of basis.

5.4 Factorial numbers
The case of factorial numbers, which is extremely simple from the point of

view of succession rules, turns out to be rather curious when the fundamental
change of basis is applied. Indeed, the trivial rule

Ω :
{

(1)
(k) Ã (k + 1)k

for the factorial numbers leads to the diagonal ECO matrix

F =




1 0 0 0 0 · · ·
0 1 0 0 0 · · ·
0 0 2 0 0 · · ·
0 0 0 6 0 · · ·
0 0 0 0 24 · · ·
...

...
...

...
... . . .




,

where, clearly, fn,k = (n − 1)!δn,k (δ is the usual Kronecker delta). Thus we
have βn(x) = (n− 1)!xn =

∑n
k=1(n− 1)!

(
n−1
k−1

)
pk(x), whence

A =




1 0 0 0 0 · · ·
1 1 0 0 0 · · ·
2 4 2 0 0 · · ·
6 18 18 6 0 · · ·
24 96 144 96 24 · · ·
...

...
...

...
... . . .




.

It is clear that A cannot be an Aigner matrix, since the elements on the main
diagonal are not equal to 1. However, if we consider the scalar multiplication of
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the (n + 1)-th and (m + 1)-th rows of A, supposing that n ≤ m, we get:
n+1∑

k=1

an+1,kam+1,k =
n∑

k=0

n!m!
(

n

k

)(
m

k

)

=(∗) (n + m)!
(

n + m

n

)
= an+m+1,1.

(Equality (∗) is an application of Vandermonde's convolution). Thus A pos-
sesses a typical property of admissible matrices, without being neither admissible
nor Aigner.

5.5 Involutions
Involutions are considered (from a succession rule point of view) in [12].

They are generated by the following succession rule:

Ω :





(1)
(1) Ã (2)
(k) Ã (k − 1)k−1(k + 1)

,

giving rise to the ECO matrix:

F =




1 0 0 0 0 · · ·
0 1 0 0 0 · · ·
1 0 1 0 0 · · ·
0 3 0 1 0 · · ·
3 0 6 0 1 · · ·
...

...
...

...
... . . .




.

In this case, the fundamental change of basis leads to the matrix:

A =




1 0 0 0 0 · · ·
1 1 0 0 0 · · ·
2 2 1 0 0 · · ·
4 6 3 1 0 · · ·
10 16 12 4 1 · · ·
...

...
...

...
... . . .




,

which is the Aigner matrix of type (σ, τ), for σ = (1)k∈N∗ and τ = (k − 1)k≥2

[4]. This case has some analogies with that of Bell numbers (for example, A is
Aigner but not admissible).

6 Factorial succession rules
Referring to [5, 12], we recall the de�nition of a factorial succession rule and

a factorial rule operator.
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A factorial succession rule is a rule of the form:

Ω :
{

(a)
(k) Ã (r0)(r0 + 1) · · · (r0 + k −m− 1)(k + d1) · · · (k + dm) ,

for k ≥ r0 ≥ 1. A factorial rule operator is the rule operator of a factorial rule.
In [5] it is shown that factorial rules have an algebraic generating function.
In [12] it is stated the following result, concerning the form of a factorial rule
operator.

Proposition 6.1 ([12]) A rule operator L is factorial if and only if L = p(x,
x−1, T ), where p(a, b, c) is a polynomial of degree 1 in c having the form:

p(a, b, c) = u0(a) + v0(b) + u1(a)c,

and T is the factorial derivative operator, as usual.

In the present section we give a complete answer to the �rst of the problems
stated in section 4 for the class of ECO matrices arising from factorial rules. In
order to accomplish our result, we need to slightly generalize Aigner's original
setting.

Consider an in�nite lower triangular matrix A = (an,k)n,k∈N∗ , with a1,1 = 1,
and denote by L the linear operator associated with its rows, as in (6). We say
that A is a generalized Aigner matrix when there exist three nonnegative integer
sequences (rn)n∈N, (sn)n∈N, (tn)n∈N such that, for every n ∈ N:

L(pn(x)) = tnpn−1(x) + snpn(x) + rnpn+1(x). (9)

The following fact is an immediate consequence of the above de�nition.

Proposition 6.2 If A is a generalized Aigner matrix, then its entries obey the
following recursion:

{
a1,1 = 1
an+1,k = rk−1an,k−1 + skan,k + tk+1an,k+1

. (10)

Proof. Since L(βn(x)) = βn+1(x), using (9) we have:

n+1∑

k=1

an+1,kpk(x) =
n∑

k=1

an,kL(pk(x))

=
n∑

k=1

an,k(tkpk−1(x) + skpk(x) + rkpk+1(x))

=
n+1∑

k=1

(rk−1an,k−1 + skan,k + tk+1an,k+1)pk(x),

whence the thesis follows. ¤
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In particular, it is easily seen that a generalized Aigner matrix is not forced
to have the elements on the main diagonal equal to 1.

Question: does the converse of proposition 6.2 hold?

Now we can focus on the case of factorial rules. Suppose that L is a factorial
rule operator of the form

L = a(x) + b(x−1) + c(x)T, (11)

where a(x) =
∑

k≥0 akxk, b(x) =
∑

k≥1 bkxk, c(x) =
∑

k≥0 ckxk are �xed poly-
nomials. We can immediately �nd a su�cient condition for L to induce a gen-
eralized Aigner matrix.

Proposition 6.3 If b(x) = 0, deg a(x) ≤ 1 and deg c(x) ≤ 2, then A is a
generalized Aigner matrix.

Proof. We have to show that L acts as in (9). Indeed, a simple computation
shows that

L(pn(x)) = ((a0 + a1x) + (c0 + c1x + c2x
2)T )(pn(x))

= (c0 + c1 + c2)pn−1(x) + (a0 + a1 + c1 + 2c2)pn(x)
+ (a1 + c2)pn+1(x),

which is enough to conclude. ¤

Examples.

i) The succession rules for Catalan and Motzkin numbers described above
are associated with rule operators for which, respectively, a(x) = b(x) = 0,
c(x) = x2 and a(x) = x− 1, b(x) = 0, c(x) = x.

ii) Consider the following succession rule, inducing Schröder numbers:




(1)
(1) Ã (2)
(k) Ã (3)(4)(5) · · · (k − 1)(k)(k + 1)2

. (12)

In this case, the rule operator L has the form:

L = x− x2 + x3T,

so it does not satisfy the hypotheses of the above proposition. Neverthe-
less, this rule is related to a generalized Aigner matrix, as we will see in
the next pages.

Theorem 6.1 A factorial rule operator L as in (11) is associated with a gen-
eralized Aigner matrix if and only if the following conditions hold:
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i)
∑

k≥0

(
k

h

)
ak +

∑

k≥0

(
k

h + 1

)
ck = 0, ∀h ≥ 2;

ii)
∑

k≥1

(−1)n−k−h

(
n− 1− h

k − 1

)
bk = 0, ∀h < n− 1.

Proof. The rule operator L acts on the Aigner basis as follows:

L(pn(x)) =
∑

k≥0

akxkpn(x) +
∑

k≥1

bkx−kpn(x) +
∑

k≥0

ckxkpn−1(x)

=
∑

k≥0

ak

(
k∑

h=0

(
k

h

)
pn+h(x)

)

+
∑

k≥1

bk

(
n−k∑

h=0

(−1)n−k−h

(
n− 1− h

k − 1

)
ph(x)

)

+
∑

k≥0

ck

(
k∑

h=0

(
k

h

)
pn−1+h(x)

)
.

Now, L must satisfy condition (9), which means that, in the above expansion,
all the coe�cients of the polynomials pk(x), for k /∈ {n − 1, n, n + 1}, must be
zero. This translates into conditions i) and ii) above, so the proof is complete.

¤
Example. The previous example related to Schröder numbers can now be re-
considered. It is clear that condition ii) is trivially veri�ed, whereas the only
interesting case of condition i) occurs when h = 2, and we have:

(
2
2

)
(−1) +

(
3
3

)
1 = −1 + 1 = 0.

So rule (12) is associated with a generalized Aigner matrix A. By an explicit
computation for the operator L, we �nd for A the following expression:

A =




1 0 0 0 0 · · ·
1 1 0 0 0 · · ·
2 4 2 0 0 · · ·
6 16 14 4 0 · · ·
22 68 78 40 8 · · ·
...

...
...

...
... . . .




,

where the entries obey the following recursion:




an+1,1 = an,1 + an,2,
an+1,2 = an,1 + 3an,2 + an,3,
an+1,k = 2an,k−1 + 3an,k + an,k+1, for k > 2

.
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At this stage, it is worth noting that in [4] an Aigner matrix for Schröder
numbers is taken into consideration, precisely:

Ã =




1 0 0 0 0 · · ·
2 1 0 0 0 · · ·
6 5 1 0 0 · · ·
22 23 8 1 0 · · ·
90 107 49 11 1 · · ·
...

...
...

...
... . . .




.

If we apply the inverse of the fundamental change of basis (that is, we switch
from pn(x) to xn), we �nd the following matrix:

F̃ =




1 0 0 0 0 · · ·
1 1 0 0 0 · · ·
2 3 1 0 0 · · ·
6 5 10 1 0 · · ·
22 38 22 7 1 · · ·
...

...
...

...
... . . .




.

Strictly speaking, F̃ is not an ECO matrix, as we can immediately notice.
However, if we suppose that, in F̃ , column k represents the distribution of the
label (2k), we manage to �nd an ECO-interpretation. From a linear operator
point of view, we can consider the operator L̃ associated with the rows of F̃ : if
we replace the variable x with x2, we in fact obtain a rule operator L, which
corresponds to a well-known ECO-interpretation of Schröder numbers [8]. The
succession rule related to L is the following:

{
(2)
(2k) Ã (2)(4)2(6)2 · · · (2k)2(2k + 2) .

7 Di�erential succession rules
We call di�erential succession rule each rule such that in the production of

every label (k) at least one label greater or equal than (k − 1) has an exponent
linearly depending on k. Equivalently, a di�erential rule operator is a rule
operator which can be expressed in the form

L = p(x,x−1, D) = a(x) + b(x−1) + c(x)D.

Observe that, for reasons of consistency (in a succession rule a node labelled
(k) must produce exactly k sons), in the above formula we necessarily have
c(x) = xt, for some t ∈ N, so that a di�erential rule operator has the following,
general expansion:

L = p(x,x−1, D) = a(x) + b(x−1) + xtD. (13)
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The rules given in section 5 for Bell numbers, factorials and the numbers of
involutions of a set are examples of di�erential succession rules, whose associated
di�erential rule operators are, respectively, x− 1 + xD, x2D and x− x−1 + D.
In [12] it is shown that the sequences determined by a di�erential succession
rule possess a transcendental (ordinary) generating function. Using arguments
which are essentially analogue to those employed for factorial succession rules,
we can prove the following results, concerning the relationship with Aigner's
theory.

Theorem 7.1 A di�erential rule operator L as in (13) is associated with a
generalized Aigner matrix if and only if the following conditions hold:

1. if t 6= 0, the conditions are:

i)
∑

k≥0

(
k

h

)
ak + n

(
t

h + 1

)
−

(
t− 1
h + 1

)
= 0, ∀h ≥ 2;

ii)
∑

k≥1

(−1)n−k−h

(
n− 1− h

k − 1

)
bk = 0, ∀h < n− 1;

2. if t = 0, the conditions are:

i)
∑

k≥0

(
k

h

)
ak = 0, ∀h ≥ 2;

ii)
∑

k≥1

(−1)n−k−h

(
n− 1− h

k − 1

)
bk − (−1)n−h = 0, ∀h < n− 1.

Corollary 7.1 If b(x) = 0, deg a(x) ≤ 1 and t ∈ {1, 2}, then L is associated
with a generalized Aigner matrix.

Examples. The cases of Bell numbers and factorial numbers can be easily tack-
led using the corollary (see above for the rule operators involved). As far as
involutions are concerned, we have to consider the rule operator x − x−1 + D.
Applying theorem 7.1 in the case t = 0, we have that condition i) is trivially
satis�ed, whereas condition ii) becomes:

(−1)n−1−h

(
n− 1− h

0

)
(−1)− (−1)n−h = (−1)n−h − (−1)n−h = 0,

which is enough to conclude.

8 Conclusions and further work
The present work is intended to be only the �rst step towards a more detailed

investigation of the relationship between the ECO method and the theory of
Catalan-like numbers.
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One of the �rst things to be done in the next future is to provide a more
complete gallery of examples to illustrate the soundness of our approach. In
particular, it would be nice to �nd new applications of the ECO method starting
from known ones of Aigner's theory, and vice versa, which is what we hope to
do in a forthcoming publication.

Another line of research is provided by the last section of [4], where Aigner
introduces the basics of what he calls �ballot enumeration�. The analogies with
the techniques of the ECO method are evident and, in fact, the combinatorial
model proposed by Aigner is a particular instance of an ECO construction.
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