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Abstract

Succession rules having a rational generating function are usually called rational

succession rules. In this note we discuss some problems concerning rational succession

rules, and determine a simple method to pass from a rational generating function to a

rational succession rule, both defining the same number sequence.
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1 Introduction

A succession rule is a formal system defined by an axiom (a), a ∈ N+, and a set of
productions

{(kt)Ã (e1(kt))(e2(kt)) · · · (ekt
(kt)) : t ∈ N},

where ei : N+ −→ N+, which explains how to derive the successors (e1(k)), (e2(k)), . . . , (ekt
(k))

of any given label (k), k ∈ N+. In general, for a succession rule Ω, we use the more compact
notation:

Ω :

{

(a)
(k)Ã (e1(k)) (e2(k)) · · · (ek(k)).

(1)

The labels (a), (k), (ei(k)) of Ω are assumed to contain only positive integers. The rule
Ω can be represented by means of a generating tree, that is, a rooted tree whose vertices are
labelled with the labels of Ω: (a) is the label of the root, and each node labelled (k) has k
children labelled by e1(k), . . . , ek(k) respectively, according to the production of (k) defined
in (1). A succession rule Ω defines a sequence of positive integers (fn)n≥0, where fn is the
number of the nodes at level n in the generating tree defined by Ω. By convention the root is
at level 0, so f0 = 1. The function fΩ(x) =

∑

n≥0 fnx
n is the generating function determined

by Ω.
Succession rules are closely related to a method for the enumeration and generation of

combinatorial structures, called the ECO method. For further details and examples about
succession rules and the ECO method we refer to [BDLPP]; in [FPPR] the authors study
succession rules from an algebraic point of view.

Two rules are equivalent if they have the same generating function. A succession rule is
finite if it has a finite number of labels and productions; for example, the rule







(2)
(2)Ã (2)(3)
(3)Ã (2)(3)(3),

(2)

defining odd-index Fibonacci numbers 1, 2, 5, 13, 34, 89, 233, . . . (sequence A001519 in [SL])
is finite and it is equivalent to

{

(2)
(k)Ã (2)k−1(k + 2),

(3)

which is not finite.

Figure 1 depicts the first levels of the generating trees associated with the rules in (2)
and (3).

According to our definition, two labels containing the same integer k are allowed to
have a different production. If this happens we distinguish those labels using some indices
(or colors, see Example 1). A succession rule is called rational, algebraic or trascendental
according to the generating function type. Rational succession rules are the subject of this
note (see also [GFGT], [FPPR]).

Below we list some classes of generating functions:
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(2)

(2)

(2)(2)

(3)

(3)

(2)

(2)

(2)(2)

(3)

(3) (3)(3)

(a) (b)

(2) (4)

Figure 1: The first levels of two equivalent generating trees.

- R is the set of rational generating functions of integer sequences (Z-rational functions,
using the notation in [SS]);

- R+ is the set of rational generating functions of positive integer sequences;

- REG is the set of generating functions of regular languages;

- S is the set of rational generating functions of succession rules;

- F is the set of generating functions of finite succession rules.

Summarizing the results in [SS], [FPPR] we obtain the following scheme:

REG

⊂

F

⊂

⊆
R+ ⊂ R

S

⊂

The classes R, REG, and F are decidable, while R+ is not decidable. In [FPPR] is
conjectured that F = S, i.e., every rational rule is equivalent to a finite one.

This note proposes a simple tool to pass from a rational generating function (i.e., a linear
recurrence relation) defining a non-decreasing sequence of positive integers to a succession
rule defining the same sequence. The results extend those in [GFGT].

Furthermore our technique provides interesting combinatorial interpretations (in terms
of generating trees) for sequences that are defined by a linear recurrence relation, using an
approach different from that in [BDFR] and [BR].

As an application of our method, we give a simple solution to a problem proposed by
Jim Propp on the mailing list “domino” (1999), where he asked for the combinatorial inter-
pretation of the sequence 1, 1, 1, 2, 3, 7, 11, 26, . . . (sequence A005246 in [SL]) defined by the
linear recurrence relation:

{

f0 = 1, f1 = 1, f2 = 1, f3 = 2
fn = 4fn−2 − fn−4.
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2 Two term linear recurrences.

We start by considering two-term linear recurrences:

fn = h1fn−1 + h2fn−2, h1, h2 ∈ Z

with initial conditions f0 = 1, f1 = s0 ∈ N+. The positivity of the sequence is ensured by
the additional conditions h1 ∈ N+, and h1 + h2 > 0.

Proposition 1 The succession rule

Ω =

{

(s0)
(k) ; (1)k−1 (φ(k)) ,

with φ(k) = (h1 − 1)k + h2 + 1, defines the sequence (fn)n≥0.

Proof. We have f0 = 1 and f1 = s0. Let k1, k2, . . . , kfn−2
be the labels at level n− 2 of the

generating tree of Ω. Then, for n ≥ 2,

fn = k1 + k2 + · · ·+ kfn−2
− fn−2 + (h1 − 1)(k1 + k2 + · · ·+ kfn−2

) + fn−2(h2 + 1).

Consequently we have

fn = fn−1 − fn−2 + (h1 − 1)fn−1 + fn−2(h2 + 1) = h1fn−1 + h2fn−2 n ≥ 2.

A succession rule defining the sequence (fn)n≥0 can however have a more general form,
such as:

Ω2 =

{

(s0)
(k) ; (c)k−1 (φ(k))

where c, s0 ∈ N+, φ(k) = (h1 − c)k + h2 + c, and the positivity of the labels is ensured by
the following conditions:

(i) if c ≤ s0 then 1 ≤ c ≤ h1 and ((h1 − c)c+ h2 + c) > 0;

(ii) if c > s0 then s0 ≤ c ≤ h1 and ((h1 − c)s0 + h2 + c) > 0.

3 Linear recurrences with more than two terms.

In this section we consider the general case of linear recurrences defining non-decreasing
sequences of positive integers, and we give the explicit form of succession rules defining such
sequences.

For the sake of simplicity, let us start by studying the case of three term recurrences of
the form

fn = h1fn−1 + h2fn−2 + h3fn−3,

with f−1 = 0, f0 = 1, f1 = s0 ∈ N+, where h1 ∈ N+ and h2, h3 ∈ Z.
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On the other hand, let us consider the rule

Ω3 =







(s0)

(k) ; (c)k−1 (φ0(k)) k = s0, c

(k) ; (c)k−1 (φ1(k))

where c ∈ N+, and

φ0(k) = (h1 − c)k + h2 + c,

φ1(k) = (h1 − c)k + h2 + h3 + c.

The following conditions easily ensure that the labels of Ω3 are positive and, as a consequence,
the sequence defined by Ω3 is positive and non-decreasing.

(i) If c ≤ s0 then 1 ≤ c ≤ h1, (φ
0(c)) > 0 and φ1 (φ0(c)) > 0.

(ii) If c > s0 then s0 ≤ c ≤ h1, (φ
0(s0)) > 0 and φ1 (φ0(s0)) > 0.

Proposition 2 The succession rule Ω3 defines the sequence (fn)n≥0.

Proof. We can easily verify that f0 = 1, f1 = s0 and f2 = h1s0 + h2. For n ≥ 3 the number
of occurrences of the label c at level n− 3 is equal to fn−2 − fn−3, so we obtain

fn = cfn−1− cfn−3+(h1− c)fn−1+(h2+h3+ c)fn−3− c (fn−2−fn−3)+(h2+ c)(fn−2−fn−3),

which simplifies to fn = h1fn−1 + h2fn−2 + h3fn−3 for n ≥ 3.

Example 1 The sequence (fn)n≥0 satisfying the recurrence relation

fn = 3fn−1 − 2fn−2 + fn−3,

with f1 = 0, f0 = 1, f1 = 2, is defined by the succession rule















(2)
(1) ; (1)
(2) ; (1)(3)
(k) ; (1)k−1(2k) k ≥ 3.

In the sequel we will extend the statement of Proposition 2 to the general case of linear
recurrences.

Let us consider the rule
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Ωj =











































(s0)
(k) ; (c)k−1 (φ0(k)) k = s0, c

(k) ; (c)k−1 (φ1(k)) k = φ0(s0), φ
0(c)

(k) ; (c)k−1 (φ2(k)) k = φ1 (φ0(s0)), φ
1 (φ0(c))

...
(k) ; (c)k−1 (φj−3(k)) k = { φj−4(φj−5(· · ·φ1(φ0(x)))) : x = s0, c }
(k) ; (c)k−1 (φj−2(k)) ,

where c, s0, h1 ∈ N+, h2, h3, . . . , hj ∈ Z, and

φm(k) = (h1 − c)k +
m+1
∑

i=1

hi+1 + c, m = 0, . . . , j − 2.

The following conditions determine the positivity of the labels of Ωj:

(i) if c ≤ s0 then 1 ≤ c ≤ h1, φ
i−2 (φi−1(· · ·φ0(c))), i = 2, . . . , j;

(ii) if c > s0 then s0 ≤ c ≤ h1, φ
i−2 (φi−1(· · ·φ0(s0))), i = 2, . . . , j.

Theorem 1 The succession rule Ωj defines the non-decreasing positive sequence satisfying
the recurrence relation:

fn = h1fn−1 + h2fn−2 + · · ·+ hjfn−j,

with initial conditions fi = 0, i = −j + 2, . . . ,−1, f0 = 1, and f1 = s0.

Proof. Analogous to that of Proposition 2.

Example 2 (i) NSW numbers (sequence A002315 in [SL]) are defined by the recurrence
relation:

fn = 6fn−1 − fn−2, f0 = 1, f1 = 7.

These numbers count the total area under elevated Schröder paths [PP, BSS]. Accord-
ing to Theorem 2, the succession rule defining these numbers is

{

(7)
(k)Ã (1)k−1(5k)

(ii) Self-avoiding walks of length n, contained in the strip {0, 1} × [−∞,∞], are counted
by the sequence {fn} that satisfies a linear recurrence relation [Z]:

f0 = 1, f1 = 3, f2 = 6, f3 = 12, f4 = 20, f5 = 36, f6 = 58, f7 = 100,
fn = fn−1 + 3fn−2 + 2fn−3 − 3fn−4 + fn−5 + fn−6 n > 7.

(4)
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For simplicity we change the initial conditions into the following:

f−i = 0, i = 1, . . . , 5
f0 = 1.

Then the succession rule obtained applying Theorem 1 is







































(1)
(1)Ã (4)
(3)Ã (1)2(4)
(4)Ã (1)3(6)
(4)Ã (1)3(5)
(5)Ã (1)4(5)
(6)Ã (1)5(3).

For clarity’s sake, we want to point out that the label (4) is produced by φ0(c), and it is
subject to the rule involving φ1, while the label (4) is subject to the rule involving φ4.

Finally, we remark that a rule defining the original number sequence can be simply
obtained by adding some other productions, in order to satisfy the initial conditions.

Example 3 Now we are able to give a succession rule for the number sequence 1, 1, 1, 2, 3, 7, 11, 26, . . .,
defined in the first part of the paper. Omitting for simplicity the initial constant terms we
have































(2)
(2) ; (1)(2)
(1) ; (4)
(4) ; (1)3(1)
(3) ; (1)2(1)
(1) ; (3).

Succession rules with negative labels. Theorem 2 clearly does not involve the whole
set R of rational generating functions. Moreover, as we already remarked, the problem of
establishing if a rational generating function defines a non-negative sequence of integers is
undecidable, and then if we want to treat the whole set of rational generating functions
we have to allow labels of the rules to contain negative values. Under this hypothesis a
succession rule defines a sequence of integer numbers (fn)n≥0, not necessarily positive, where
the term fn is given by the number of positive labels minus the number of negative labels at
level n of the generating tree.

Recently we investigated the relationship between rational generating functions and suc-
cession rules with negative labels (briefly generalized succession rules) by applying the same
tools that we used in the first part of the paper. Furthermore we determined an algorithm
to pass from a rational generating function to a generalized succession rule. However this
algorithm has a rather complex description, and moreover it does not give an answer to
the conjecture F = S. Therefore, for the sake of simplicity, we only present the following
examples.
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Example 4 Let us consider the number sequence 1, 2,−10, 22,−26,−10, 134, . . ., defined
by the recurrence relation

f0 = 1, f1 = 2,
fn = −3fn−1 − 4fn−2 n > 1.

The succession rule defining this sequence is







(4)
(k) ; (1)k−1(−2k − 1)
(−k) ; (−1)k−1(2k + 1).

Example 5 Odd-index Fibonacci numbers with alternating sign, 1,−2, 5,−13, 34,−89, . . .,
are defined by the recurrence relation

f0 = 1, f1 = −2,
fn = −3fn−1 − fn−2 n > 1.

A succession rule defining this sequence is







(2)
(k) ; (−1)k−1(−2k)
(−k) ; (1)k−1(2k).

We point out that the rule (5) is very similar to (3), which defines the odd-indexed
Fibonacci numbers.
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