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q-LÉVY PROCESSES

MICHAEL ANSHELEVICH

ABSTRACT. We continue the investigation of the Lévy processes on aq-deformed full Fock space
started in [1]. First, we show that the vacuum vector is cyclic and separating for the algebra generated
by such a process. Next, we describe a chaotic representation property for it in terms of multiple
integrals with respect to diagonal measures, in the style ofNualart and Schoutens. We define stochas-
tic integration with respect to these processes, and calculate their combinatorial stochastic measures.
Finally, we show that they generate infinite von Neumann algebras.

1. INTRODUCTION

The original motivation for this paper was to understand theresults about a chaos decomposition
for general Lévy processes obtained by Nualart and Schoutens [13]. A relation between multiple
Wiener integrals for the Brownian motion and the symmetric Fock space, and its role in the chaos
decomposition, are well known. For more general Lévy processes, a representation on a symmetric
Fock space was introduced by Parthasarathy, see [14]. We will show that in this representation, the
chaos decomposition has a very natural interpretation, andits proof becomes more immediate. A
recent preprint [21], which came to our attention when the paper was nearing completion, handles
a number of related questions, although by quite different methods. A number of preceding papers
which deal with related topics are cited in the references.

Our second goal was the extension of these results to certainnon-commutative stochastic pro-
cesses. Here the starting point is theq-Fock space construction introduced by Bożejko and Speicher
[8, 7]. They also introduced theq-Brownian motion, which reduces to the usual Brownian motion
for the bosonic caseq = 1, to the fermionic Brownian motion forq = −1, and to the analog of
the Brownian motion in free probability forq = 0. In a previous paper [1], following the ideas of
Parthasarathy and Schürmann [17], we introduced Lévy processes on theq-deformed Fock spaces.
Since we are able to express the chaos decomposition property in the Fock space language, the same
method gives the corresponding result for theq-deformed processes. Moreover, this decomposition
can then be used to obtain a number of consequences.

Combinatorial stochastic measures were introduced for theusual stochastic processes by Rota
and Wallstrom [15]. In this paper, we obtain an explicit formula for such measures for theq-Lévy
processes, unifying a number of previous results.k’th power of a process can be expressed as a sum
over stochastic measures. On the level of operators, this turns out to be precisely the decomposition
of the product of operators in terms of their Wick products.

Since theq-Lévy processes consist of non-commuting operators, theygenerate non-commutative
von Neumann algebras, and any information about these algebras is of interest. It was known that
for theq-Brownian motion, or for the free probability caseq = 0, these algebras are II1-factors. We
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2 M. ANSHELEVICH

show that in contrast, in all other cases these algebras haveno normal tracial states, and thus are
infinite algebras. Further information about these algebras awaits discovery.

There are three standard classes of infinitely divisible distributions; see [20] for one interpretation
of these classes. The intermediate one, with Fourier transforms

Fµ(θ) = exp

[
∫

R

(eiθx − 1 − iθx)
1

x2
dν(x)

]

for ν a finite measure, was considered by Kolmogorov. It consists of the distributions with mean
0 and finite variance. This is the class whoseq-analogs are treated in this paper. For simplicity
we treat only one-dimensional such processes, although there is no real difficulty in extending the
results tok dimensions.

The narrowest class, with Fourier transforms

Fµ(θ) = exp

[
∫

R

(eiθx − 1) dν(x)

]

,

for ν a finite measure, consists of the compound Poisson distributions, considered by de Finetti. In
this case there is a more natural construction in which the starting object is an algebra with a fixed
state. The analogs of some results of the paper for this classare treated in the appendix. Finally, all
infinitely divisible distributions have Fourier transforms of the form

Fµ(θ) = exp

[

iγθ +

∫

R

(

eiθx − 1 − iθx

1 + x2

)

1 + x2

x2
dν(x)

]

for ν a finite measure, by the Lévy-Khinchine theorem. Representations of all of the corresponding
Lévy processes on the symmetric Fock space are described inSection 21 of [14]. There is no
difficulty with extending the definitions to the generalq case, but since the usual treatment involves
measures which are no longer finite, we do not treat this case in this paper.
Acknowledgments: I thank Ed Effros, Marius Junge, and Murad Taqqu for a number of useful
(and enjoyable) conversations.

2. OPERATORS ON THEq-FOCK SPACE

This paper is a sequel to [1]; see that paper for all definitions and references not explicitly pro-
vided here.

2.1. q-deformed full Fock space.Let H0 be a real Hilbert space andH its complexification. Let
H⊗n, for n ≥ 0, be its “n-particle space.” Let its algebraic Fock space be the vectorspace

Falg(H) =
∞
⊕

n=0

H⊗n = (CΩ) ⊕H ⊕H⊗2 ⊕H⊗3 ⊕ . . .

HereΩ is the generator of the0’th component, traditionally called the vacuum vector. Define an
inner product onFalg(H) by

〈ξ1 ⊗ ξ2 ⊗ . . .⊗ ξn, η1 ⊗ η2 ⊗ . . .⊗ ηk〉0 = δnk 〈ξ1, η1〉 〈ξ2, η2〉 . . . 〈ξn, ηn〉 ,
where〈·, ·〉 is the inner product onH.

Fix q ∈ (−1, 1). Define an operatorPn onH⊗n by

Pn(ξ1 ⊗ ξ2 ⊗ . . .⊗ ξn) =
∑

σ∈Sym(n)

qi(σ)ξσ(1) ⊗ ξσ(2) ⊗ . . .⊗ ξσ(n),
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wherei(σ) is the number of inversions of the permutationσ. Then allPn, and so the corresponding
operatorP on the whole ofFalg(H), are strictly positive [8]. We define a newq-inner product on
Falg(H) by

〈

~ξ, ~η
〉

q
=
〈

~ξ, P~η
〉

0
.

This is a positive definite inner product. Completing the algebraic Fock space with respect to the
corresponding norm, we get theq-Fock spaceFq(H).

For q = ±1, the inner product is only positive semi-definite. Forq = 1, taking the quotient by
its kernel gives the symmetric Fock space; forq = −1, it gives the anti-symmetric Fock space. For
q = 0, we get the full Fock space.

For ζ ∈ H0, define creation and annihilation operators onFq(H) by

a∗(ζ)Ω = ζ,

a∗(ζ)(η1 ⊗ . . .⊗ ηn) = ζ ⊗ η1 ⊗ . . .⊗ ηn,

a(ζ)Ω = 0,

a(ζ)η = 〈ζ, η〉Ω,

a(ζ)(η1 ⊗ . . .⊗ ηn) =
n
∑

k=1

qk−1 〈ζ, ηk〉 η1 ⊗ . . .⊗ η̌k ⊗ . . .⊗ ηn.

Hereη̌ means “omitη”. These operators can be extended to bounded operators on the wholeFq(H),
so thata(ζ) anda∗(ζ) are adjoints of each other. Moreover,

a(ζ)a∗(η) − qa∗(η)a(ζ) = 〈ζ, η〉 Id.

Let T be a bounded operator onH0. We will also denote byT its complexification, which is a
bounded operator onH. Define the gauge (or preservation, or differential second quantization)
operatorp(T ) by

p(T )Ω = 0,

p(T )(η1 ⊗ . . .⊗ ηn) =

n
∑

k=1

qk−1(Tηk) ⊗ η1 ⊗ . . .⊗ η̌k ⊗ . . .⊗ ηn.

By Proposition 2.2 of [1], ifT is a self-adjoint operator, the operatorp(T ) is essentially self-adjoint
with dense domainFalg(H).

Lemma 1. The operatorp(T ) on theq-Fock space is bounded.

Proof. Denote by‖p(T )‖q 7→q the norm ofp(T ) as an operator fromFq(H) to itself. First we show
that‖p(T )‖0→0 <∞. Indeed,p(T ) is a composition of two operators,

π(η1 ⊗ . . .⊗ ηn) =

n
∑

k=1

qk−1ηk ⊗ η1 ⊗ . . .⊗ η̌k ⊗ . . .⊗ ηn

followed by
p0(T )(η1 ⊗ . . .⊗ ηn) = (Tη1) ⊗ η2 ⊗ . . .⊗ ηn.

OnF0(H),

‖π‖ ≤ max
n

n
∑

k=1

qk−1 ≤ max
(

1,
1

1 − q

)
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and‖p0(T )‖ ≤ ‖T‖ from general tensor product considerations.
Now we show that‖p(T )‖q 7→q < ∞. For the remainder of the proof, we work with the0-inner

product, theq-inner product being given by the positive definite density operatorP . It follows from
the proof of Proposition 2.2 of [1] that the adjoint ofp(T ) with respect to theq-inner product is
p(T ∗). This means thatPp(T ∗) = p(T )∗P , where∗ denotes the adjoint with respect to the0-inner
product. In particular,

Pp(T ∗)p(T ) = p(T )∗Pp(T ) ≥ 0

is a positive operator. So from the inequality

Pp(T ∗)p(T )2p(T ∗)P ≤
∥

∥p(T ∗)p(T )2p(T ∗)
∥

∥

0→0
P 2

it follows that

Pp(T ∗)p(T ) ≤
√

‖p(T ∗)p(T )2p(T ∗)‖0→0P ≤ ‖p(T ∗)‖0→0 ‖p(T )‖0→0 P

So
〈

p(T )~ξ, p(T )~ξ
〉

q
=
〈

~ξ, p(T ∗)p(T )~ξ
〉

q
=
〈

~ξ, Pp(T ∗)p(T )~ξ
〉

0

≤ ‖p(T ∗)‖0→0 ‖p(T )‖0→0

〈

~ξ, P ~ξ
〉

0

= ‖p(T ∗)‖0→0 ‖p(T )‖0→0

〈

~ξ, ~ξ
〉

q
.

Since‖T‖ = ‖T ∗‖, we conclude that

‖p(T )‖q→q ≤
√

‖p(T ∗)‖0→0 ‖p(T )‖0→0 ≤ max
(

1,
1

1 − q

)

‖T‖ .

�

We conclude that for any pair(ζ, T ), ζ ∈ H0, the operator

p(ζ, T ) = a(ζ) + a∗(ζ) + p(T )

is a bounded operator on theq-Fock space ofH, self-adjoint ifT is. Note thatp(·) is linear as a
function of the pair(ζ, T ).

2.2. Construction from a generator. The following construction is inspired by [17, 11]. LetS
be an index set. Denote byS∞ the set of multi-indices (finite sequences) of elements ofS. Denote
by R0〈x,S〉 the algebra of all real polynomials without a constant term,in a collection of non-
commuting indeterminates{xi : i ∈ S}. It is an algebra without a unit, and even a star-algebra
with the obvious involution. Letψ be a positive linear functional onR0〈x,S〉; equivalently, it is a
conditionally positive linear functional on the full algebraR〈x,S〉. Assume that it is also both left-
and right-bounded, in the sense that for allf, g ∈ R0〈x,S〉 there exist constantsMf , Ng such that

ψ[f ∗g∗gf ] ≤Mfψ[g∗g]; ψ[f ∗g∗gf ] ≤ Ngψ[f ∗f ].

ψ induces a positive semi-definite inner product on the spaceR0〈x,S〉 in the usual way,〈f, g〉ψ =

ψ[f ∗g], as well as a semi-norm‖·‖ψ. Taking a quotient by the subspace of seminorm-zero vec-
tors and completing with respect to the induced norm, we obtain a real Hilbert spaceH0 with
the induced inner product. Denote byρ the canonical mappingR0〈x,S〉 → H0, let D0 be its
image, and forf, g ∈ R0〈x,S〉 define the operatorΓ(f) : D0 → D0 by Γ(f)ρ(g) = ρ(fg).
Put, for i ∈ S, ξi = ρ(xi), Ti = Γ(xi). More generally, forf ∈ R0〈x,S〉, denoteξf = ρ(f),
Tf = Γ(f). Then eachTf is essentially self-adjoint, with dense domainD0 consisting of analytic
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vectors. Sinceψ is left-bounded, for eachf ∈ R0〈x,S〉, ‖Tf‖ ≤ Nf , so eachTf is bounded. Any
family {ξi, Ti : i ∈ S} satisfying a certain compatibility condition arises in this way, see Proposition
4.3 of [1] and Theorem 3 of [11].

LetH be the complexification ofH0 andD the complexification ofD0. DenoteX(i) = p(ξi, Ti),
and more generallyX(f) = p(ξf , Tf) for f ∈ R0〈x,S〉. These are bounded operators onFq(H).
Note that the mappingf 7→ X(f) is R-linear. If ‖f‖ψ = 0, by definitionξf = 0. Moreover, since
ψ is right-bounded,Γ(f) = 0 as well. As a result,X(f) depends only on the equivalence class of
f in H, and so can be defined forf ∈ D0.

Denote byAalg
X the complex algebra (no closure) generated by{X(i) : i ∈ S}, and byAalg

X,∆ the
complex algebra generated by{X(f) : f ∈ R0〈x,S〉}.

Lemma 2. The vacuum vectorΩ is cyclic forAalg
X,∆.

Proof. By definition,

X(f1)X(f2) . . .X(fn)(Ω) = ξf1 ⊗ ξf2 ⊗ . . .⊗ ξfn
+ ~η,

where~η ∈ ⊕n−1
i=0 H⊗i. It follows by induction thatAalg

X,∆Ω ⊃ Falg(D), which is dense inFq(H).
�

Remark 3. The result of the preceding lemma will be made more precise through the use of multi-
ple stochastic integrals and Kailath-Segall polynomials.

2.3. The Wick map. Define the mapsW0 : R0〈x,S〉n → Aalg
X,∆, n = 1, 2, . . ., inductively as

follows: W0(f) = Xf and

W0(f0, f1, . . . , fn) = X(f0)W (f1, . . . , fn) −
n
∑

i=1

qi−1 〈ξf0, ξfi
〉W (f1, . . . , f̌i, . . . , fn)

−
n
∑

i=1

qi−1W (f0fi, f1, . . . , f̌i, . . . , fn).

By the discussion in the preceding subsection,W0 is a multi-linear map which depends only on the
equivalence classes off1, f2, . . . , fn in H. So we can project it to a map onDn

0 , and extend it to a
C-linear map onD⊗n. As a result, we can define a linearWick map

W : Falg(D) → Aalg
X,∆

as such an extension
W (ξf1 ⊗ . . .⊗ ξfn

) = W0(f1, . . . , fn),

with the extra conditionW (Ω) = Id. Clearly,

W (ξf0 ⊗ ξf1 ⊗ . . .⊗ ξfn
) = X(f0)W (ξf1 ⊗ . . .⊗ ξfn

)

−
n
∑

i=1

qi−1 〈ξf0, ξfi
〉W (ξf1 ⊗ . . .⊗ ξ̌fi

⊗ . . .⊗ ξfn
)

−
n
∑

i=1

qi−1W (Tf0(ξfi
) ⊗ ξf1 ⊗ . . .⊗ ξ̌fi

⊗ . . .⊗ ξfn
)

(1)

and

(2) W (η1 ⊗ . . .⊗ ηn)Ω = η1 ⊗ . . .⊗ ηn.
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Proposition 4. The vacuum vectorΩ is separating forAalg
X,∆.

Proof. It is clear from the definition thatW (η1 ⊗ . . .⊗ ηn) is a polynomial in theX operators (and
so lies inAalg

X,∆), and conversely that the mappingW is onto. In fact,

W (ξf1 ⊗ ξf2 ⊗ . . .⊗ ξfn
) = X(f1)X(f2) . . .X(fn) +Q,

whereQ is a polynomial in theX operators of degree at mostn− 1. Inverting this relation,

X(f1)X(f2) . . .X(fn) = W (ξf1 ⊗ ξf2 ⊗ . . .⊗ ξfn
) +W (~η),

where~η ∈ ⊕n−1
i=0 H⊗i. Now letA ∈ Aalg

X,∆. ThenA = W (~η) for some~η ∈ Falg(D). If AΩ = 0,
thenW (~η)Ω = ~η = 0, and so0 = W (~η) = A. �

Remark 5. The following (possibly unbounded) operators commute withAalg
X,∆ on the dense do-

mainFalg(D): for f ∈ R0〈x,S〉, define the operatorXr(f) by

Xr(f)(η1 ⊗ . . .⊗ ηn) = W (η1 ⊗ . . .⊗ ηn)X(f)(Ω) = W (η1 ⊗ . . .⊗ ηn)ξf .

Explicitly, their values on the tensors of low order are

Xr(f)(η) = ξf ⊗ η + Tfη + 〈η, ξf〉 ,
Xr(f)(η1 ⊗ η2) = η1 ⊗ η2 ⊗ ξf +

(

q 〈η1, ξf〉 η2 + 〈η2, ξf〉 η1

)

+
(

q(Tfη1) ⊗ η2 + η1 ⊗ (Tfη2)
)

,

Xr(f)(η1 ⊗ η2 ⊗ η3) = η1 ⊗ η2 ⊗ η3 ⊗ ξf

+
(

q2 〈η1, ξf〉 η2 ⊗ η3 + q 〈η2, ξf〉 η1 ⊗ η3 + 〈η3, ξf〉 η1 ⊗ η2

)

+
(

q2(Tfη1) ⊗ η2 ⊗ η3 + qη1 ⊗ (Tfη2) ⊗ η3 + η1 ⊗ η2 ⊗ (Tfη3)
)

+Q(f)(η1 ⊗ η2 ⊗ η3),

where

Q(f)(ξg1 ⊗ ξg2 ⊗ ξg3) = q(1 − q)
[

〈Tg1ξg3, ξf〉 ξg2 + Tg1Tg3ξf ⊗ ξg2

− 〈ξg1, ξg3〉Tg2ξf − Tg1ξg3 ⊗ Tg2ξf
]

Notation 1. A set partitionπ of a setT is a collection of disjoint subsets ofT whose union equals
T . Let P(n) be the collection of all set partitions of the set{1, 2, . . . , n}. Let π ∈ P(n) be a
set partition,π =

{

B1, B2, . . . , B|π|

}

. Order the classes according to their first elements, that is,
min(B1) < min(B2) < . . . < min(B|π|). ForS ⊂ π, call the pair(S, π) an extended partition;S
is to be thought of as the collection of classes “open on the left”. See Figure 1 for an example. For
1 ≤ k < m ≤ n, define the restriction

(S ′, π′) = (S, π) ↾ {k, . . . ,m}

as follows:

B′ ∈ π′ if B′ = B ∩ {k, . . . ,m} , B ∈ π,

B′ ∈ S ′ if B ∈ S orB ∩ {1, . . . , k − 1} 6= ∅.



7

FIGURE 1. An extended partition of10 elements with2 left-open classes and4
restricted crossings.

Define the number of right restricted crossings of(S, π) at the pointk as follows:

rc (k, S, π) =











0, if k ∈ B, k = max(B),

|S ′| , if k ∈ B, j = min {i ∈ B, i > k} ,
(S ′, π′) = (S, π) ↾ {k + 1, . . . , j − 1} .

Let rc (S, π) =
∑n

k=1 rc (k, S, π). Note that also (see [6])

rc (S, π) = rc (π) +
∑

B∈S

|C ∈ π : min(C) < min(B) < max(C)| .

Proposition 6. Let Sing(π) denote the single-element classes of a partitionπ. Then

(3) X(f1)X(f2) . . .X(fn)

=
∑

π∈P(n)

∑

Sing(π)⊂S⊂π

qrc(S,π)
∏

B 6∈S

〈

ξfmin(B)
,
(

∏

i∈B
i6=min(B),max(B)

Tfi

)

ξfmax(B)

〉

×W

(

⊗

B∈S

(

∏

i∈B
i6=max(B)

Tfi

)

ξfmax(B)

)

.

Proof. Both sides of the expression (3) are inAalg
X,∆. Evaluate them onΩ. We obtain

n
∏

i=1

(

a(ξfi
) + a∗(ξfi

) + p(Tfi
)
)

Ω

=
∑

π∈P(n)

∑

Sing(π)⊂S⊂π

qrc(S,π)
∏

B 6∈S

〈

ξfmin(B)
,
(

∏

i∈B
i6=min(B),max(B)

Tfi

)

ξfmax(B)

〉

×
⊗

B∈S

(

∏

i∈B
i6=max(B)

Tfi

)

ξfmax(B)
.
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For fixed(S, π), each term on the right-hand-side, possibly up to a power ofq, is a summand in the
expansion ofZ1Z2 . . . ZnΩ for a unique sequence of operatorsZ1, Z2, . . . , Zn, where

Zi =











a(ξfi
) if i ∈ B,B ∈ π\S, i = min(B), |B| > 1,

a∗(ξfi
) if i ∈ B, i = max(B), eitherB ∈ S or (B ∈ π\S, |B| > 1),

p(Tfi
) if i ∈ B, i 6= max(B), eitherB ∈ S or (B ∈ π\S, i 6= min(B)).

Conversely, any sequenceZ1 . . . Zn in the expansion of the left-hand-side of (3) whose evaluation
onΩ is non-zero is of this form for some extended partition(S, π). It remains to show that its coef-
ficient is exactlyqrc(S,π). We show this by induction. Consider a wordZ1 . . . Zn corresponding to an
extended partition(S, π). It is clear thatZkZk+1 . . . ZnΩ is the element ofFalg(H) corresponding
to the restriction(S, π) ↾ {k, k + 1, . . . , n}. By induction hypothesis its coefficient is

qrc((S,π)↾{k,k+1,...,n}).

If Zk−1 = a∗(fk−1), the coefficient in front of the tensor corresponding toZk−1Zk . . . ZnΩ is the
same, and so is the number of restricted crossings of(S, π) ↾ {k − 1, k, . . . , n}. On the other hand,
supposeZk−1 = a(fk−1) or p(fk−1). Supposek − 1 ∈ B andj = min {i ∈ B, i > (k − 1)}. Then
the degree ofq in the coefficient is incremented by

|k − 1 < i < j : Zi = p(fi) orZi = a∗(fi)| .
But this is exactly the number of right restricted crossingsof (S, π) at (k − 1). �

3. GENERALIZED CHAOS DECOMPOSITION

Let ν be a probability measure onR with compact support, and in particular with finite moments

rk+2 =

∫

R

xk dν(x)

(note the shift in the index) of all orders. Then the functional ψν [xk] = rk, ψν [x] = r1 = 0,
ψν [1] = 0 on C[x] is conditionally positive definite and both left- and right-bounded. LetS =
{[a, b) ⊂ R+}. On the correspondingR〈x,S〉, define the functional

ψ
[

n
∏

i=1

xIi

]

=

∣

∣

∣

∣

∣

n
⋂

i=1

Ii

∣

∣

∣

∣

∣

rn.

This functional is also conditionally positive and bounded. The correspondingH is naturally iso-
morphic toL2(R+, dt)⊗V , whereV ∼= span (xk : k ≥ 1) ⊂ L2(R, 1

x2ν(dx)). Note that the Hilbert
spaceV is isomorphic toL2(R, ν) via the mapf 7→ f/x. So

H ∼= L2(R+, dt) ⊗ L2(R, ν).

DenoteX(I) = p(ξI , TI). Note thatX(I) corresponds to1I ⊗ 1 ∈ H. Similarly, Yk(I) =
p(ξI,I,...,I , TI,I,...,I) naturally corresponds to1I⊗xk−1, wherex is the independent variable on(R, ν).
Finally, denoteX(t) = X([0, t)), Yk(t) = Yk([0, t)). Then all{Yk(t)}t∈[0,∞) areq-Lévy processes
in the sense of [1].

We could have similarly defined multi-dimensional processes, but the notation gets heavier, while
the phenomena are the same.
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Note thatAalg
X is equal to the algebra generated by{X(t)}t∈[0,∞), andAalg

X,∆ is equal to the algebra

generated by{Yk(t)}k∈N,t∈[0,∞). OnAalg
X , define the vacuum state

ϕ [A] = 〈Ω, AΩ〉
and an inner product

〈A,B〉ϕ = ϕ [A∗B] = 〈AΩ, BΩ〉q .
The completion ofAalg

X with respect to this inner product will be denoted byL2(Aalg
X , ϕ).

Lemma 7. For a subdivisionI = {Ii}Ni=1 of [0, t), denoteδ(I) = maxi |Ii|. Define the diagonal
measure∆k(t) ofX to be the limit

∆k(t) = lim
δ(I)→0

N
∑

i=1

(X(Ii))
k :=

∫ t

0

(dX(t))k.

Then the limit exists inL2(ϕ), the diagonal measures ofX are elements ofL2(Aalg
X , ϕ), and

∆k(t) = Yk(t) + rk.

In particular, the operatorsYk(t) can in fact be identified with elements ofL2(Aalg
X , ϕ).

Proof. See the appendix of [3]. �

Note that‖x2‖ψν
= r2 = ν(R) = 1, so the variance ofX at time one is1.

Since theq-inner product is non-degenerate,L2(R+, dt)
⊗n with the usual and theq-inner product

are isomorphic as vector spaces. SinceL2(R+, dt)
⊗n ∼= L2(Rn

+, dt
⊗n), we can induce theq-inner

product on this space and denote the resulting Hilbert spacebyL2
q(R

n
+, dt

⊗n).
Note also thatC〈x1, x2, . . . , xn〉 can be naturally identified with a dense subset ofV ⊗n.

Definition 2. Let X1, X2, . . . , Xk be centeredq-Lévy processes normalized to have variance1 at
time1. LetF be an indicator functionF = 1I1×I2×...×Ik such that the intervals{Ii}ki=1 are disjoint.
Define the multiple Wiener-Itô stochastic integral ofF

∫ ∞

0

F (t1, t2, . . . , tk) dX1(t1) dX2(t2) . . . dXk(tk)

to be
∏k

i=1Xi(Ii). Extend the definition toC-linear combinations of such functions in a linear way.
Such an integral will frequently be denoted simply by

∫

F dX1 dX2 . . . dXk.

Proposition 8. LetX1, X2, . . . , Xk be as in the preceding definition. The map

F 7→
∫

F dX1 dX2 . . . dXk

extends to an isometry fromL2
q(R

k
+, dt

⊗k) intoL2(Aalg
X1,X2,...,Xk

, ϕ). HereAalg
X1,X2,...,Xk

is the algebra
generated by{Xi(t)}t∈[0,∞),i=1,2,...,k.

Proof. Let F be a simple function,F =
∑

a~u1Iu(1)×Iu(2)×...×Iu(k)
, such that the intervals

{

Iu(i)

}k

i=1
are disjoint for each~u. By definition,

∫

F dX1 dX2 . . . dXk =
∑

a~uX1(Iu(1))X2(Iu(2)) . . .Xk(Iu(k)).
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Let G =
∑

b~v1Jv(1)×Jv(2)×...×Jv(k)
be a function of the same type. In the following expression,

P2(k, k) denotes the pair partitionsπ of {1, 2, . . . 2k} such that for all(i, j) = B ∈ π, i ≤ k, j > k.
Such a partition naturally induces a permutationσ ∈ Sym(k) by σ(i) = j − k for (k + 1 − i)

π∼ j.
It is easy to see thatrc (π) = i(σ).

〈
∫

F dX1 dX2 . . . dXk,

∫

GdX1 dX2 . . . dXk

〉

ϕ

= ϕ
[

∑

ā~ub~vXk(Iu(k)) . . .X2(Iu(2))X1(Iu(1))X1(Jv(1))X2(Jv(2)) . . .Xk(Jv(k))
]

=
∑

a~ub~v
∑

π∈P2(k,k)

qrc(π)
k
∏

i=1

∣

∣Iu(k+1−min(Bi)) ∩ Jv(max(Bi)−k)

∣

∣

=
∑

a~ub~v
∑

σ∈Sym(n)

qi(σ)
k
∏

i=1

∣

∣Iu(i) ∩ Jv(σ(i))

∣

∣

= 〈F,G〉q .

Since such simple functions are dense inL2
q(R

k
+, dt

⊗k), the stochastic integral map can be isomet-
rically extended to the whole of this Hilbert space. �

In particular, define the full stochastic measure

ψk((X1, X2, . . . , Xk); t1, t2, . . . , tk) =

∫

1∏k
i=1[0,ti)

dX1 dX2 . . . dXk.

If all Xi’s are equal to someX, we will omit it from the notation, and write simplyψk(t1, t2, . . . , tk).
If all ti’s are equal tot, we writeψk(t).

If the variances of the integrator processes are not normalized to1, the multiple stochastic integral
map differs from an isometry by a constant factor, and is again well-defined.

Notation 3. Let X be aq-Lévy process. Let
{

Ŷk(t)
}

be the Gram-Schmidt orthogonalization of

{Yk(t)} in L2(AX, ϕ). Note thatϕ [Yk(t)Yj(t)] = trk+j andrk =
∫

R
xk−2 dν(x), whereν is a

(q-)canonical measure for this process. Thus the coefficientsof

Y1(t), Y2(t), . . . , Yj(t), . . .

in the expansion of̂Yk(t) are precisely those of1, x, . . . , xj−1, . . . in the orthogonal polynomials
Pk−1 with respect to the measuret dν(x). Equivalently,Ŷk(I) corresponds to1I ⊗ Pk−1 ∈ H.

Proposition 9. For a multi-index~u, denote

H~u =

{
∫

F dŶu(1) dŶu(2) . . . dŶu(n) : F ∈ L2
q(R

n
+, dt

⊗n)

}

.

Then these subspaces are orthogonal for different~u.

Proof. It suffices to prove the result for simpleF . In that case the argument is similar to the proof

of the preceding proposition. It suffices to note thatϕ
[

Ŷk(I)Ŷj(I)
]

= 0 for k 6= j. �
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Definition 4. Let I = {Ii}Ni=1 be a subdivision of[0, t). Forπ ∈ P(n), define

Stπ(t; I) =
∑

~u∈[N ]nπ

X(Iu(1))X(Iu(2)) . . .X(Iu(n)),

where

[N ]nπ =
{

~u ∈ {1, . . . , N}n : u(i) = u(j) ⇔ i
π∼ j
}

.

Define the partition-dependent stochastic measures

Stπ(t) = lim
δ(I)→0

Stπ(t; I)

if the limit exists.
Also defineRπ(t) = t|π|

∏

B∈π r|B|. Note that this notation differs from the one in [1].

In particular,

∆k(t) = St1̂(t) = St{(1,2,...,k)}(t)

and

ψk(t) = St0̂(t) = St{(1),(2),...,(k)}(t).

Proposition 10. Partition-dependent stochastic measures of aq-Lévy process are well-defined as
limits inL2(Aalg

X , ϕ), and equal to

(4) Stπ(t) =
∑

S⊂π

qrc(S,π)Rπ\S(t)ψ(Y|B|(t) : B ∈ S).

Proof. Let I be a subdivision of the interval[0, t). We will show that

(5)

∥

∥

∥

∥

∥

Stπ(t; I) −
∑

S⊂π

qrc(S,π)Rπ\S(t)ψ(Y|B|(t) : B ∈ S; I)

∥

∥

∥

∥

∥

2

→ 0

asδ(I) → 0. Since theL2-limit of the second term of (5) exists and equals the right-hand-side of
(4), this will also show that the limit of the left-hand-sideexists. Moreover, since the first term of
(5) is inAalg

X , all the quantities involved are inL2(Aalg
X , ϕ)

SinceX(I) = a(I) + a∗(I) + p(I) and the intervals inI are disjoint,

Stπ(t; I)Ω =
∑

~u∈[N ]nπ

∑

σ∈P(n)
σ≤π

∑

S⊂σ

a(S,σ)

∏

B 6∈S

(

∣

∣

∣

∣

∣

⋂

i∈B

Iu(i)

∣

∣

∣

∣

∣

r|B|

)

⊗

B∈S

(

1
⋂

i∈B Iu(i)
⊗ x|B|−1

)

,

where the sum is over all refinements ofπ, and eacha(S,σ) is a power ofq. Since~u ∈ [N ]nπ and
σ ≤ π, we may writeu(B) for anyu(i), i ∈ B, so the preceding expression is equal to

(6)
∑

~u∈[N ]nπ

∑

σ∈P(n)
σ≤π

∑

S⊂σ

a(S,σ)

∏

B 6∈S

(

∣

∣Iu(B)

∣

∣ r|B|

)

⊗

B∈S

(

1Iu(B)
⊗ x|B|−1

)

.
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Also,

(7)
∑

S⊂π

qrc(S,π)Rπ\S(t)ψ(Y|B|(t) : B ∈ S; I)Ω

=
∑

S⊂π

qrc(S,π)
∏

B 6∈S

(r|B|t)
∑

~v∈[N ]
|S|

0̂

|S|
⊗

j=1

(

1Iv(j)
⊗ x|Bj |−1

)

.

As δ(I) → 0, each term in equation (6) forσ = π converges to

a(S,π)

∏

B 6∈S

(

t · r|B|

)

⊗

B∈S

(

1[0,t) ⊗ x|B|−1
)

.

This is also the limit of the corresponding term in equation (7), provided that we showa(S,π) =

qrc(S,π). This follows via an argument similar to the one in Proposition 6.
On the other hand, the norm of the vector in (6) is bounded by

c
∑

~u∈[N ]nπ

∑

σ∈P(n)
σ≤π

∏

B∈σ

∣

∣Iu(B)

∣

∣ ,

wherec is a constant depending onq, {ri} but independent ofI, π. For eachσ < π, someC1, C2 ∈
σ are in the same class ofπ. As a result,u(C1) = u(C2) for all ~u ∈ [N ]nπ. We may assume
δ(I) < 1. Then

∑

~u∈[N ]nπ

∏

B∈σ

∣

∣Iu(B)

∣

∣ ≤
∑

~u∈[N ]nπ

∣

∣Iu(C1)

∣

∣

∏

B∈π

∣

∣Iu(B)

∣

∣ ≤ δ(I)
∑

~u∈[N ]nπ

∏

B∈π

∣

∣Iu(B)

∣

∣ ≤ δ(I)t|π|,

which converges to0 asδ(I) → 0. �

Example 11. Processes with independent increments correspond toq = 1. In this case the formula
takes the form

Stπ(t) =
∑

S⊂π

Rπ\S(t)ψ(Y|B|(t) : B ∈ S) = ψ(∆|B1|(t),∆|B2|(t), . . . ,∆|B|π||(t)).

Processes with freely independent increments correspond to q = 0. In this case the formula takes
the form

Stπ(t) =
∑

S⊂ Outer(π)

Rπ\S(t)ψ(Y|B|(t) : B ∈ S) = RInner(π)(t)ψ(∆|B|(t) : B ∈ Outer(π)).

for π ∈ NC (n), and0 otherwise. HereNC (n) are all the non-crossing partitions, and Inner(π),
Outer(π) are the inner, respectively, outer classes ofπ. This result is the main theorem of [2] (with
a weaker mode of convergence).

Finally, in theq-Gaussian case, the formula takes the form

Stπ(t) =
∑

S⊂ Sing(π),
π\S⊂ Pairs(π)

qrc(S,π)Rπ\S(t)ψ(Y|B|(t) : B ∈ S) = qrc(Sing(π),π)RPairs(π)(t)ψ|Sing(π)|(t).

for π ∈ P1,2(n), and0 otherwise. Here Pairs(π), Sing(π) are2, respectively,1-element classes of
π. Note that in this case,rc (Sing(π), π) = rc (π)+ the singleton depth ofπ,RPairs(π)(t) = t|Pairs(π)|.
Thus we recover Proposition 6.12 of [1] (with a weaker mode ofconvergence). For closely related
results, see [10].
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Example 12. In the centeredq-Charlier case,

Stπ(t) =
∑

Sing(π)⊂S⊂π

qrc(S,π)tn−|S|C|S|,q(X(t), t).

As a consequence,

xn =
∑

π∈P(n)

∑

Sing(π)⊂S⊂π

qrc(S,π)tn−|S|C|S|,q(X(t), t).

HereCn,q are the continuous bigq-Hermite polynomials, see for example [3].

Lemma 13. The image of the multiple stochastic integral map with respect to the processes{Yk}
containsAalg

X,∆.

(a) Polynomials inX can be expressed as multiple stochastic integrals:

Xn(t) =
∑

π∈P(n)

Stπ(t).

(b) For F ∈ L2
q(R

k
+, dt

⊗k),

W (F ⊗ (Pu(1)−1(x1)Pu(2)−1(x2) . . . Pu(k)−1(xk))) =

∫

F dŶu(1) dŶu(2) . . . dŶu(k)

Proof. The first part of the lemma is a basic, purely combinatorial, property of partition-dependent
stochastic measures due to [15]. For the second part, we observe that the maps

F 7→
∫

F dŶu(1) dŶu(2) . . . dŶu(k)

andA 7→ AΩ are isometries. Therefore it suffices to show the property for simple functions

F = 1I1×I2×...×Ik ,

where allIj are disjoint. But in this case
∫

F dŶu(1) dŶu(2) . . . dŶu(k) = Ŷu(1)(I1)Ŷu(2)(I2) . . . Ŷu(k)(Ik)

= W (F ⊗ (Pu(1)−1(x1)Pu(2)−1(x2) . . . Pu(k)−1(xk))).

�

Corollary 14. In particular,

W
(

1∏k
i=1[0,ti)

⊗ (x
u(1)
1 x

u(2)
2 . . . x

u(k)
k )

)

= ψ((Yu(1)+1, Yu(2)+1, . . . , Yu(k)+1); t1, t2, . . . , tk).

Corollary 15. The vacuum vectorΩ is cyclic and separating forAalg
X . The representationA 7→ AΩ

of Aalg
X is faithful, and extends to an isomorphism betweenL2(Aalg

X , ϕ) andFq(H). The Wick map
extends to the inverse isomorphism.

Proof. We only need to show thatΩ is cyclic forAalg
X . By Proposition 10, for a fixedπ

ψ(Y|B|(t) : B ∈ π) = Stπ(t) −
∑

S⊂π
S 6=π

qrc(S,π)Rπ\S(t)ψ(Y|C|(t) : C ∈ S).

So by induction,
ψ((Yu(1), Yu(2), . . . , Yu(k)); t1, t2, . . . , tk) ∈ L2(Aalg

X , ϕ).
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Therefore, using the same proposition, each

Stπ((Yu(1), Yu(2), . . . , Yu(k)); t1, t2, . . . , tk) ∈ L2(Aalg
X , ϕ),

where this expression is defined in the obvious way. Since, similarly to Lemma 13,
n
∏

k=1

Yu(k)(tk) =
∑

π∈P(n)

Stπ((Yu(1), Yu(2), . . . , Yu(n)); t1, t2, . . . , tn),

we conclude thatAalg
X,∆ ⊂ L2(Aalg

X , ϕ). But Ω is cyclic for this algebra. �

The following proposition is an analog of a result of [13].

Proposition 16. AnyA ∈ L2(Aalg
X , ϕ) has a unique chaos decomposition

A =

∞
∑

n=0

∑

~u

∫

F~u dŶu(1) dŶu(2) . . . dŶu(n),

where
‖A‖2

2 =
∑

~u

‖F~u‖2
2

and
F~u ∈ L2

q(R
n
+, dt

⊗n).

Conversely, any such series converges to an element ofL2(Aalg
X , ϕ).

Proof. By Proposition 9, it suffices to show that
⊕

~uH~u is dense inL2(Aalg
X , ϕ). Using the isomor-

phism betweenL2(Aalg
X , ϕ) andFq(H), this is guaranteed by Lemma 13 (b). �

Remark 17 (Classical Lévy processes). A few modifications are necessary for the classical case
q = 1. From the point of view ofq-deformations of the full Fock space, this case is degenerate,
since it involves the reduction to the symmetric Fock space.An easy way to modify the preceding
arguments for this context is to work, instead of functions in L2(Rn

+, dt
⊗n), with square-integrable

functions with support in the simplex

Dn = {t1 > t2 > t3 > . . . > tn ≥ 0} .
In this case the von Neumann algebras are commutative, and asa result instead of working with
bounded self-adjoint operators we can work with essentially self-adjoint operators with an invari-
ant dense domain consisting of analytic vectors. For the measureν, this corresponds to dropping
the requirement of compact support and instead requiring that it has a finite moment generating
function,

∫

R

eθx dν(x) <∞
for θ small enough. Note that this is exactly the hypothesis of [13]. Moreover, the vacuum vector
Ω is cyclic and separating for the von Neumann algebra (and notjust the algebra) generated by
{X(t)}. With these modification, all the preceding statements about isometries and orthogonality
remain true, and the result of [13] follows. In this case all the operators{X(t)} commute and
are independent with respect to the expectationϕ, and the corresponding convolution semigroup is
given by

logF(µt)(θ) = t

∫

R

(eiθx − 1 − iθx)
1

x2
dν(x).
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Note also that by combining Lemma 13 (a) with Proposition 10 (more specifically, with Exam-
ple 11), we get an explicit formula

n
∏

i=1

X([ai, bi)) =
∑

π∈P(n)

∫ mini∈B1
bi

maxi∈B1
ai

· · ·
∫ mini∈B|π|

bi

maxi∈B|π|
ai

d∆B1(t1) d∆B2(t2) . . . d∆B|π|
(t|π|).

It is to be compared with the results of Section 3.1 of [13]. Note also a number of previous results
in this direction, such as [19, 12, 18].

Remark 18 (Free Lévy processes). In the free caseq = 0, the von Neumann algebras are no longer
commutative, but the vacuum expectation is tracial (which is not the case in general: see the next
section). As a result, we can again work with unbounded operators, and weaken the hypothesis
to a measure with a finite moment-generating function. Usingthe operators from Remark 5, we
can again show that the vacuum vector is separating for the von Neumann algebra of{X(t)}. The
processes have freely independent increments, and the corresponding free convolution semigroup
is given by

zRµt
(z) = t

∫

R

(

1

1 − zx
− 1 − zx

)

1

x2
dν(x),

whereRµ is theR-transform ofµ.

Corollary 19. Letπ = {(1, u(2), u(3), . . . , u(k − 1), n), (2), (3), . . . , (n− 1)}. Then

Stπ(t) = qn−kψ(∆k(t), X(t), . . . , X(t)).

3.1. Kailath-Segall polynomials.

Definition 5. Let {xi}∞i=1 be (possibly non-commuting) indeterminates. For~u ∈ N∞, define the
polynomialA~u of total degree|u| in the variables

{

xj : j =
∑

i∈S

u(i), S ⊂ {1, . . . , |u|}
}

by the recursion

(8) A(j,~u) = xjA~u −
n
∑

i=1

qi−1rj+u(i)A~u\u(i) −
n
∑

i=1

qi−1A(j+u(i),~u\u(i))

with initial conditionsA∅ = 1, Ai = xi.

These polynomials have apparently not been considered explicitly before; they are in some weak
sense analogs of the Appell polynomials. Because of [19], itis appropriate to call them Kailath-
Segall polynomials.

From equation (1) and Corollary 14,

A~u (xj = Yj) = W
(

(1[0,1) ⊗ xu(1)−1) ⊗ . . .⊗ (1[0,t) ⊗ xu(n)−1)
)

=

∫

[0,t)n

dYu(1)(t1)dYu(2)(t2) . . . dYu(n)(tn)

and similarly,
∫

∏n
i=1[0,v(i))

dYu(1)(t1)dYu(2)(t2) . . . dYu(n)(tn)
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are polynomials in
{

Yj(mini∈S v(i)) : j =
∑

i∈S u(i), S ⊂ {1, . . . , |u|}
}

.
The following proposition is closely related to the resultsof [19] in the classical case. We use the

notation[0]q = 0, [n]q =
∑n−1

i=0 q
k, [0]q! = 1, [n]q! =

∏n
i=1[i]q.

Proposition 20(Kailath-Segall formulas). .

(a) DenoteA(n) = A(1,1,...,1). For a polynomial of total degreen+ 1,

Aj,1,...,1 = xjA
(n) +

n
∑

k=1

(−1)k
[n]q!

[n− k]q!
(xj+k + rj+k)A

(n−k).

(b) Sincer1 = 0,

A(n+1) =

n
∑

k=0

(−1)k
[n]q!

[n− k]q!
(xk+1 + rk+1)A

(n−k).

(c) In particular,

ψn(t) =

n
∑

k=0

(−1)k
[n]q!

[n− k]q!
∆k+1(t)ψn−k(t).

Proof. For the first part, denote the polynomialAj,1,...,1 of degreen+ 1 byA(n)
j . The result follows

by induction from the recursion (8):Aj = xj + rj, and

A
(n)
j = xjA

(n) − [n]qrj+1A
(n−1) − [n]qA

(n−1)
j+1

= xjA
(n) − [n]qrj+1A

(n−1)

− [n]q

(

xj+1A
(n−1) +

n−1
∑

k=0

(−1)k
[n− 1]q!

[n− 1 − k]q!
(xj+k+1 + rj+k+1)A

(n−k−1)

)

= xjA
(n) +

n
∑

k=1

(−1)k
[n]q!

[n− k]q!
(xj+k + rj+k)A

(n−k).

The second part follows from the first one, and the third one isan application of Corollary 14. It
can also be obtained using Corollary 19. �

Example 21. In theq-Gaussian case,r2 = 1, rk = 0 for k > 2. Let x1 = x, x2 = 1, xk = 0 for
k > 2. Then

A(n+1)(x) = xA(n)(x) − [n]qA
(n−1)(x).

SoA(n) are the continuous (Rogers)q-Hermite polynomials.
In theq-Poisson case,rk = 1 for k ≥ 2. Letxk = x for k ≥ 1. Then

A(n+1)(x) = xA(n)(x) − [n]qA
(n−1)(x) − [n]qA

(n)(x).

SoA(n) are the centered continuous bigq-Hermite polynomials, which in this context areq-analogs
of the Charlier polynomials.

See [4] for further results in this direction.
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4. VON NEUMANN ALGEBRA OF A q-L ÉVY PROCESS

Let AX,∆(t) be the von Neumann algebra generated by{Yk(s) : k ∈ N, s < t}. Let Pt be the
orthogonal projection fromL2(R+, dt) ontoL2([0, t), dt). Let

H(t) = L2([0, t), dt) ⊗ V.

Denote also byPt the induced projections fromH to H(t) and fromFalg(H) to Falg(H(t)). It
extends to an orthogonal projection fromFq(H) to Fq(H(t)). Note thatAX,∆(t) is also generated
as a von Neumann algebra byW (Falg(H(t))).

DenoteEt[A] = PtAPt. ThenEt is a norm- and strongly continuous projection. Since is clearly
mapsW (Falg(H)) ontoW (Falg(H(t))), it mapsAalg

X,∆ ontoAalg
X,∆(t) andAX,∆ ontoAX,∆(t). As a

result,Et is a conditional expectation fromAX,∆ toAX,∆(t), which preserves the vacuum state. In
particular, forAt, Bt ∈ AX,∆(t), Z ∈ AX,∆, Et[AtZBt] = AtEt[Z]Bt.

A mapU : R+ → AX,∆ will be called a process. A simple process is piecewise constant and
zero at infinity,U(t) =

∑n
i=1 Ui1[ai,bi)(t), where without loss of generality all the intervals[ai, bi)

are disjoint. A simple adapted process is a simple process with eachUi ∈ AX,∆(ai). Denote by
B2 the completion of the set of simple adapted processes with respect to the norm coming from the
inner product

〈U, V 〉 =

∫ ∞

0

〈U(t), V (t)〉ϕ dt,

and call the elements of this completion adapted processes.An simple algebraic process isU(t) =
∑n

i=1 Ui1[ai,bi)(t) with all Ui ∈ Aalg
X,∆, and simple adapted algebraic processes and adapted algebraic

processes are defined similarly.

Definition 6. LetX be aq-Lévy process andU a simple adapted process,U(t) =
∑n

i=1 Ui1[ai,bi)(t).
Define the left and right Itô stochastic integrals

∫ ∞

0

U(t)dX(t) =
n
∑

i=1

UiX([ai, bi))

and
∫ ∞

0

dX(t)U(t) =
n
∑

i=1

X([ai, bi))Ui.

Note that for all the arguments below, it is not necessary that theq-Lévy process{X(t)} generate
the filtration{AX,∆(t)}, but only that it be a martingale with respect to it, in other words that
X(I)Ω ⊥ H(t) if I ∩ [0, t) = ∅. In particular, for processes adapted with respect toAX,∆(t), all
the integrals with respect to{Yk(t)}, {∆k(t)} are defined.

Lemma 22. The stochastic integral map in the preceding definition isr2 times an isometry fromB2

toL2(AX,∆, ϕ). Therefore it can be extended to all adapted processes.

Proof. We consider the right integrals. For two simple adapted processes,
〈

n
∑

i=1

X([ai, bi))UiΩ,

m
∑

j=1

X([cj, dj))VjΩ

〉

q

=

n
∑

i=1

m
∑

j=1

〈X([ai, bi))UiΩ, X([cj, dj))VjΩ〉q .

SinceU, V are adapted,

〈X([ai, bi))UiΩ, X([cj , dj))VjΩ〉q =
〈

(1[ai,bi) ⊗ x) ⊗ (UiΩ), (1[cj ,dj) ⊗ x) ⊗ (VjΩ)
〉

q
.
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If, say,bi < cj , this is0. On the other hand, ifai = cj , bi = dj , then the inner product is

|bi − ai| r2 〈UiΩ, VjΩ〉q = |bi − ai| r2 〈Ui, Vj〉ϕ .

So for two simple adapted processes,

〈
∫ ∞

0

dX(t)U(t),

∫ ∞

0

dX(t)V (t)

〉

ϕ

= r2

∫ ∞

0

〈U(t), V (t)〉ϕ dt.

The result follows. For the left integrals, the proof is similar. �

Denote byΓq(q) the unitary second quantization of the operatorqId, determined by

Γq(q)(W (η1 ⊗ η2 ⊗ . . .⊗ ηn)) = qnW (η1 ⊗ η2 ⊗ . . .⊗ ηn).

It is a completely positive contraction. The role of this operator has been emphasized by Donati-
Martin in [9].

Proposition 23. LetU ∈ Aalg
X,∆. Define

∫ ∞

0

dX(t)1[u,v)(t)UdX(t) = lim
δ(I)→0

n
∑

i=1

X(Ii)UX(Ii),

whereI = {Ii} is a subdivision of[u, v). This limit exists inL2(ϕ). The definition extends linearly
to simple adapted algebraic processes so that

(9)
∫ ∞

0

dX(t)U(t)dX(t) =

∫ ∞

0

d∆2(t)Γq(q)(U(t)).

Proof. First we prove formula (9) for an elementary process. LetU be simple,U = W (η1 ⊗ η2 ⊗
. . .⊗ ηk)1[u,v), with all the vectorsηi ∈ H(u). LetI be a subdivision of[u, v). Then by definition,

(10)
∫ ∞

0

dX(t)U(t)dX(t) = lim
δ(I)→0

N
∑

i=1

X(Ii)W (η1 ⊗ η2 ⊗ . . .⊗ ηk)X(Ii).

Note that forζ ⊥ {η1, η2, . . . , ηk},

W (η1 ⊗ η2 ⊗ . . .⊗ ηk)ζ = η1 ⊗ η2 ⊗ . . .⊗ ηk ⊗ ζ.
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Therefore representing the right-hand-side of equation (10) onΩ, we obtain

N
∑

i=1

X(Ii)W (η1 ⊗ η2 ⊗ . . .⊗ ηk)X(Ii)Ω

=

N
∑

i=1

X(Ii)(η1 ⊗ η2 ⊗ . . .⊗ ηk ⊗ (1Ii ⊗ 1))

=
N
∑

i=1

[

(1Ii ⊗ 1) ⊗ η1 ⊗ η2 ⊗ . . .⊗ ηk ⊗ (1Ii ⊗ 1)

+ qk |Ii| r2η1 ⊗ η2 ⊗ . . .⊗ ηk + qk(1Ii ⊗ x) ⊗ η1 ⊗ η2 ⊗ . . .⊗ ηk

]

=

N
∑

i=1

(1Ii ⊗ 1) ⊗ η1 ⊗ η2 ⊗ . . .⊗ ηk ⊗ (1Ii ⊗ 1)

+ (v − u)r2q
kη1 ⊗ η2 ⊗ . . .⊗ ηk + qk(1[u,v) ⊗ x) ⊗ η1 ⊗ η2 ⊗ . . .⊗ ηk].

Since the sum in the last term converges to0, it follows that
∫ ∞

0

dX(t)U(t)dX(t) = qk
∫ ∞

0

dY2(t)U(t) + qkr2

∫ ∞

0

U(t) dt

= qk
∫ ∞

0

d∆2(t)U(t) =

∫ ∞

0

d∆2(t)Γq(q)(U(t)).

By linearity, the same result holds for simple algebraic processes. �

Proposition 24. The algebraAX,∆ has no normal tracial states except, possibly, the vacuum state.

Proof. Supposeτ is a tracial state onAX,∆. By the previous proposition, for{ηj} ∈ H(u)

τ [

∫ v

u

dX(s)W (η1 ⊗ η2 ⊗ . . .⊗ ηk)dX(s)] = qkτ [∆2([u, v))W (η1 ⊗ η2 ⊗ . . .⊗ ηk)].

τ is normal, so strongly continuous, soL2(ϕ) continuous. Using this and the trace property, the
expression above is also equal to

τ [

∫ v

u

dX(s)W (η1 ⊗ η2 ⊗ . . .⊗ ηk)dX(s)] = τ [∆2([u, v))W (η1 ⊗ η2 ⊗ . . .⊗ ηk)].

Thereforeτ [∆2([u, v))W (η1 ⊗ η2 ⊗ . . .⊗ ηk)] = 0 for k > 0. But note that the limit

lim
v→∞

1

v − u
∆2([u, v)) = r2Id.

Thusτ [W (η1 ⊗ η2 ⊗ . . .⊗ ηk)] = 0 for k > 0. �

Proposition 25. The following dichotomy holds.

(a) For theq-Brownian motion, or forq = 0, the von Neumann algebra is aII1-factor.
(b) For q 6= 0 and all otherq-Lévy processes, the von Neumann algebra has not normal tracial

states, and thus is an infinite algebra.
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Proof. Only part (b) is new. LetI ∩ J = ∅. Note that

ϕ [X(I)X(J)X(I)X(J)Yk(I)] = q2r2r2+k |I| · |J | ,

while

ϕ [Yk(I)X(I)X(J)X(I)X(J)] = qr2r2+k |I| · |J | .
Thus if the vacuum state is tracial andq 6= 0, rk = 0 for k > 2. This characterizes theq-Brownian
motion. �

It is not known if these von Neumann algebras are always factors.

4.1. Integrals of bi-processes.Using an idea of Donati-Martin, we can define two-sided sto-
chastic integrals. For{Ai, Bi}ni=1 simple algebraic processes, a simple algebraic bi-processis
U =

∑n
i=1A

i ⊗Bi. U is adapted if each ofAi, Bi is. Denote

≪ A1 ⊗B1, A2 ⊗ B2 ≫= ϕ [B∗
1Γq(q)(A

∗
1A2)B2] .

This is a positive sesquilinear form (cf. [9], although our notation is slightly different). Denote the
closure of the space of all adapted simple algebraic bi-processes with respect to the corresponding
(semi)norm byPq, and call its elements adapted algebraic bi-processes.

Definition 7. For a simple algebraic adapted bi-processU =
∑n

i=1A
i⊗Bi, withAi =

∑N
j=1A

i
j1Ij ,

Bi =
∑N

j=1B
i
j1Ij , define the stochastic integral ofU to be the operator

∫ ∞

0

U(t)♯ dX(t) =

n
∑

i=1

N
∑

j=1

AijX(Ij)B
i
j .

Proposition 26. The stochastic integral map is an isometry fromPq toL2(Aalg
X,∆, ϕ).

The proof is the same as in theq-Brownian motion case, and relies on the key

Lemma 27. For s < t andZ ∈ Aalg
X,∆(s),

Es[X([s, t))ZX([s, t))] = (t− s)Γq(q)(Z).

Proof. LetZ = W (η1 ⊗ η2 ⊗ . . .⊗ ηk), with {ηi} ⊂ H(s). Then

Es[X([s, t))ZX([s, t))] = PsX([s, t))ZX([s, t))Ps = Psa([s, t))Za
∗([s, t))Ps.

Evaluating this expression onΩ, we get

Psa([s, t))(ZΩ ⊗ a∗([s, t))Ω) = Psa([s, t))(η1 ⊗ η2 ⊗ . . .⊗ ηk ⊗ a∗([s, t))Ω)

= qk(t− s)Ps(η1 ⊗ η2 ⊗ . . .⊗ ηk) = qk(t− s)PsZΩ.

Since the vacuum vector is separating forAalg
X,∆ and the conditional expectation maps this algebra

into itself, the result follows. �
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APPENDIX A. W ICK PRODUCTS IN THEq-COMPOUND POISSON ALGEBRA

Let A be a unital star-algebra, given in a faithful star-representation (by bounded operators) on
a Hilbert spaceH with a cyclic, separating vectorΩ. Denote by〈f〉 = 〈Ω, fΩ〉 the state onA.
ConstructFalg(H) andFq(H) as in the beginning of Section 2.1, and letϕ [X] = 〈Ω, XΩ〉 be
the vacuum expectation onB(Fq(H)). Note that now, unlike in the body of the paper, we identify
Ω ∈ H with the vacuum vector inFq(H). We will also identify eachf ∈ A with the corresponding
vectorfΩ ∈ H.

Forf ∈ Asa a self-adjoint element, let

a∗(f)Ω = f,

a∗(f)(g1 ⊗ . . .⊗ gn) = f ⊗ g1 ⊗ . . .⊗ gn,

a(f)Ω = 0,

a(f)g = 〈fg〉Ω,

a(f)(g1 ⊗ . . .⊗ gn) =

n
∑

k=1

qk−1 〈fgk〉 g1 ⊗ . . .⊗ ǧk ⊗ . . .⊗ gn,

p(f)Ω = 0,

p(f)(g1 ⊗ . . .⊗ gn) =

n
∑

k=1

qk−1(fgk) ⊗ g1 ⊗ . . .⊗ ǧk ⊗ . . .⊗ gn

be the creation, annihilation, and gauge operators. Then

X(f) = a(f) + a∗(f) + p(f) + 〈f〉
is a bounded self-adjoint operator.

For q = 1, if µ is the distribution ofX(f) with respect toϕ andν is the distribution off with
respect to〈·〉, then

log

∫

R

eiθx dµ(x) =

∫

R

(eiθx − 1) dν(x).

ThusX(f) has a compound Poisson distribution. In particular, iff is a projection,X(f) has a
Poisson distribution.

Similarly, for q = 0 (see [5]),

zRµ(z) =

∫

R

(

1

1 − zx
− 1

)

dν(x),

whereRµ is theR-transform ofµ. SoX(f) has a free compound Poisson distribution.
For generalq (see [1]),

(11) ϕ [X(f)n] =
∑

π∈P(n)

qrc(π)
∏

B∈π

〈

f |B|
〉

.

Let Γ(A) be the algebra generated by{X(f) : f ∈ Asa}, with the obvious involution. As in
Lemma 2 and Proposition 4,Ω is a cyclic and separating vector forΓ(A), so the vacuum state is
faithful. Define the Wick product

W (f1 ⊗ f2 ⊗ . . .⊗ fn)Ω = f1 ⊗ f2 ⊗ . . .⊗ fn.
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ThenW (f) = X(f) − 〈f〉,
W (f ⊗ f1 ⊗ f2 ⊗ . . .⊗ fn)

= X(f)W (f1 ⊗ f2 ⊗ . . .⊗ fn) −
n
∑

i=1

qi−1 〈ffi〉W (f1 ⊗ . . .⊗ f̌i ⊗ . . .⊗ fn)

−
n
∑

i=1

qi−1W (ffi ⊗ . . .⊗ f̌i ⊗ . . .⊗ fn) − 〈f〉W (f1 ⊗ f2 ⊗ . . .⊗ fn).

(12)

Lemma 28. For 0 ≤ q < 1,

‖X(f)‖ ≤
(

1 +
1√

1 − q

)2

‖f‖ .

Proof. Since both statesϕ and〈·〉 are faithful,

‖X(f)‖ = lim
n→∞

‖X(f)‖Ln(ϕ) =
(

∑

π∈P(n)

qrc(π)
∏

B∈π

〈

f |B|
〉

)1/n

≤
(

∑

π∈P(n)

qrc(π)
∏

B∈π

‖f‖|B|
)1/n

=
(

∑

π∈P(n)

qrc(π)
)1/n

‖f‖ = ‖X(Id)‖n ‖f‖ .

Thus
‖X(f)‖ ≤ ‖X(Id)‖ · ‖f‖ .

The distribution ofX(Id) is the standardq-Poisson distribution (the orthogonality measure of the
continuous bigq-Hermite polynomials). The distribution, and in particular its support, are known
explicitly, see [16] and their references. Its maximum is the indicated constant. �

The following are some analogs of formulas of the main body ofthe paper for this context, mostly
given without proof. The Kailath-Segall formula takes the form

W
(

f⊗(n+1)
)

=
n
∑

k=0

(−1)k
[n]q!

[n− k]q!
X(fk+1)W

(

f⊗(n−k)
)

− 〈f〉W
(

f⊗n
)

.

Proposition 29.

(13) X(f1)X(f2) . . .X(fn) =
∑

π∈P(n)

∑

S⊂π

qrc(S,π)
∏

B 6∈S

〈

∏

i∈B

fi

〉

W

(

⊗

B∈S

∏

i∈B

fi

)

Proof. Evaluate both sides of the expression (13) onΩ. We obtain
n
∏

i=1

(

a(fi) + a∗(fi) + p(fi) + 〈fi〉
)

Ω =
∑

π∈P(n)

∑

S⊂π

qrc(S,π)
∏

B 6∈S

〈

∏

i∈B

fi

〉

⊗

B∈S

(

∏

i∈B

fi

)

.

Each term on the right-hand-side, possibly up to a power ofq, is obtained by applying a unique
sequence of operatorsZ1Z1 . . . Zn to Ω, where

Zi =



















a(fi) if i ∈ B,B 6∈ S, i = min(B), |B| > 1,

a∗(fi) if i ∈ B, i = max(B), eitherB ∈ S or (B 6∈ S, |B| > 1),

p(fi) if i ∈ B, i 6= max(B), eitherB ∈ S or (B 6∈ S, i 6= min(B)),

〈fi〉 if i ∈ B,B 6∈ S, |B| = 1.
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The rest of the proof proceeds as in Proposition 6. �

In particular, sinceϕ [W (·)] = 0,

ϕ [X(f1)X(f2) . . .X(fn)] =
∑

π∈P(n)

qrc(π)
∏

B∈π

〈

∏

i∈B

fi

〉

,

a generalization of equation (11). See [4] for further results in this direction.
Now let

H = L2(R+, dt) ⊗ L2(R, ν),

whereν is a compactly supported probability measure. Then polynomials are contained in and are
dense inL2(R, ν). Denote

X(t) = X(1[0,t) ⊗ x)

and

∆k(t) = X(1[0,t) ⊗ xk).

Note that we no longer have a shift in the index. As in Lemma 7,

∆k(t) =

∫ t

0

(dX(t))k = lim
δ(I)→0

N
∑

i=1

X(1Ii ⊗ x)k

exists inL2(Γ(A), ϕ), whereI = {Ii}Ni=1 is a subdivision of[0, t). Consequently,Ω is cyclic and
separating for the algebra generated by{X(t) : t ∈ R+}.

Defineψn(t) andStπ(t) as in Definition 4. Then

Stπ(t) =
∑

S⊂π

qrc(S,π)

(

∏

B 6∈S

t
〈

x|B|
〉

)

W

(

1[0,t)|S| ⊗
⊗

B∈S

x|B|

)

.

So the Wick product decomposition (13) is just the elementary combinatorial decomposition

X(t)n =
∑

π∈P(n)

Stπ(t).

Finally, assume〈x〉 =
∫

R
x dν(x) = 0. Then

ψn(t) = W ((1[0,t) ⊗ x)⊗n).

More generally, forF ∈ L2(Rn
+, dt

⊗n) and

Yk(t) = W (1[0,t) ⊗ xk) = ∆k(t) − t
〈

xk
〉

,

∫

F (t1, . . . , tn)dYu(1)(t1) . . . dYu(n)(tn) = W (F ⊗ (x
u(1)
1 x

u(2)
2 . . . xu(n)

n )).
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Birkhäuser Verlag, Basel, 1992. MR93g:81062
[15] Gian-Carlo Rota and Timothy C. Wallstrom,Stochastic integrals: a combinatorial approach, Ann. Probab.25

(1997), no. 3, 1257–1283. MR98m:60081
[16] Naoko Saitoh and Hiroaki Yoshida,A q-deformed Poisson distribution based on orthogonal polynomials, J. Phys.

A 33 (2000), no. 7, 1435–1444. MR2001c:33034
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