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1 Introduction

1.1 Basics. The familiar continued fraction algorithm, normally applied to real
numbers, can just as well be applied to formal Laurent series > 7> ¢, X" in
a variable X! with the ‘polynomial portion’ 22:7771 gr X" of the complete
quotient taken to be its ‘integer part’. ‘I'hen the partial quotients are polynomials
in X, and we learn that continued fraction expansions

[ag(X),a1(X),. .. ,an(X),...]

with partial quotients polynomials of degree at least 1 in X and defined over
some field apparently converge to formal Laurent series in X ! over that field.
It is an interesting exercise to prove that directly and to come to understand the
sense in which the convergents provide best approximations to Laurent series.

Specifically, given a Laurent series F'(X) — unless the contrary is clearly
indicated we will assume it not to be a rational function — define its sequence
(EFr)r>0 of complete quotients by setting Fo = F, and Fry1 = 1/(Fr — an(X)).
Here, the sequence (ap,)n >0 of partial quotients of F' is given by ap = | £},] where
| | denotes the polynomial part of its argument. Plainly we have

1
F:a0+

a1+
a2+

1
as +

Only the partial quotients matter, so such a continued fraction expansion may
be conveniently detailed by [ag , a1 , a5, a3, ...].

The truncations [ag, a1, ..., ay] are rational functions py/qn. Here, the
pairs of relatively prime polynomials py(X), ¢n(X) are given by the matrix

identities
ag 1\ far 1\ fan 1\ _ {pnpr
10/\10 10/ \qnqn

and the remark that the empty matrix product is the identity matrix. This
alleged correspondence, whereby these matrix products provide the sequences of



continuants (pp, )n>0 and (g )r>0 , and thus the convergents py, /gy for h > 0, may
be confirmed by induction on the number of matrices on noticing the definition

[ao, a1 ,...,an] =ao+ 1/[a1, ..., an], [ao] = ao.

It follows that the continuants g, satisfy degqpi1 = degapi1 + deggy. It also
clearly follows, from transposing the matrix correspondence, that

[an,an-1,-.- 01 =qn/qn_1, for h=1,2 ... .

"I'he matrix correspondence entails py /qn, = pr—1/qn—1+(— l)hfl/thlqh whence,
by induction, ' = ag+ > ;7 (=1)""1/g5_1qx, and so

deg(qnt’ —prn) = —degqni1 < —degqp,

displaying the excellent quality of approximation to F provided by its conver-
gents.

Proposition 1. Let p, g be relatively prime polynomials. Then

deg(qF' —p) < —degq
if, and only if, the rational function p/q is a convergent to I.

Proof. The ‘if’ part of the claim has already been noticed, so we may take h so
that degqp_1 < deg g < deg gy, and note that supposing p/q is not a convergent
entails that ¢ is not a constant multiple of ¢;,_1. Because ppqn_1 —pr_1qr = £1,
there are nonzero polynomials a and b such that

q=agn_1+bgy
p=apn_1+bpn,

and so gf —p = a(qn_1F — pr_1) + b(gnt’ — pr). Now suppose that the two
terms on the right are of different degree, dega — degqp, and degb — deg g1,
respectively. In that case plainly deg(qt' —p) > deg(gn 18" —pr—1) > deg(qn ¥ —
pr), confirming that the convergents provide the locally best approximations to
F.

To verify the suggestion that the degrees of the two terms are different, notice
that degagq,_1 = degbgy, otherwise degq < deggqy, is not possible, so dega —
deg g, = degb—degqp_1 > degb—degqn1. Moreover, dega—degq, = deg(ql'—
p). So it remains to confirm that dega — degqr, > —degq. But that’s plain
because, of course, deg a must be at least as large as deg ¢, —deg gy, 1. 1

These arguments are noticeably clearer with a nonarchimedean absolute
value, namely degree in X of a Laurent series in X!, than in the traditional
archimedean case where one deals with the usual absolute value of real numbers.



1.2 Generalisations. There is of course an extensive literature touching on the
topics of power series and continued fractions, going back to the very beginnings
of modern mathematics. However the expansions involved are typically not the
stmple continued fractions we consider here but have the more general shape

b
F=ag+ 1b =:lag,by:ay ,by:ay,byiasz,...].
a1 + 2

b
ot 2
a3+'

The abstract theory is not all that different from our ‘basics’ above, but now
questions about the quality of convergence of the convergents are relevant and
dominate. In brief, neither the series nor their continued fractions are a priori
‘formal’. The bible of these matters is H. S. Wall [23]; there’s a nice introduction
in Henrici [11]. One might further study [12] and the very extensive literature on
Padé approximation. And then there are wondrous identities a la Ramanujan;
see for example the five volume series [5].

2 Remarks and Allegations

2.1 A generic example. A brief computation by PARI GP reveals that

GX)=JJa-x7%)=
R>0
1, —X+1, —3X—1,2X°—2X+4, -1 X, 2X* 42X, 1 X1, X+3, 24X+
27 9 8 2 8 16 81 8 2 8 16 81 81
—5X T X g s, s X X - X T
4 10 729 1 1 2187 729 32 56
128 X2 _ 128 X — 256 _4100625){ 4 4100625

[STEN
ol

» T 10935 T 18225
273375 y _ 54675

128 32 7 4100625 4100625 4100625 ° 2176 2312 7

39304y | 26299 131220000 y | 1960098750 83521y _ _ 83521
4100625 2733750 * 83521 83521  ° 31492800000 1968300000 *

_ 472302000000 y2 _ 472392000000 y _ __ 83521 1085773
83521 83521 » 31492800000 62985600000 °
_ 8398080000 y 4 802016640000 183495637 _ - | 1256230361
1085773 14115049 » 184757760000 451630080000 °

1788455116800 y _ 1681960743936000 _ 189659438042467 y | 1202330505584717
102574061083 4410684626569 ’  5901901885440000 11066066035200000 ?
663963062112000000 y _ 53537627478207600000
236505320361256349 6858654290476434121 7
_ 198900974423816589509 y _ 23792671733662749965749

52287162016320000000 2196060804685440000000 *
11529319294508560000000 y 4 _693955214280599040000000
213420745556755200543157 7896567585599942420096809
_ 292173000667197869543581933 y | 16337998334606280867180297821

2421157037165697600000000 40352617286094960000000000

288232980614964000000000000 12040726884489681840000000000

T 248639223567785386981588224983 5718702142059063900576529174609 ?
_ 10117703789796805362558474693539X _ 2342739085214054266441507954708313
6647005471324680000000000000 1314445331954455470000000000000
673615975105911420000000000000 182621794871498446530000000000000 ]

183136425402298388189741858506129 45234697074367701882866239051013863 7




2.2 Thoughts and Remarks. The following are among the thoughts I mean
to provoke by this example. a. PARI is a fine program indeed; the computation
truly is brief. b. This is computational mathematics. It’s nearly impossible to
notice this kind of thing by hand; one thinks one must have blundered in the
calculation. ¢. T’he example is no more than an example, and it seems quite
special. But the general appearance of the expansion in fact is typical. d. It is
striking that the complexity of the coeflicients grows at a furious rate, yet the
mindful eye sees pattern, of sorts. It will be worthwhile to hint at an explanation
for that. e. Most of the partial quotients are of degree 1; the others have degree
2. It turns out that it is the partial quotients of degree 2 that should surprise.
Partial quotients of formal Laurent series ‘want’ to have degree 1. A kind of sort
of* ‘quasi-repetition’ in our particular example in fact ‘perpetuates’ an ‘initial
accident’ which happens to yield a partial quotient of degree 2. £f. One should
give in to the temptation to wonder what happens to our example when it is
considered to be defined over some field of characteristic p #£ 0. Of course, if p
never occurs in a denominator of a partial quotient then the expansion has good
reduction, and we can just reproduce it reduced modulo p. But what happens
when the expansion has bad reduction at p?

By the way. It is not just that it’s reasonable to reduce mod p. It’s unreason-
able not to. T'he example, let alone my claim that it is generic, shouts a reminder
that formal power series want to be defined over a finite field, and not over Q.

2.3 Two examples of reduction mod p. It’s easy to begin to answer that
last question by computing a few instances. For example, over F3 we find that

[Ja-x2)=

h>0
=[1,2X41, X+2,2X?+X+1, X, 2X242X,2X+2, X+2, X?+2X+2,
2X2492X+1, X, X2 42X 41, X+1,2X 4+ X+ X 42X+ X2 492X 42,
X2 X 4+2,2X+2, X,2X+1,2X* + X3+ X2 42X +2,2X+1, X +1,
X2 XM XXX X2, X2, 2X2 42X+, XP42X 42, X+1,
X242X 2X+1,X+2,...... ].
Not too surprisingly, to the extent that the original expansion has good reduction
the new expansion is its reduction; the first term with bad reduction ‘collapses’
to a term of higher degree. Beyond that term the expansion is not immediately

recognisable in terms of the original.
Of course,

[Jao+rx2)=10-Xx"=X/(x-1),
>0

* For those not Anglophone: The phrase ‘kind of sort of’, though rarely produced in
print, is thought often. It’s, well, kind of sort of a little more vague than just ‘kind
of’, or ‘sort of’, alone.



and so we should not be shocked to find that over Fy, for example

(I=XHI =X =X H1=XF)1 - X101 - X )1 - X~
=[1,X4+1, X+ X 4. 4 X +1].

In this case, the collapse to high degree is exceptionally vivid.

2.4 An atypical example. On the other hand, consider

X' X2 X 3 X2 b X
=10, X—1, X2 42X+2, X*-X’42X—-1, - X34+ X -1, - X, - X*4X, -X?,
—XTH X, X -1, X2 X, XY X3 XX X, X, X — X
—X, X341, X, X, X —1,-X+1, =X X8 X—1,..].

Here the sequence of exponents (F},) of the series is defined by the recurrence
relation Fp10 = Froy + Fjp and the initial values by = 1, k5 = 2.

The following thoughts and remarks will surely have sprung to the reader’s
mind. a. This example is likely to have first been noticed by persons excessively
interested in Fibonacci numbers. b. The continued fraction expansion appears to
have good reduction everywhere; that entails that on replacing X by any integer
of absolute value at least 2 we obtain a numerical expansion defective only to
the extent that it may include nonpositive integer partial quotients.

Indeed, Jeff Shallit had long known that

27 4272427 2 P 2P
—=1[0,1,10,6,1,6,2,14,4,124,2,1,2,2039,1,9,1,1, 1, 262111, 2,
8,1,1,1,3, 1, 536870655, 4, 16,3, 1,3, 7, 1, 140737488347135, ...] .

It seemed difficult to explain the apparent patterns of the numerical expansion;
the more rigid formal power series case appeared relatively accessible [20].

c. One expects, with considerable confidence, that the example is representative
of the nature of the continued fraction expansion of a very wide class of power
series. After all, it’s well known that for mathematical purposes the Fibonacci
numbers have no property not generalised by way of units of real quadratic
number fields or, according to the case, by higher order recurrence sequences,
say those ‘generated’ by Pisot numbers. d. On the other hand, this example is
fairly startling in that the sequential truncations of the series do not themselves
provide convergents. It shares that property with the product with which we
began. What if the exponent 2" in that product were replaced with powers of
larger integers?

3 Various Hilfsatze and Related Principles

3.1 Negating the negative. The following very simple lemmata provide most
of the results we will need. We will here occasionally write ~ to denote — . We
draw attention to the following.



Lemmal. —3=[0,1,1,1,0,3].

Proof. According to taste, study either of the two columns of computation below.

—8=0+0 or =B =[0+p8]=[0,~1/8]
—1/B=1+(B-1)/8 =[0,T+(B-1/8l=[0,1,8/(8-1)]
B/(B-1)=1+1/(B-1) =[0,1,1+1/(8-1)]=[0,1,1,8-1]
B-1=1+p8 =[0,1,1,14+8]=[0,1,1,1,1/3]
1/8=0+1/8 =[0,1,1,T,0+1/3]=[0,1,1,1,0,8]
B=p 1
One needs to recall, say by the matrix correspondence, that [¢ , 0, b] = [a + b].
Since, of course, —[b, v] = [—b, —v], we have, for example,
= —[3,7,15,1,292,1,...] =[-3, —[7,15,1,202,1,...]]
—[-3,0,T,1,T,0,7,15,1,292,...]=[-4,1,6,15,1,292,...].

Corollary 1. Alternatively, —3=1[0,1,1,1,0,3].

Using Lemma 1 we readily remove negative partial quotients from expansions.
Thus [a,b,¢,8] =[a,01170,b, —c,—=8]=[a—1,1,b—1,—c, —5], and
that’s [a—1,1,b—1,01110,¢,6] =[a—1,1,6—-2,1,¢c—1,58]. Ifb=1
one proceeds differently.

It seems best to work from first principles, applying the Lemma repeatedly,
rather than trying to apply consequent formulas.

3.2 Removing and Creating Partial Quotients. For continued fractions of
real numbers the ‘admissible’ partial quotients are the positive integers. That
makes it useful to have techniques for removing inadmissible partial quotients,
specifically 0 and negative integers; it’s rather more difficult to neatly remove
more complicated quantities. For continued fraction expansions of formal power
series, however, the corresponding admissibility criterion is that the partial quo-
tients be polynomials of degree at least 1. It is now constant partial quotients
that are inadmissible but which can be dealt with fairly readily.

We had best first remark that z[a , b, c,d] = [za,z71b, zc, 2715], a fact
that is obvious but that is somehow not terribly widely known.

Lemma 2. [a,z,v]=[a+ 2, —a?y —z].

Proof. Set ' =[a ,x,v],soxl = [za,1,zv] =[wa, 1, 01110 , —2y]. Then
zl =[za+1,—zv—1] yields I as claimed. ]

Corollary 2. Conversely, [a +z,v] =[a,z™ !, —22y — 2].



We see that ‘moving x’ propagates through the tail of the expansion as
alternate multiplication and division by 2. I suggest — this is ‘philosophy’,
not mathematics — that the explosive increase in complexity of the rational
coefficients of the partial quotients in the continued fraction expansion of a
‘typical’ formal power series is the consequence of a sequence of ‘movings’ of
rational quantities. I will illustrate this explicitly for the example function G.

3.3 Paperfolding. The matrix correspondence readily yields the following
extraordinarily useful result; I learned it from Mendes France [14]. As above,
we have set [ag, a1 ,...,an] = pr/qn for h = 0, 1, ... . For convenience, we
think of the string of symbols ay - - - ap as the ‘word’ wy,. Naturally, given that,
by @y we then mean the word ay, - - - a1, and by —%; the word @y, - - - @;.

Proposition 2 (Folding Lemma). We have
prfan + (=0)"fzqi = lao ,w & —qno1/an] = (a0, wn , x, —Tor ]

Proof. Here «— denotes the ‘correspondence’ between 2 by 2 matrices and
continued fractions. We have

[ao ,wn , T —qn_1/qn] — <Ph ph71> <x - thf1/qh é) _

dn 9r—1
zpn — (PhGh—1 — Pr—1qn)/qn P hil, 2
— (-1
< o g ) T Pn/a = (ST
as alleged. Moreover, [z — qn_1/qn] = [z, =05, ]. ]

Why, “folding’? Iteration of the perturbed symmetry w — w,z,—%w yields
a pattern of signs corresponding to the pattern of creases in a sheet of paper
repeatedly folded in half; see [§].

For example, the continued fraction expansion of the sum

F:)(fozh Sl X X 3 X T X x 3 x 63 12T
h>0

is given sequentially by 1 + X ' =[1,X], 1+ X '+ X3 =[1,X,X,X],
I+X TP X 3 X 7T=[1,X,X,X,X,X,X,X],...,where the addition
of each term is done by a ‘fold’ with z = —X; see [19].

There is a different way of producing that folded sequence, but I'll use the
more conventional symbols 0 and 1 in place of X and X. We'll just “fill the
spaces’ with ‘1-0- 7 repeatedly ... ; having begun with ‘0-1- ’. Here the - s
denote a space about to be filled.

0-1-0-1.0-1.0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0 ...
011-001-011-001-011-001-011-001-011-001-011-001-0 ...
0111001-0110001-0111001-0110001-0111001-0110001-0 ...
011100110110001-011100100110001-011100110110001-0 . ..
0111001101100011011100100110001-01110011011000100 . ..
0111001101100011011100100110001101110011011000100 . ..



This remark actually seems useful in understanding some continued fraction
expansions of formal power series. For me, it motivated the following result.

Proposition 3 (Ripple Lemma). [z ,a,b,¢c,d,e, f,g,h,i,j,...]=

[2_171757T7b717E7T7 d7]‘7E7T7f717§7T7h7]‘7;7]‘7j7]‘7"']'

Proof. Appropriately apply Lemma 1, equivalently the Corollary to Lemma 2
with z = 41, again, and again, and ... . 1

The series £ is given by the functional equation 1+ X "1 F(X?) = F(X). But it’s
eagy to see that the folded continued fraction F(X) claimed for ¥ above has the
property that XF(X) — X is just a rippled version of F(X?), providing a new
proof that I has the continued fraction expansion F(X). This new viewpoint
[17] readily allowed a noticeable simplification and generalisation of the work of
[1] detailing various more delicate properties of the expansion.

4 Some Details

We display a computation illustrating how there is an explosion in complexity
of the rational coefficients of the partial quotients of formal power series, and
mention the effect of reduction mod p on such continued fraction expansions.

4.1 A Painful Computation. Suppose we have discovered, either laboriously
by hand, or aided by the miracle of PARI, that

GX;)=(1-XH1-X?*=[1,-X+1,-32X -3 8X 4]

We bravely set out to compute, by hand, the continued fraction expansion of
G(X;2) = (1 - X HG(X?;1). Replacing X by X? is easy, but then we’ll want
to divide by X, and multiply by X — 1.

To that end we first ready the expansion for being divided by X by repeated
applications of Lemma 2; thus generalised ‘rippling’. We see that

[1,-X*+1,-3X>—2 8X*>—4]=[0,1,X*—-2,4X*+3 —8X%14]
=[0,1,X*, -4, —2Xx%?—1,2X%-1]
=[0,1,X%, -1, —2X* —1,-2X%+2],
so we’ll divide[0717)(27—%7—2)(27—17—2X27%]by X. We obtain
[0,X,X,—3X,-2X,-X,—2X ,1X]=[0,X—-1,1,-X—-1,1X,...]
=[0,X—-1,1,-X+1,-2,=2X+2,—1X, 6 —4X —1X 2X]

where we’ve started to ripple the expansion to ready it for multiplication by
X — 1. The exciting feature is the underlined term —2X + 2. It is ‘accidentally’
ready — without our having had to ripple it into submission. It’s that unlikely



to be repeated accident that causes the expansion of G to have partial quotients
of degree 2. Next

(0, X—1,1,-X+1,—2,-2X+2,-1X,—-4X+4,—-% 8X+4,—-1X]
_ 1 1 _ 1 1 1
=[...,—-1.8X-8,L 18X —12]=[..., -1 8X—8, 6L 18X —18, 1]

On multiplying by X — 1, as we now can easily do, we see that G(X;2) is

[0,1,X—-1,-1,-3(X-1), -2, -3X(X -1), —4,

—1(X=1),8, H(X-1), 18,

(X -1

1
6

Finally, we tidy that up, again risking an increase in complexity of the rational
coefficients. When the dust has settled we obtain

G(X;2)=[1,-X+1,-3X—1,2X*—2X+3, —X+1 —4x-4 2Zx_

).

I don’t want to claim that the method used here is a sensible way of pursuing

[ kel

the computation; it’s far more convenient to type a few lines on one’s computer.
But I do suggest that it enables us to see both how complexity of the coefficients
propagates, and that it requires an unlikely accident — so unlikely as to be near
impossible other than at the beginning of the expansion, when the coeflicients
still are orderly — to newly create a partial quotient of degree other than 1. It
is the functional equation satisfied by G(X) that generates the ‘kind of sort of
quasi-periodicity’ I vaguely spoke of above.

4.2 On the other hand ... . Consider Hy(X) = [[,5(1 + X4, The
surprise this example provides is not just that its partial quotients have high
degree. The coeflicients of the partial quotients all are integers!

Just as in the clumsy approach just tried, we obtain sequentially that

HaX0) = [1, X4 Haxi1) = 2211, x4 =

X
X—-1

:T[0717_X47T]:(X_1)[07X7_X37_X]

Next, we ripple again, now to permit the multiplication by X — 1. We obtain

(X =D[0,X—1,1,X*—1,X]
=[0,1,X—1,(X3-1)/(X—-1), X(X-1)]
=[1,-X,-(X*-1)/(X-1),-X(X-1)].

The reader caring to pursue this process will find that each iteration adds just two
partial quotients, and that all have integer coefficients. Indeed, Mendes krance
and I remark in [15] that for £ > 3 the truncations of Hy(X) are readily seen to
be convergents of H;, and, when k& is even, not 2, they are every second convergent
of Hy. However, for k > 3 odd, we show in [2] with the aid of Allouche that the



expansion is ‘normal™ — up to the partial quotients given by the truncations of
the product, and their ‘quasi-repetition’ occasioned by the functional equation.
In the case k = 3 the partial quotients whose existence is given by the truncations
of the product too have degree 1. However, the ingenious proof in [2] that indeed
all the partial quotients of Hz have degree 1 — which relies on multiplying by
using the ‘Raney automata’ [21] — was nugatory. It is remarked by Cantor [7]
that the degree of the partial quotients of Hj3 is an obvious consequence of the
fact that Hs(X) is (1 + X~ 1)~Y? when reduced mod 3 and that its partial

quotients all have degree 1.

4.3 Beal’s Principle. Cantor’s observation follows from a general principle.
We'll need to mind our ps and ¢s, since we’ll want to use p to denote a prime;
so our convergents will here be x/y. Given a series F, we denote its sequence of
partial quotients by (as ), and of its complete quotients by (F},). My remarks are
inspired by a question put to me by Guillaume Grisel (Caen) at Eger, 1996.

The principle underlying Grisel’s question was that it seemed likely that
every reduction /', mod p, of & has no more partial quotients than does ¥
itself. Notice that /' must have reduction at p for this to make sense at all and
that, naturally, if we mention the number of partial quotients then we must
apparently be alluding to the number of partial quotients of rational functions;
thus of truncations of the series F.

However, I've now realised that the idea is to understand the first principles
genesis of the sequence of polynomials (y3,) yielding the convergents to /. Recall
that, by Proposition 1, those are the polynomials of least degree not exceeding
dy, say, respectively, so that the Laurent series y, /' has no terms of degree —1,
—2, ..., and —dp. There is no loss of generality (but there is a significant change
in definition of the y;) in our determining that the yp, have been renormalised
so that each has integer coeflicients not sharing a common factor. Now consider
this story in characteristic p. It can be told in the same words, other than that
it’s not relevant to fuss about normalisation of the 7, and that we mark all
quantities with an overline ~ .

Theorem 1. The distinct reductions Ty, of the yy yield all the convergents of F.
Proof. Certainly, each T, yields a convergent to F, because
deg(ynt’ — xp) < —degyp, implies that deg(ynt’ — z, ) < —degyy, < —deg¥y.

However, some of the 7, may coincide. Denote representatives of the distinct
Tr bY Th): Ta(n)> -+ » Uns)s - - » Where each h(j) is maximal; that is Tri) =
ThG)—1 = " = Yn(G—1)1- Then

deg(yn) ' —2n(s)) = — degyn()+1 entails deg(yn) I — zn(sy ) £ —degyn(iy11 -

* That is, all the partial quotients are of degree 1. But I also intend to invoke the notion
that the coefficients of those polynomials are ‘typical’ and explode in complexity.



The last inequality informs us that the corresponding next partial quotient of
', let’s call it b; |1, has degree at least degyy(jy11 — deg ;). But

n n

Z(degyh(j)+1_deg Yn(ij—1)+1 ) > Z(degyh(g‘)+1—deg yh(jfl)ﬁ»l) = degyh(n)+1 )

=0 =0

where we recall 91,5y = Yn(j_1)+1, and that by the formalism 73, —1)77 = 1, so
that y,(_1)41 is a constant, and thus is of degree zero.
However, it’s plain by induction on a remark in the introduction, that

Zdeg bjt1 = degynmyr1 < degyn(nyr1-
j=0

It follows that the ‘polite’ inequalities above (where we wrote ‘<’ because we
could not be certain that we were allowed to write ‘=") all are equalities, that
is, deg Un_1)+1 = degyn(j—1)+1 and degyn 11 — degyn(y) = degh; i1, and the
Yn(y) must account for all the convergents of F as claimed. 1

This yields a verification of Beal’s principle in the best sense, because we
show that the convergents of F' arise from a subset of those of ¥, so that it
always makes sense to claim in that sense that the number of convergents of ¥’
cannot exceed that of /.

It is then a triviality that if deggy, = h for all h necessarily the same, that is
deg g, = h for all h, is true for the original function. But it is easily confirmed
that deg @, = h for all h for (1+ X~1)~2 over F3, so of course also degq), = h

is true for the product ], q(1+ X*Sh)7 as Cantor pointed out.

5 In Thrall to Fibonacci

We remark that to our surprise, and horror, continued fraction expansion of
formal power series appears to adhere to the cult of Fibonacci.

5.1 Specialisable Continued Fraction Expansions. Suppose (gs)n>0 is a
sequence of positive integers satisfying gp11 > 2gx. Then the Folding Lemma,
together with Lemma 2 whenever g,11 = 24, readily shows that every series
> p>o EX 79 has a continued fraction expansion with partial quotients polyno-
mials with integer coefficients. Since such expansions are precisely the expansions
that continue to make sense when X is replaced by an integer at least 2, we call
them specialisable.

When the exponents g, increase less rapidly more ad hoc tricks become neces-
sary. Shallit and I noticed [20], mostly experimentally but with proofs for several
simpler cases, that certain series S_ X ~7* are specialisable, where the recurrence
sequence (1},) satisfies Ip4p, = Ihin—1+ Thin_o + -+ +1p — the dreaded Fi-
bonacci, Tribonacci [sic], and more generally, forgive me, Polynacci* sequences.

* Surely ‘n-acci’ is no better?



Since it seemed absurd that continued fractions be in thrall to Fibonacci, I was
keen to discover a larger class of examples of which those instances were part.

5.2 A Shocking Surprise. It seems one should study the continued fractions
of the sequence of sums

G —Gm —Gm —Gim
()( 10,4 14X 24 X +h)>h20'

Having, somehow, obtained the expansion for A, one changes m — m-+1, divides
by X @m+2=Gmi1 and finally one adds 1. The ripple lemma makes it feasible to do
this ‘by hand’ and to see what ‘really’ happens in moving h — h+1. Whatever,
one finds that the folded sequence obtained is first perturbed after n + 1 steps
by the behaviour of the ‘critical’ exponent G110 — 2Gini1 + Gpar. Call
this quantity G, . Specifically, if for some n, Gy, ,_1 > 0 but G, , < 0 then
the expansion is not specialisable; and if both are positive, then n is not critical.
So the interesting case is G 1 > 0 and Gy, , = 0.

In that case, and only that case, the expansion is specialisable. But, horribile
dictu, the condition Gy, , = 0 for all m says that (G},) is some constant translate
of the Polynacci sequence of order n. Contrary to decency and common sense,
it does seem that these cases really are special when it comes to specialisable
continued fraction expansion.

The perturbation caused by the vanishing of G, , spreads through the ex-
pansion by the inductive step. One also notices that specialisability is lost if one
makes arbitrary changes to the signs of the terms. Finally, one obtains cases such
as the examples of [20], see §2.4 above, by presuming Go =Gy = -+ = G,_5 =1,
Gp_1 =1 and taking m = n — 1. There’s still work to do then to show that the
expansion remains specialisable on division by X. That division further perturbs
the pattern in the expansion, explaining why the work of [20] was so complicated.

6 Concluding Remarks

6.1 Normality. That, for formal power series over an infinite field, all partial
quotients are almost always of degree one, is just the observation that remainders
3,51 @ X " have a reciprocal with polynomial part of degree greater than one,
and thus give rise to a partial quotient of degree greater than one, if and only if
a1 = 0. Moreover, if a; # 0, the partial quotient is a; X — aza; ' and the next
remainder is (a2 — ajaz)a; *X ! + terms of lower degree in X.

T’his same viewpoint shows that the reduction mod p of a formal power series
almost always has partial quotients of degree greater than one, since now the
nonvanishing of the coefficient of X 1 of all remainders is as unlikely as the
nonappearance of the digit 0 in the base p expansion of a random real number.

These two remarks combine to explain my claim that one should expect a
formal power series with integer coeflicients to have partial quotients of degree
one, that the continued fraction expansion will have bad reduction at all primes,
and that — noting the shape of the coefficient of X! of the ‘next’ remainder
— the coefficients of the partial quotients will quickly explode in complexity.



6.2 Announcements. Other remarks also are announcements with hint of
their eventual proof; one might call them conjectures with some justification.
Thus, I certainly give no proof that the partial quotients of G(X), see §2.1, are
all of degree at most 2; notwithstanding the strong hints of §4.1. Here, I'm not
sure that a proof warrants the effort. On the other hand, §5 both reports some
results proved in [20] and the announcement that I now know how to prove the
conjectures of that paper; evidently with details to appear elsewhere.

6.3 Power Series over Finite Fields. There is a well studied analogy between
number fields and function fields in positive characteristic leading, for example,
to a theory of diophantine approximation of power series in finite characteristic
as in the work of de Mathan at Bordeaux. [teration of references from the recent
paper [13] will readily lead the reader into that literature. By the way, Theorem
C sketched on p.224 of that paper is a trivial application of the Folding Lemma,
Proposition 2 above. I might add that it was the work of Baum and Sweet [3]
that first interested me in the present questions. Beal’s Principle informs on
these matters; description of that will be the subject of future work.

6.4 Power Series with Periodic Continued Fraction Expansion. lt is
of enormous interest to find infinite classes of positive integers D for which the
continued fraction expansion of v/D has a ‘long’ period, in principle of length
O(VDlog log D), but in practice of length O((log D)*) since no better is known
than some cases with small k. One approach, as exemplified by [9], leads to a
study of families /f(n), with f a given polynomial taking integer values at
the integers, and for integers n. Here a theorem of Schinzel [22] shows that the
period has uniformly bounded length, thus independent of n, essentially when the
power series v/ f(X) has a periodic expansion with good reduction at all primes,
perhaps other than 2. More precisely, polynomials providing solutions to the
Pell equation must be in %Z[){ |. These issues connect closely with recent work
of Bombieri and Paula Cohen [6] showing that the coeflicients of simultaneous
Padé approximants to algebraic functions are large — this is essentially the
explosive growth of the coeflicients of partial quotients of which we make much
above — in effect unless a ‘generalisation’ of Schinzel’s conditions holds. For the
hyperelliptic case of this phenomenon, which goes back to Abel, see [5].
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