Fibonacci Quarterly 1997 (35,2): 129-134
A GENERALIZATION OF THE "ALL OR NONE" DIVISIBILITY PROPERTY

Chizhong Zhou
Yueyang University, Yueyang Hunan 414000, P. R. China
(Submitted September 1995)

1. INTRODUCTION

In [6], Juan Pla proved the following interesting theorem.
Theorem 1.1: Let h_{n} be the general term of a given sequence of integers such that $h_{n+2}=h_{n+1}+h_{n}$, where h_{0} and h_{1} are arbitrary integers. Let c be an arbitrary integer other than $-2,-1,0$, and 1 . Let D be any divisor of $c^{2}+c-1$ other than 1 . Then, the sequence $\left\{w_{n}\right\}$, where $w_{n}=c h_{n+1}-h_{n}$, for $n \geq 0$, is such that either (a) D divides every w_{n} or (b) D divides no w_{n}.

We would like to point out a more interesting fact that, essentially, the above theorem is the corollary of the following.

Theorem 1.2: Let $\left\{f_{n}\right\}$ be the Fibonacci sequence, that is, $f_{0}=0, f_{1}=1$, and $f_{n+2}=f_{n+1}+f_{n}$ for $n \geq 0$. Let $f(x)=x^{2}-x-1$. Then, for $n \in \mathbb{Z}$, we have

$$
\begin{equation*}
x^{n} \equiv f_{n} x+f_{n-1}(\bmod f(x)) \tag{1.1}
\end{equation*}
$$

Proof: Equation (1.1) holds for $n=0$ since $x^{0}=f_{0} x+f_{-1}$. Assume that (1.1) holds for $n=k, k \geq 0$, that is, $x^{k} \equiv f_{k} x+f_{k-1}(\bmod f(x))$. Then $x^{k+1} \equiv f_{k} x^{2}+f_{k-1} x \equiv f_{k}(x+1)+f_{k-1} x=$ $f_{k+1} x+f_{k}(\bmod f(x))$. This means that (1.1) holds for all $n \geq 0$. Now assume that (1.1) holds for $n=-k, k \geq 0$, that is, $x^{-k} \equiv f_{-k} x+f_{-k-1}(\bmod f(x))$. Then $x^{-k-1} \equiv f_{-k}+f_{-k-1} x^{-1}(\bmod$ $f(x))$. Since $x(x-1) \equiv 1(\bmod f(x))$, we have that $x^{-1} \equiv x-1(\bmod f(x))$, and so $x^{-k-1} \equiv f_{-k}+$ $f_{-k-1}(x-1)=f_{-k-1} x+f_{-k-2}(\bmod f(x))$. This means that (1.1) holds also for all $n<0$.

Now we apply Theorem 1.2 to prove Theorem 1.1. We have $h_{n}=h_{1} f_{n}+h_{0} f_{n-1}$ and $h_{n+1}=$ $h_{1} f_{n+1}+h_{0} f_{n}$ for $n \geq 0$ (see [2]), whence $w_{n}=-h_{1}\left(-f_{n+1} c+f_{n}\right)-h_{0}\left(-f_{n} c+f_{n-1}\right)$. In (1.1), taking $x=-c$, we get $w_{n} \equiv-h_{1}(-c)^{n+1}-h_{0}(-c)^{n}=(-c)^{n}\left(c h_{1}-h_{0}\right)=(-c)^{n} w_{0}\left(\bmod \left(c^{2}+c-1\right)\right)$. Since D divides $c^{2}+c-1$ and $D>1$, we have $\operatorname{gcd}(c, D)=1$. If D divides w_{n} for some $n \geq 0$, then D divides w_{0}. This leads to the fact that D divides w_{n} for all $n \geq 0$.

In this paper we generalize the result of Theorem 1.2 to the case of $k^{\text {th }}$-order homogeneous recursion sequence with constant coefficients in Section 3. In Section 4 we generalize the interesting result of Theorem 1.1, correspondingly, i.e., we give and prove the main result of this paper. Some necessary preliminaries are given in Section 2.

2. PRELIMINARIES

Let the sequence $\left\{h_{n}\right\}=\left\{h_{n}\right\}_{n \geq 0}$ be defined by the recurrence relation

$$
\begin{equation*}
h_{n+k}=a_{1} h_{n+k-1}+\cdots+a_{k-1} h_{n+1}+a_{k} h_{n}, \tag{2.1}
\end{equation*}
$$

and the initial condition

$$
\begin{equation*}
h_{0}=c_{0}, h_{1}=c_{1}, \ldots, h_{k-1}=c_{k-1} \tag{2.2}
\end{equation*}
$$

where a_{1}, \ldots, a_{k} and c_{0}, \ldots, c_{k-1} are constants. Then we call $\left\{h_{n}\right\}$ a $k^{\text {th }}$-order Fibonacci-Lucas sequence or simply an F-L sequence, and we call h_{n} the $n^{\text {th }}$ F-L number. The polynomial

$$
\begin{equation*}
f(x)=x^{k}-a_{1} x^{k-1}-\cdots-a_{k-1} x-a_{k} \tag{2.3}
\end{equation*}
$$

is called the characteristic polynomial of $\left\{h_{n}\right\}$. If $f(\theta)=0$, then we call θ a characteristic root of $\left\{h_{n}\right\}$. The set of F-L sequences satisfying (2.1) is denoted by $\Omega\left(a_{1}, \ldots, a_{k}\right)$ and also by $\Omega(f(x))$.

If $a_{k} \neq 0$, then (2.1) can be rewritten as

$$
\begin{equation*}
h_{n}=\left(h_{n+k}-a_{1} h_{n+k-1}-\cdots-a_{k-1} h_{n+1}\right) / a_{k}, \tag{2.4}
\end{equation*}
$$

whence, from the given values of $h_{0}, h_{1}, \ldots, h_{k-1}$, we can calculate the values of h_{-1}, h_{-2}, \ldots. Therefore, in the case $a_{k} \neq 0$, we may consider $\left\{h_{n}\right\}$ as $\left\{h_{n}\right\}_{-\infty}^{+\infty}$. For convenience, we always assume that $a_{k} \neq 0$ whenever we refer to $\Omega\left(a_{1}, \ldots, a_{k}\right)$.

Obviously, $\Omega\left(a_{1}, \ldots, a_{k}\right)$ is a linear space [3] under the operations $\left\{h_{n}\right\}+\left\{w_{n}\right\}=\left\{h_{n}+w_{n}\right\}$ and $\lambda\left\{h_{n}\right\}=\left\{\lambda h_{n}\right\}$. Let $\left\{u_{n}^{(i)}\right\}, 0 \leq i \leq k-1$, be a sequence in $\Omega=\Omega\left(a_{1}, \ldots, a_{k}\right)$ with the initial condition $u_{n}^{(i)}=\delta_{n i}$ for $0 \leq n \leq k-1$, where δ is the Kronecker function. Then we call $\left\{u_{n}^{(i)}\right\}$ the $i^{\text {th }}$ basic sequence in Ω. Construct a map, $\Omega \rightarrow \mathbf{R}^{k}$ such that each sequence $\left\{h_{n}\right\} \in \Omega$, with initial condition (2.2), corresponds to ($c_{0}, c_{1}, \ldots, c_{k-1}$). Clearly, this map is an isomorphism, and the basic sequences $\left\{u_{n}^{(0)}\right\},\left\{u_{n}^{(1)}\right\}, \ldots,\left\{u_{n}^{(k-1)}\right\}$ form a base in Ω. Thus, we have the following lemmas.

Lemma 2.1: Let $\Omega=\Omega\left(a_{1}, \ldots, a_{k}\right)$. Let $\left\{u_{n}^{(i)}\right\}, 0 \leq i \leq k-1$, be the $i^{\text {th }}$ basic sequence in Ω and let $\left\{h_{n}\right\}$ be an arbitrary sequence in Ω. Then $\left\{h_{n}\right\}$ can be represented uniquely by $\left\{u_{n}^{(0)}\right\},\left\{u_{n}^{(1)}\right\}, \ldots$, $\left\{u_{n}^{(k-1)}\right\}$, as

$$
\begin{equation*}
h_{n}=\sum_{i=0}^{k-1} h u_{n}^{(i)} \text { for } n \in \mathbf{Z} \text {. } \tag{2.5}
\end{equation*}
$$

Lemma 2.2: Under the condition of Lemma 2.1, we have

$$
\begin{equation*}
h_{n+1}=\left(a_{1} h_{k-1}+a_{2} h_{k-2}+\cdots+a_{k} h_{0}\right) u_{n}^{(k-1)}+\sum_{i=0}^{k-2} h_{i+1} u_{n}^{(i)} \text { for } n \in \mathbf{Z} \tag{2.6}
\end{equation*}
$$

Proof: Let $\left\{w_{n}\right\}=\left\{h_{n+1}\right\}$. Then $w_{0}=h_{1}, \ldots, w_{k-2}=h_{k-1}$ and (2.1) implies $w_{k-1}=h_{k}=a_{1} h_{k-1}+$ $a_{2} h_{k-2}+\cdots+a_{k} h_{0}$. Thus, the lemma is proved by Lemma 2.1.

In (2.6), replacing $\left\{h_{n}\right\}$ by $\left\{u_{n}^{(0)}\right\}, \ldots,\left\{u_{n}^{(k-1)}\right\}$, respectively, we obtain
Lemma 2.3: Let $\left\{u_{n}^{(i)}\right\}, 0 \leq i \leq k-1$, be the $i^{\text {th }}$ basic sequence in $\Omega\left(a_{1}, \ldots, a_{k}\right)$. Then, for $n \in \mathbf{Z}$, we have

$$
\begin{equation*}
u_{n+1}^{(0)}=a_{k} u_{n}^{(k-1)} \text { and } u_{n+1}^{(i)}=a_{k-i} u_{n}^{(k-1)}+u_{n}^{(i-1)} \text { for } 1 \leq i \leq k-1 . \tag{2.7}
\end{equation*}
$$

Lemma 2.4: Under the condition of Lemma 2.3, we have

$$
\begin{equation*}
u_{n}^{(i)}=\sum_{j=0}^{i} a_{k-i+j} u_{n-1-j}^{(k-1)}, i=0, \ldots, k-1, n \in \mathbf{Z} . \tag{2.8}
\end{equation*}
$$

Proof: From (2.7), (2.8) holds for $i=0$. Assume (2.8) holds for $i, 0 \leq i<k-1$. Then (2.7) and the induction hypothesis imply that

$$
\begin{aligned}
u_{n}^{(i+1)} & =a_{k-i-1} u_{n-1}^{(k-1)}+u_{n-1}^{(i)}=a_{k-i-1} u_{n-1}^{(k-1)}+\sum_{j=0}^{i} a_{k-i+j} u_{n-2-j}^{(k-1)} \\
& =\sum_{j=0}^{i+1} a_{k-(i+1)+j} u_{n-1-j}^{(k-1)},
\end{aligned}
$$

and we are done.
From (2.7) and (2.8), we observe that the $(k+1)^{\text {th }}$ basic sequence in $\Omega\left(a_{1}, \ldots, a_{k}\right)$ plays an important role, so that we call it the principal sequence in Ω and denote it by $\left\{u_{n}^{(k-1)}\right\}=\left\{u_{n}\right\}$.

Now, substituting (2.8) into (2.5), we get
Lemmal 2.5: Let $\left\{u_{n}\right\}$ be the principal sequence in $\Omega=\Omega\left(a_{1}, \ldots, a_{k}\right)$. Let $\left\{h_{n}\right\}$ be an arbitrary sequence in Ω. Then

$$
\begin{equation*}
h_{n}=\sum_{i=0}^{k-1} b_{k-1-i} u_{n-i} \text { for } n \in \mathbb{Z} \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{k-1}=h_{k-1} \text { and } b_{k-1-i}=\sum_{j=0}^{k-1-i} a_{i+1+j} h_{k-2-j} \text { for } 1 \leq i \leq k-1 \tag{2.10}
\end{equation*}
$$

3. A PROPERTY OF THE CHARACTERISTIC POLYNOMIAL OF A $n^{\text {th }}$-ORDER $F-\mathbb{L}$ SEQUENCE

Theorem 3.1: Let $\left\{u_{n}^{(i)}\right\}, 0 \leq i \leq k-1$, be the $i^{\text {th }}$ basic sequence in $\Omega(f(x))$, where $f(x)$ is denoted by (2.3). Then
(a) $x^{n} \equiv \sum_{i=0}^{k-1} u_{n}^{(i)} x^{i}(\bmod f(x))$ for $n \in \mathbb{Z}$.
(b) If, besides (3.1), we have $x^{n} \equiv \sum_{i=0}^{k-1} v_{n}^{(i)} x^{i}(\bmod f(x))$, where each of the $v_{n}^{(i)} \mathrm{s}(i=0, \ldots$, $k-1$) is independent of x, then $u_{n}^{(i)}=v_{n}^{(i)}, i=0, \ldots, k-1$.

Proof: Part (b) is proved by the uniqueness of the remainder of x^{n} over $f(x)$. Now we must prove part (a). By the definition of $\left\{u_{n}^{(i)}\right\}, i=0, \ldots, k-1$, (3.1) holds for $n=0$. Assume that (3.1) holds for $n=m, m \geq 0$. Then, from the induction hypothesis and (2.7), we have

$$
\begin{aligned}
x^{m+1} & \equiv x \sum_{i=0}^{k-1} u_{m}^{(i)} x^{i}=u_{m}^{(k-1)} x^{k}+\sum_{i=0}^{k-2} u_{m}^{(i)} x^{i+1} \\
& \equiv u_{m}^{(k-1)}\left(a_{1} x^{k-1}+\cdots+a_{k-1} x+a_{k}\right)+\sum_{i=0}^{k-2} u_{m}^{(i)} x^{i+1} \\
& =a_{k} u_{m}^{(k-1)}+\sum_{i=1}^{k-1}\left(a_{k-i} u_{m}^{(k-1)}+u_{m}^{(i-1)}\right) x^{i}=\sum_{i=0}^{k-1} u_{m+1}^{(i)} x^{i}(\bmod f(x))
\end{aligned}
$$

This implies that (3.1) holds for all $n \geq 0$.
Now assume that (3.1) holds for $n=-m, m \geq 0$. Then

$$
\begin{equation*}
x^{-m-1} \equiv x^{-1}\left(\sum_{i=0}^{k-1} u_{-m}^{(i)} x^{i}\right)=\sum_{i=1}^{k-1} u_{-m}^{(i)} x^{i-1}+u_{-m}^{(0)} x^{-1}(\bmod f(x)) \tag{3.2}
\end{equation*}
$$

From $x\left(x^{k-1}-a_{1} x^{k-2}-\cdots-a_{k-1}\right) \equiv a_{k}(\bmod f(x))$ and $a_{k} \neq 0$, we obtain

$$
\begin{equation*}
x^{-1} \equiv\left(x^{k-1}-a_{1} x^{k-2}-\cdots-a_{k-1}\right) / a_{k}(\bmod f(x)) . \tag{3.3}
\end{equation*}
$$

Substituting (3.3) into (3.2) and noting that $u_{-m}^{(0)} / a_{k}=u_{-m-1}^{(k-1)}$ we get, by (2.7)

$$
\begin{aligned}
x^{-m-1} & \equiv \sum_{i=1}^{k-1} u_{-m}^{(i)} x^{i-1}+u_{-m-1}^{(k-1)}\left(x^{k-1}-a_{1} x^{k-2}-\cdots-a_{k-1}\right) \\
& =u_{-m-1}^{(k-1)} x^{k-1}+\sum_{i=1}^{k-1}\left(u_{-m}^{(i)}-a_{k-i} u_{-m-1}^{(k-1)}\right) x^{i-1} \\
& =u_{-m-1}^{(k-1)} x^{k-1}+\sum_{i=1}^{k-1} u_{-m-1}^{(i-1)} x^{i-1}=\sum_{i=0}^{k-1} u_{-m-1}^{(i)} x^{i}(\bmod f(x)) .
\end{aligned}
$$

This implies that (3.1) holds also for $n<0$.
Corollary: Under the condition of Theorem 3.1, if $f(\theta)=0$, then

$$
\begin{equation*}
\theta^{n}=\sum_{i=0}^{k-1} u_{n}^{(i)} \theta^{i} \text { for } n \in \mathbb{Z} \tag{3.4}
\end{equation*}
$$

It can be observed that the results in [1], [4], and [5] may be obtained easily by using (3.4).

4. A GENERALIZATION OF THE "ALL OR NONE" DIVISIBILITY PROPERTY

Theorem 4.1: Let $\left\{h_{n}\right\}$ be an arbitrary sequence in $\Omega\left(a_{1}, \ldots, a_{k}\right)=\Omega(f(x))$, where a_{1}, \ldots, a_{k} are integers and $f(x)$ is denoted by (2.3). Let $c \in \mathbb{Z}, f(c) \neq \pm 1$. Let D be a divisor of $f(c)$ other than 1 , and $\operatorname{gcd}(c, D)=1$. Suppose that

$$
\begin{equation*}
w_{n}=\sum_{i=0}^{k-1} g_{k-1-i}(c) h_{n+k-1-i}, \tag{4.1}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{k-1}(x)=x^{k-1} \text { and } g_{k-1-i}(x)=\sum_{j=0}^{k-1-i} a_{i+1+j} x^{k-2-j} \text { for } 1 \leq i \leq k-1 \tag{4.2}
\end{equation*}
$$

Then either D divides w_{n} for all $n \geq 0$ or D divides no w_{n}.
To prove the theorem, we need the following lemmas.

Lemma 4.1:

$$
\begin{equation*}
\sum_{i=0}^{k-1} g_{k-1-i}(x) u_{n-i} \equiv x^{n}(\bmod f(x)) \tag{4.3}
\end{equation*}
$$

where $\left\{u_{n}\right\}$ is the principal sequence in $\Omega(f(x))$.
Proof: Let $\left\{u_{n}^{(i)}\right\}, 0 \leq i \leq k-1$, be the $i^{\text {th }}$ basic sequence. From Theorem 3.1 and Lemma 2.4, we have

$$
\begin{aligned}
x^{n} & \equiv \sum_{t=0}^{k-1} u_{n}^{(t)} x^{t}=x^{k-1} u_{n}+\sum_{i=0}^{k-2} x^{t} \sum_{i=0}^{t} a_{k-t+i} u_{n-1-i} \\
& =x^{k-1} u_{n}+\sum_{i=0}^{k-2} u_{n-1-i} \sum_{i=i}^{k-2} a_{k-t+i} x^{t}=\sum_{i=0}^{k-2} u_{n-1-i} \sum_{j=0}^{k-2-i} a_{i+2+j} x^{k-2-j}+u_{n} x^{k-1} \\
& =\sum_{i=0}^{k-2} u_{n-1-i} g_{k-2-i}(x)+g_{k-1}(x) u_{n}=\sum_{i=0}^{k-1} g_{k-1-i}(x) u_{n-i}(\bmod f(x)) .
\end{aligned}
$$

Lemma 4.2:

$$
\begin{equation*}
\sum_{i=0}^{k-1} b_{i} c^{i}=w_{0} \tag{4.4}
\end{equation*}
$$

where $b_{i}(0 \leq i \leq k-1)$ is denoted by (2.10).
Proof:

$$
\begin{aligned}
\sum_{i=0}^{k-1} b_{i} c^{i} & =h_{k-1} c^{k-1}+\sum_{i=0}^{k-2} b_{k-1-(k-1-i)} c^{t} \\
& =h_{k-1} c^{k-1}+\sum_{i=0}^{k-2} c^{i} \sum_{j=0}^{i} a_{k-i+j} h_{k-2-j}=h_{k-1} c^{k-1}+\sum_{j=0}^{k-2} h_{k-2-j} \sum_{i=j}^{k-2} a_{k-i+j} c^{i} \\
& =h_{k-1} c^{k-1}+\sum_{j=0}^{k-2} h_{k-2-j}^{k-2-j} \sum_{i=0}^{k-2} a_{2+j+i} c^{k-2-i}=h_{k-1} g_{k-1}(c)+\sum_{j=0}^{k-2} h_{k-2-j} g_{k-2-j}(c) \\
& =\sum_{j=0}^{k-1} g_{k-1-j}(c) h_{k-1-j}=w_{0}
\end{aligned}
$$

by (4.2) and (4.1).
Proof of Theorem 4.1: From (4.1) and Lemma 2.5, we have

$$
\begin{aligned}
w_{n} & =\sum_{j=0}^{k-1} g_{k-1-j}(c) h_{n+k-1-j}=\sum_{j=0}^{k-1} g_{k-1-j}(c) \sum_{i=0}^{k-1} b_{k-1-i} u_{n+k-1-j-i} \\
& =\sum_{i=0}^{k-1} b_{k-1-i} \sum_{j=0}^{k-1} g_{k-1-j}(c) u_{n+k-1-j-i} .
\end{aligned}
$$

In Lemma 4.1, taking $x=c$, we get

$$
\sum_{j=0}^{k-1} g_{k-1-j}(c) u_{n+k-1-j-i} \equiv c^{n+k-1-i} \quad(\bmod f(c))
$$

whence, from Lemma 4.2,

$$
w_{n} \equiv \sum_{i=0}^{k-1} b_{k-1-i} c^{n+k-1-i}=c^{n} \sum_{i=0}^{k-1} b_{k-1-i} c^{k-1-i}=c^{n} w_{0}(\bmod f(c))
$$

Because $\operatorname{gcd}(c, D)=1$, if D divides w_{n} for some $n \geq 0$, then D must divide w_{0}, so D divides w_{n} for all $n \geq 0$.

Example 1: Let $f(x)=x^{3}-x^{2}-x-1$, then $k=3, a_{1}=a_{2}=a_{3}=1$. Let $c=-2$, then $f(c)=-11$. Take $D=11$, then $\operatorname{gcd}(c, D)=1$. Assume that $\left\{h_{n}\right\} \in \Omega(f(x))$ and $h_{0}=0, h_{1}=h_{2}=1$. From (4.2) and (4.1), we have $g_{2}(c)=(-2)^{2}=4, g_{1}(c)=1 \times(-2)+1=-1, g_{0}(c)=1 \times(-2)=-2$, and $w_{n}=4 h_{n+2}-h_{n+1}-2 h_{n}$, respectively. Since $w_{0}=4 h_{2}-h_{1}-2 h_{0}=3$ and 11 does not divide 3 , thus 11 divides no w_{n}.

Example 2: Let $f(x)=x^{3}-x^{2}+2 x-3$, then $k=3, a_{1}=1, a_{2}=-2, a_{3}=3$. Let $c=3$, then $f(c)=21$. Take $D=7$, then $\operatorname{gcd}(c, D)=1$. Assume that $\left\{h_{n}\right\} \in \Omega(f(x))$ and that $h_{0}=h_{2}=1$, $h_{1}=-1$. From (4.2) and (4.1), we have $g_{2}(c)=3^{2}=9, g_{1}(c)=(-2) \times 3+3=-3, g_{0}(c)=3 \times 3=9$, and $w_{n}=9 h_{n+2}-3 h_{n+1}+9 h_{n}$, respectively. Since $w_{0}=9 h_{2}-3 h_{1}+9 h_{0}=21$ and 7 divides 21 , thus 7 divides w_{n} for all $n \geq 0$.
Concluding Remark: Theorem 3.1 can be seen in [7], which was published in Chinese in 1993. Some other applications of Theorem 3.1 and its corollary to the identities involving F-L numbers, congruence relations, modular periodicities, divisibilities, etc., are also stated in [7].

REFERENCES

1. Dario Castellanos. "A Generalization of Binet's Formula and Some of Its Consequences." The Fibonacci Quarterly 27.5 (1989):424-38.
2. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin, 1969; rpt. Santa Clara, Calif: The Fibonacci Association, 1979.
3. Rudolf Lidl \& Harald Niederreiter. Finite Fields. Boston: Addison-Wesley, 1983.
4. Pin-Yen Lin. "De Moivre-Type Identities for the Tribonacci Numbers." The Fibonacci Quarterly 26.2 (1988):131-34.
5. Pin-Yen Lin. "De Moivre-Type Identities for the Tetrabonacci Numbers." In Applications of Fibonacci Numbers 4:215-18. Dordrecht: Kluwer, 1991.
6. Juan Pla. "An All or None Divisibility Property for a Class of Fibonacci-Like Sequences of Integers." The Fibonacci Quarterly 32.3 (1994):226-27.
7. Chizhong Zhou. Fibonacci-Lucas Sequences and Their Application (in Chinese). MR 95m:11027. Hunan: Hunan Science and Technology Publishing House, 1993.
AMS Classification Numbers: 11B37, 11B39, 11C08
