Fibonacci Quarterly 1997 (35,2): 129-134 A GENERALIZATION OF THE "ALL OR NONE" DIVISIBILITY PROPERTY

Chizhong Zhou

Yueyang University, Yueyang Hunan 414000, P. R. China (Submitted September 1995)

1. INTRODUCTION

In [6], Juan Pla proved the following interesting theorem.

Theorem 1.1: Let h_n be the general term of a given sequence of integers such that $h_{n+2} = h_{n+1} + h_n$, where h_0 and h_1 are arbitrary integers. Let c be an arbitrary integer other than -2, -1, 0, and 1. Let D be any divisor of $c^2 + c - 1$ other than 1. Then, the sequence $\{w_n\}$, where $w_n = ch_{n+1} - h_n$, for $n \ge 0$, is such that either (a) D divides every w_n or (b) D divides no w_n .

We would like to point out a more interesting fact that, essentially, the above theorem is the corollary of the following.

Theorem 1.2: Let $\{f_n\}$ be the Fibonacci sequence, that is, $f_0 = 0$, $f_1 = 1$, and $f_{n+2} = f_{n+1} + f_n$ for $n \ge 0$. Let $f(x) = x^2 - x - 1$. Then, for $n \in \mathbb{Z}$, we have

$$x^n \equiv f_n x + f_{n-1} \pmod{f(x)}.$$
 (1.1)

Proof: Equation (1.1) holds for n = 0 since $x^0 = f_0 x + f_{-1}$. Assume that (1.1) holds for n = k, $k \ge 0$, that is, $x^k \equiv f_k x + f_{k-1} \pmod{f(x)}$. Then $x^{k+1} \equiv f_k x^2 + f_{k-1} x \equiv f_k (x+1) + f_{k-1} x = f_{k+1} x + f_k \pmod{f(x)}$. This means that (1.1) holds for all $n \ge 0$. Now assume that (1.1) holds for n = -k, $k \ge 0$, that is, $x^{-k} \equiv f_{-k} x + f_{-k-1} \pmod{f(x)}$. Then $x^{-k-1} \equiv f_{-k} + f_{-k-1} x^{-1} \pmod{f(x)}$ for n = -k, $k \ge 0$, that is, $x^{-k} \equiv f_{-k} x + f_{-k-1} \pmod{f(x)}$. Then $x^{-k-1} \equiv f_{-k} + f_{-k-1} x^{-1} \pmod{f(x)}$ for n = -k, $k \ge 0$, that is, $x^{-k} \equiv f_{-k} x + f_{-k-1} \pmod{f(x)}$. Then $x^{-k-1} \equiv f_{-k} + f_{-k-1} x^{-1} \pmod{f(x)}$ and so $x^{-k-1} \equiv f_{-k} + f_{-k-1} (x-1) = f_{-k-1} x + f_{-k-2} \pmod{f(x)}$. This means that (1.1) holds also for all n < 0. \Box

Now we apply Theorem 1.2 to prove Theorem 1.1. We have $h_n = h_1 f_n + h_0 f_{n-1}$ and $h_{n+1} = h_1 f_{n+1} + h_0 f_n$ for $n \ge 0$ (see [2]), whence $w_n = -h_1(-f_{n+1}c + f_n) - h_0(-f_nc + f_{n-1})$. In (1.1), taking x = -c, we get $w_n \equiv -h_1(-c)^{n+1} - h_0(-c)^n = (-c)^n (ch_1 - h_0) = (-c)^n w_0 \pmod{c^2 + c - 1}$. Since D divides $c^2 + c - 1$ and D > 1, we have $\gcd(c, D) = 1$. If D divides w_n for some $n \ge 0$, then D divides w_0 . This leads to the fact that D divides w_n for all $n \ge 0$. \Box

In this paper we generalize the result of Theorem 1.2 to the case of k^{th} -order homogeneous recursion sequence with constant coefficients in Section 3. In Section 4 we generalize the interesting result of Theorem 1.1, correspondingly, i.e., we give and prove the main result of this paper. Some necessary preliminaries are given in Section 2.

2. PRELIMINARIES

Let the sequence $\{h_n\} = \{h_n\}_{n \ge 0}$ be defined by the recurrence relation

$$h_{n+k} = a_1 h_{n+k-1} + \dots + a_{k-1} h_{n+1} + a_k h_n, \tag{2.1}$$

1997]

and the initial condition

$$h_0 = c_0, \ h_1 = c_1, \dots, h_{k-1} = c_{k-1},$$
 (2.2)

where $a_1, ..., a_k$ and $c_0, ..., c_{k-1}$ are constants. Then we call $\{h_n\}$ a k^{th} -order Fibonacci-Lucas sequence or simply an F-L sequence, and we call h_n the n^{th} F-L number. The polynomial

$$f(x) = x^{k} - a_{1}x^{k-1} - \dots - a_{k-1}x - a_{k}$$
(2.3)

is called the characteristic polynomial of $\{h_n\}$. If $f(\theta) = 0$, then we call θ a characteristic root of $\{h_n\}$. The set of F-L sequences satisfying (2.1) is denoted by $\Omega(a_1, ..., a_k)$ and also by $\Omega(f(x))$.

If $a_k \neq 0$, then (2.1) can be rewritten as

$$h_n = (h_{n+k} - a_1 h_{n+k-1} - \dots - a_{k-1} h_{n+1}) / a_k, \qquad (2.4)$$

whence, from the given values of $h_0, h_1, ..., h_{k-1}$, we can calculate the values of $h_{-1}, h_{-2}, ...$ Therefore, in the case $a_k \neq 0$, we may consider $\{h_n\}$ as $\{h_n\}_{-\infty}^{+\infty}$. For convenience, we always assume that $a_k \neq 0$ whenever we refer to $\Omega(a_1, ..., a_k)$.

Obviously, $\Omega(a_1, ..., a_k)$ is a linear space [3] under the operations $\{h_n\} + \{w_n\} = \{h_n + w_n\}$ and $\lambda\{h_n\} = \{\lambda h_n\}$. Let $\{u_n^{(i)}\}, 0 \le i \le k-1$, be a sequence in $\Omega = \Omega(a_1, ..., a_k)$ with the initial condition $u_n^{(i)} = \delta_{ni}$ for $0 \le n \le k-1$, where δ is the Kronecker function. Then we call $\{u_n^{(i)}\}$ the *i*th **basic sequence** in Ω . Construct a map, $\Omega \to \mathbb{R}^k$ such that each sequence $\{h_n\} \in \Omega$, with initial condition (2.2), corresponds to $(c_0, c_1, ..., c_{k-1})$. Clearly, this map is an isomorphism, and the basic sequences $\{u_n^{(0)}\}, \{u_n^{(1)}\}, ..., \{u_n^{(k-1)}\}$ form a base in Ω . Thus, we have the following lemmas.

Lemma 2.1: Let $\Omega = \Omega(a_1, ..., a_k)$. Let $\{u_n^{(i)}\}, 0 \le i \le k-1$, be the *i*th basic sequence in Ω and let $\{h_n\}$ be an arbitrary sequence in Ω . Then $\{h_n\}$ can be represented uniquely by $\{u_n^{(0)}\}, \{u_n^{(1)}\}, ..., \{u_n^{(k-1)}\}$, as

$$h_n = \sum_{i=0}^{k-1} h_i u_n^{(i)} \text{ for } n \in \mathbb{Z}.$$
 (2.5)

Lemma 2.2: Under the condition of Lemma 2.1, we have

$$h_{n+1} = (a_1 h_{k-1} + a_2 h_{k-2} + \dots + a_k h_0) u_n^{(k-1)} + \sum_{i=0}^{k-2} h_{i+1} u_n^{(i)} \text{ for } n \in \mathbb{Z}.$$
(2.6)

Proof: Let $\{w_n\} = \{h_{n+1}\}$. Then $w_0 = h_1, \dots, w_{k-2} = h_{k-1}$ and (2.1) implies $w_{k-1} = h_k = a_1 h_{k-1} + a_2 h_{k-2} + \dots + a_k h_0$. Thus, the lemma is proved by Lemma 2.1. \Box

In (2.6), replacing $\{h_n\}$ by $\{u_n^{(0)}\}, \dots, \{u_n^{(k-1)}\}$, respectively, we obtain

Lemma 2.3: Let $\{u_n^{(i)}\}, 0 \le i \le k-1$, be the *i*th basic sequence in $\Omega(a_1, ..., a_k)$. Then, for $n \in \mathbb{Z}$, we have

$$u_{n+1}^{(0)} = a_k u_n^{(k-1)}$$
 and $u_{n+1}^{(i)} = a_{k-i} u_n^{(k-1)} + u_n^{(i-1)}$ for $1 \le i \le k-1$. (2.7)

Lemma 2.4: Under the condition of Lemma 2.3, we have

$$u_n^{(i)} = \sum_{j=0}^{l} a_{k-i+j} u_{n-l-j}^{(k-1)}, \quad i = 0, \dots, k-1, \quad n \in \mathbb{Z}.$$
 (2.8)

[MAY

Proof: From (2.7), (2.8) holds for i = 0. Assume (2.8) holds for i, $0 \le i < k - 1$. Then (2.7) and the induction hypothesis imply that

$$u_n^{(i+1)} = a_{k-i-1}u_{n-1}^{(k-1)} + u_{n-1}^{(i)} = a_{k-i-1}u_{n-1}^{(k-1)} + \sum_{j=0}^{i} a_{k-i+j}u_{n-2-j}^{(k-1)}$$
$$= \sum_{i=0}^{i+1} a_{k-(i+1)+j}u_{n-1-j}^{(k-1)},$$

and we are done. \Box

From (2.7) and (2.8), we observe that the $(k+1)^{\text{th}}$ basic sequence in $\Omega(a_1, ..., a_k)$ plays an important role, so that we call it the **principal sequence** in Ω and denote it by $\{u_n^{(k-1)}\} = \{u_n\}$.

Now, substituting (2.8) into (2.5), we get

Lemma 2.5: Let $\{u_n\}$ be the principal sequence in $\Omega = \Omega(a_1, ..., a_k)$. Let $\{h_n\}$ be an arbitrary sequence in Ω . Then

$$h_n = \sum_{i=0}^{k-1} b_{k-1-i} u_{n-i} \text{ for } n \in \mathbb{Z}.$$
 (2.9)

where

$$b_{k-1} = h_{k-1}$$
 and $b_{k-1-i} = \sum_{j=0}^{k-1-i} a_{i+1+j} h_{k-2-j}$ for $1 \le i \le k-1$. (2.10)

3. A PROPERTY OF THE CHARACTERISTIC POLYNOMIAL OF A *k*th-ORDER F-L SEQUENCE

Theorem 3.1: Let $\{u_n^{(i)}\}$, $0 \le i \le k-1$, be the *i*th basic sequence in $\Omega(f(x))$, where f(x) is denoted by (2.3). Then

(a)
$$x^n \equiv \sum_{i=0}^{k-1} u_n^{(i)} x^i \pmod{f(x)}$$
 for $n \in \mathbb{Z}$. (3.1)

(b) If, besides (3.1), we have $x^n \equiv \sum_{i=0}^{k-1} v_n^{(i)} x^i \pmod{f(x)}$, where each of the $v_n^{(i)}$'s (i = 0, ..., k-1) is independent of x, then $u_n^{(i)} = v_n^{(i)}$, i = 0, ..., k-1.

Proof: Part (b) is proved by the uniqueness of the remainder of x^n over f(x). Now we must prove part (a). By the definition of $\{u_n^{(i)}\}$, i = 0, ..., k - 1, (3.1) holds for n = 0. Assume that (3.1) holds for n = m, $m \ge 0$. Then, from the induction hypothesis and (2.7), we have

$$\begin{aligned} x^{m+1} &\equiv x \sum_{i=0}^{k-1} u_m^{(i)} x^i = u_m^{(k-1)} x^k + \sum_{i=0}^{k-2} u_m^{(i)} x^{i+1} \\ &\equiv u_m^{(k-1)} (a_1 x^{k-1} + \dots + a_{k-1} x + a_k) + \sum_{i=0}^{k-2} u_m^{(i)} x^{i+1} \\ &= a_k u_m^{(k-1)} + \sum_{i=1}^{k-1} (a_{k-i} u_m^{(k-1)} + u_m^{(i-1)}) x^i = \sum_{i=0}^{k-1} u_{m+1}^{(i)} x^i \pmod{f(x)}. \end{aligned}$$

This implies that (3.1) holds for all $n \ge 0$.

Now assume that (3.1) holds for n = -m, $m \ge 0$. Then

1997]

A GENERALIZATION OF THE "ALL OR NONE" DIVISIBILITY PROPERTY

$$x^{-m-1} \equiv x^{-1} \left(\sum_{i=0}^{k-1} u_{-m}^{(i)} x^i \right) = \sum_{i=1}^{k-1} u_{-m}^{(i)} x^{i-1} + u_{-m}^{(0)} x^{-1} \pmod{f(x)}.$$
(3.2)

From $x(x^{k-1}-a_1x^{k-2}-\cdots-a_{k-1}) \equiv a_k \pmod{f(x)}$ and $a_k \neq 0$, we obtain

$${}^{1} \equiv (x^{k-1} - a_1 x^{k-2} - \dots - a_{k-1}) / a_k \pmod{f(x)}.$$
(3.3)

Substituting (3.3) into (3.2) and noting that $u_{-m}^{(0)} / a_k = u_{-m-1}^{(k-1)}$ we get, by (2.7)

$$\begin{aligned} x^{-m-1} &\equiv \sum_{i=1}^{m} u_{-m}^{(i)} x^{i-1} + u_{-m-1}^{(k-1)} (x^{k-1} - a_1 x^{k-2} - \dots - a_{k-1}) \\ &= u_{-m-1}^{(k-1)} x^{k-1} + \sum_{i=1}^{k-1} (u_{-m}^{(i)} - a_{k-i} u_{-m-1}^{(k-1)}) x^{i-1} \\ &= u_{-m-1}^{(k-1)} x^{k-1} + \sum_{i=1}^{k-1} u_{-m-1}^{(i-1)} x^{i-1} = \sum_{i=0}^{k-1} u_{-m-1}^{(i)} x^{i} \pmod{f(x)}. \end{aligned}$$

This implies that (3.1) holds also for n < 0. \Box

 x^{-}

Corollary: Under the condition of Theorem 3.1, if $f(\theta) = 0$, then

$$\theta^n = \sum_{i=0}^{k-1} u_n^{(i)} \theta^i \text{ for } n \in \mathbb{Z}.$$
(3.4)

It can be observed that the results in [1], [4], and [5] may be obtained easily by using (3.4).

4. A GENERALIZATION OF THE "ALL OR NONE" DIVISIBILITY PROPERTY

Theorem 4.1: Let $\{h_n\}$ be an arbitrary sequence in $\Omega(a_1, ..., a_k) = \Omega(f(x))$, where $a_1, ..., a_k$ are integers and f(x) is denoted by (2.3). Let $c \in \mathbb{Z}$, $f(c) \neq \pm 1$. Let D be a divisor of f(c) other than 1, and gcd(c, D) = 1. Suppose that

$$w_n = \sum_{i=0}^{k-1} g_{k-1-i}(c) h_{n+k-1-i}, \qquad (4.1)$$

where

$$g_{k-1}(x) = x^{k-1}$$
 and $g_{k-1-i}(x) = \sum_{j=0}^{k-1-i} a_{i+1+j} x^{k-2-j}$ for $1 \le i \le k-1$. (4.2)

Then either D divides w_n for all $n \ge 0$ or D divides no w_n .

To prove the theorem, we need the following lemmas.

Lemma 4.1:

$$\sum_{i=0}^{k-1} g_{k-1-i}(x) u_{n-i} \equiv x^n \pmod{f(x)},$$
(4.3)

where $\{u_n\}$ is the principal sequence in $\Omega(f(x))$.

Proof: Let $\{u_n^{(i)}\}$, $0 \le i \le k-1$, be the *i*th basic sequence. From Theorem 3.1 and Lemma 2.4, we have

[MAY

$$\begin{aligned} x^{n} &\equiv \sum_{t=0}^{k-1} u_{n}^{(t)} x^{t} = x^{k-1} u_{n} + \sum_{t=0}^{k-2} x^{t} \sum_{i=0}^{t} a_{k-t+i} u_{n-1-i} \\ &= x^{k-1} u_{n} + \sum_{i=0}^{k-2} u_{n-1-i} \sum_{t=i}^{k-2} a_{k-t+i} x^{t} = \sum_{i=0}^{k-2} u_{n-1-i} \sum_{j=0}^{k-2-i} a_{i+2+j} x^{k-2-j} + u_{n} x^{k-1} \\ &= \sum_{i=0}^{k-2} u_{n-1-i} g_{k-2-i}(x) + g_{k-1}(x) u_{n} = \sum_{i=0}^{k-1} g_{k-1-i}(x) u_{n-i} \pmod{f(x)}. \end{aligned}$$

 $\sum_{i=0}^{k-1} b_i c^i = w_0,$

Lemma 4.2:

where b_i $(0 \le i \le k - 1)$ is denoted by (2.10).

Proof:

$$\begin{split} \sum_{i=0}^{k-1} b_i c^i &= h_{k-1} c^{k-1} + \sum_{i=0}^{k-2} b_{k-1-(k-1-i)} c^t \\ &= h_{k-1} c^{k-1} + \sum_{i=0}^{k-2} c^i \sum_{j=0}^{i} a_{k-i+j} h_{k-2-j} = h_{k-1} c^{k-1} + \sum_{j=0}^{k-2} h_{k-2-j} \sum_{i=j}^{k-2} a_{k-i+j} c^i \\ &= h_{k-1} c^{k-1} + \sum_{j=0}^{k-2} h_{k-2-j} \sum_{i=0}^{k-2-j} a_{2+j+i} c^{k-2-i} = h_{k-1} g_{k-1}(c) + \sum_{j=0}^{k-2} h_{k-2-j} g_{k-2-j}(c) \\ &= \sum_{j=0}^{k-1} g_{k-1-j}(c) h_{k-1-j} = w_0, \end{split}$$

by (4.2) and (4.1). □

Proof of Theorem 4.1: From (4.1) and Lemma 2.5, we have

$$w_n = \sum_{j=0}^{k-1} g_{k-1-j}(c) h_{n+k-1-j} = \sum_{j=0}^{k-1} g_{k-1-j}(c) \sum_{i=0}^{k-1} b_{k-1-i} u_{n+k-1-j-i}$$
$$= \sum_{i=0}^{k-1} b_{k-1-i} \sum_{j=0}^{k-1} g_{k-1-j}(c) u_{n+k-1-j-i}.$$

In Lemma 4.1, taking x = c, we get

$$\sum_{j=0}^{k-1} g_{k-1-j}(c) u_{n+k-1-j-i} \equiv c^{n+k-1-i} \pmod{f(c)},$$

whence, from Lemma 4.2,

$$w_n \equiv \sum_{i=0}^{k-1} b_{k-1-i} c^{n+k-1-i} = c^n \sum_{i=0}^{k-1} b_{k-1-i} c^{k-1-i} = c^n w_0 \pmod{f(c)}.$$

Because gcd(c, D) = 1, if D divides w_n for some $n \ge 0$, then D must divide w_0 , so D divides w_n for all $n \ge 0$. \Box

1997]

Example 1: Let $f(x) = x^3 - x^2 - x - 1$, then k = 3, $a_1 = a_2 = a_3 = 1$. Let c = -2, then f(c) = -11. Take D = 11, then gcd(c, D) = 1. Assume that $\{h_n\} \in \Omega(f(x))$ and $h_0 = 0$, $h_1 = h_2 = 1$. From (4.2) and (4.1), we have $g_2(c) = (-2)^2 = 4$, $g_1(c) = 1 \times (-2) + 1 = -1$, $g_0(c) = 1 \times (-2) = -2$, and $w_n = 4h_{n+2} - h_{n+1} - 2h_n$, respectively. Since $w_0 = 4h_2 - h_1 - 2h_0 = 3$ and 11 does not divide 3, thus 11 divides no w_n .

Example 2: Let $f(x) = x^3 - x^2 + 2x - 3$, then $k = 3, a_1 = 1, a_2 = -2, a_3 = 3$. Let c = 3, then f(c) = 21. Take D = 7, then gcd(c, D) = 1. Assume that $\{h_n\} \in \Omega(f(x))$ and that $h_0 = h_2 = 1$, $h_1 = -1$. From (4.2) and (4.1), we have $g_2(c) = 3^2 = 9$, $g_1(c) = (-2) \times 3 + 3 = -3$, $g_0(c) = 3 \times 3 = 9$, and $w_n = 9h_{n+2} - 3h_{n+1} + 9h_n$, respectively. Since $w_0 = 9h_2 - 3h_1 + 9h_0 = 21$ and 7 divides 21, thus 7 divides w_n for all $n \ge 0$.

Concluding Remark: Theorem 3.1 can be seen in [7], which was published in Chinese in 1993. Some other applications of Theorem 3.1 and its corollary to the identities involving F-L numbers, congruence relations, modular periodicities, divisibilities, etc., are also stated in [7].

REFERENCES

- Dario Castellanos. "A Generalization of Binet's Formula and Some of Its Consequences." The Fibonacci Quarterly 27.5 (1989):424-38.
- 2. V. E. Hoggatt, Jr. *Fibonacci and Lucas Numbers*. Boston: Houghton Mifflin, 1969; rpt. Santa Clara, Calif.: The Fibonacci Association, 1979.
- 3. Rudolf Lidl & Harald Niederreiter. Finite Fields. Boston: Addison-Wesley, 1983.
- 4. Pin-Yen Lin. "De Moivre-Type Identities for the Tribonacci Numbers." The Fibonacci Quarterly 26.2 (1988):131-34.
- 5. Pin-Yen Lin. "De Moivre-Type Identities for the Tetrabonacci Numbers." In Applications of Fibonacci Numbers 4:215-18. Dordrecht: Kluwer, 1991.
- 6. Juan Pla. "An All or None Divisibility Property for a Class of Fibonacci-Like Sequences of Integers." *The Fibonacci Quarterly* **32.3** (1994):226-27.
- 7. Chizhong Zhou. Fibonacci-Lucas Sequences and Their Application (in Chinese). MR 95m:11027. Hunan: Hunan Science and Technology Publishing House, 1993.

AMS Classification Numbers: 11B37, 11B39, 11C08
