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5. Let 4 and B be any compact metric spaces and 7'(4) =B be a continuous
transformation; let G, denote the collection of all non-degenerate sets of the
collection [T-1(b)], for all points b of B. Let G; denote the collection of all sets
of G;—; which intersect L;_; =lim sup G;_;, for2=1, 2, 3, - - - . If the following
conditions are satisfied: (1) for any €>0, any set g of Go, and any point x of g,
there exists a homeomorphism W(4 —x) =A —g, which is the identity outside
of the e-neighborhood of g in A4, (2) there exists some number « of the first or
second number class such that G.=0, and (3) II:Lz is a zero-dimensional set,
it was shown by Mr. Wardwell that there exists a topological transformation
S(4)=B.

6. Professor Thomas discussed a method of generalizing a given existence
theorem E which is taken as a postulate and which applies to a system of partial
differential equations in a canonical form C. The processes employed are alge-
braic combination and differentiation. The resulting theorem E’ applies to other
canonical forms C’. The procedure was illustrated by classical examples, such as
the deduction of the existence theorem for passive systems of total differential
equations from Cauchy’s existence theorem for partial differential equations.

JouN WILLIAMSON, Secretary

THE SUMS OF POWERS OF INTEGERS
By E. E. WITMER, University of Pennsylvania

The problem of finding the sums of the powers of the integers from 1 to »
has interested mathematicians for a long time. Expressions involving Bernoulli’s
numbers have been developed for S,(z) where

) Sy(n) =17+ 22+ 37 4 ... L g2

with p a positive integer, as well as for sums of powers of the odd integers, from
1 to 2n—1. For a review of the previous work in this field the reader is referred
to Bachmann’s Niedere Zahlentheorie, Second Part, pp. 16 fi., and to Nielsen,
Traité des Nombres de Bernoulli, Chap. XVI.* As far as the writer is aware, the
formulas for S,(#) and similar sums have always been derived by methods in-
volving Bernoulli’s numbers. In the present paper formulas are derived for
Sp(n) and related expressions by methods involving nothing more than the
binomial theorem. A natural independent variable in terms of which to ex-
press Sp(n) is the triangular number n(n+1)/2=m =.S1(n). When p is odd,
Sp(n) =f,(m) and when p is even, S, (n) = (2n+1)g,(m), where f, and g, are poly-
nomials with rational coefficients of degrees (p+1)/2 and p/2 respectively.
It is shown, furthermore, that .S,(#) = F,(n+1/2) where F, is a polynomial
with rational coefficients of degree p+1. When # is odd only even powers of

* Cf. also Schwatt, An Introduction to the Operations with Series, Ch. 5, Philadelphia, 1924.
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(n+1/2) occur in F,; when p is even only odd powers of (z+1/2) occur, with
the exception of So(n) =(n+1/2)—1/2.
Let
2) CR,(m—1) =174+ 37+ 52 4 - - . + (2n — 1),
It will be shown that
Rp(2n — 1) = Gy(n),

where G, is a polynomial with rational coefficients of degree p+1. When p is
odd, G, contains only even powers of #; when p is even, G, contains only odd
powers of .

It is easily shown that the following relation holds:

(2a) Rp(2n — 1) = Sp(2m — 1) — 288, (n — 1).
We now proceed to establish*
THEOREM I:
»
(3) Sap-1(n) = Do Apum*,

k=2

where A ;. are rational numberst independent of n that satisfy

@) o
4 App =
pp p
and the recursion formula
1 221 P
5 A = —_—— .A. ] ) k < .
(3) ok pf\;'\,'.<2p—2j—|—1> ik j4

Here u is the least value which j can assume in (5) without making the binomial
coefficient on the right side of the equation zero. This theorem is valid for all
positive integral values of p except 1 in which case Si(n) =m.

Proof,
rir+1)72 [r(r—1) 1"_2 p /P .
i i e -0 (e

EL( P Ve

= oort\2p — 25+ 1

Summing for 7 from 1 to #, we have

* Theorems I, II, IIT and IV are obtained, with the aid of Bernoulli numbers, in Chap. XVI
of Nielsen’s Nombres de Bernoulli, and theorems V and VI in Chap. I of Bachmann, Niedere Zahlen-
theorie, Second Part, p. 26.

T Equation (3) of course implies that A;,=0 for k>j. This is also true of the coefficients
Bix, Cix, Djx, Ejx and Fji which occur in Theorems II, III, IV, V and VI respectively.
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mp Zp: : ( ? >52:‘—1(%)

o 2m\2p — 25 + 1

(6)

? 1 = ?
—— S, ().
go Sl g<2ﬁ -2+ 1)S2 )

Henceforth, the proof rests on mathematical induction. Assume that (3)
holds if p is replaced by j, for j=2, 3, - - - (p—1). Then we shall show that
S2p_1(n) also has the form (3), and obtain recursion formulas for the coefficients.

Replacing p by jin (3), substituting the result in (6) and solving for Sz,_1(%),
we have

2p—1 1 »—1 7
Sep-1(n) = » mr — — Z( ? > 2. Ajm*

“\op—2j+1) &
o i P - _17 7+ k=2
R
= P —_ — Eme.
p L pEm\p -1

It is seen that Sy,_1(%) has the form (3).

Since Si(z) contains the first power and only the first power of m, it is essen-
tial to the proof that Si(z) shall never occur in (6), for any value of p considered
in the proof, i.e.,for p=3,4 - - - . It is easily seen that this condition is fulfilled
since even in the most unfavorable case, namely, when p=3, the value of u is 2.
Therefore, in equation (6), the sum of lowest order which occurs is Sy,—1(%)
=.S3(n).

Since, now, S3(#) =m?, a formula which is easily demonstrated, equation (7)
permits us to conclude that S;(z) and hence in general, Sy,—1(%), has the form
given in equation (3). Theorem I therefore follows by mathematical induction.
Formulas (4) and (5) are now obtained by comparison of equations (7) and (3).

THEOREM I(A): The coefficients A ,i can be expressed in the following determi-
nant form:

(= 1)rEi(h — 1))

(8) Apk P! k>
where
(9) Ay = | afiklx
1 and j take on the values 1,2, 3, - - - (p—k) and
— 41
(9a) a?ik = ( P 7 . >
20— 2743

All of the elements of (9) are zero for j >74-1.
This is valid for 2<p. For k=p the equation (8) gives the correct result if
the determinant (9) is arbitrarily assigned the value 1.
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Proof. Equations (4) and (5) can be written in the following form:

(10) Zp:< ? >A7k = 27715 .

i=n 217_2j+1
Here
=11 p =k
dp = 0if p 5 k.

The A,x can be obtained by solving the following p—%+1 equations from the
set (10)

P ? ? P
A Ay, Ay, Ay =
<1> p,k+<3) 1k"|‘<5> 2.k +<2P—2k+1> =0
) () (22 2 1)
A,e Aport o A =0
( . ) e+ 3 2k’+ + 2p— 2k — 1 Kk

11 k42 k42 k42
(1 ( 1— >Ak+2,k+< 1_ )Ak+1,k+< 1_ )Akk=0

Solving these equations by Cramer’s rule and interchanging rows and col-
umns in the determinants, we have the result given in equations (8) and (9).

TueoreM [(B): The coefficients A i satisfy the following recursion formula

1 2k—1 1«
(12) Ape = — ~ > 2k—iApi< >

i=ht1 2t — 2k + 1

This enables one to compute successively A, -1, Ap,p—2, €tc., from 4,, given
by equation (4).

Proof. In formula (3) substitute #—1 for # and subtract the result from (3).
This gives:
Api
s 2%

M'e

(13) nirt = {nt[(n+1)k—(n—1)*]}.

k

Expanding and rearranging terms on the right, and equating coefficients of
powers of #, we obtain equations (4) and (12).

It is interesting to note that one can also obtain the determinant form (8)
and (9) by starting with (12) instead of (10).
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THEOREM II:

P
(14) Sep(n) = (2n + 1) 2. Bym?,
k=1
where B,y are rational numbers independent of n that satisfy the relation
201
15 B,y =
(15) = 1

and the recursion formula

o 5 B, k< p.
(16) ok Zﬁ“l‘ 1 g[ <2p — 2]-[— 1>+(2P —_ 2]) 7"’ 7

Here \ is the least value of j for which the bracket in (16) does not vanish.
In this case, p can have any integral value greater than or equal to 1.

Proof.
e+ 0[] e - n[C2)

12 ? ) )] .
=—>|4 2 2,
ng[ <2p—2j+1>+ (21:—2]' "

Summing 7 from 1 to %, we obtain

oLy ? ? .
@2n 4 m? = = g[4<2p it 1>+ 2(21, _ 2j>:|52:(”)-

Solving for Sz, (n),

P

Sap(n) = 2 @2n 4+ )ym»
(17
1 < ? b4
- 2 [4< . > + 2< >:| Saj(n).
ap+2 5L \2p—2j+1 20— 2
Assuming (14) to hold if p is replaced by j, for j=1, 2, 3, - - -, p—1, sub-
stituting in (17) and reversing the order of summation, we obtain
p—1
Sep(n) = %11 2% + 1)m»

(18)

S PR ? ? k
- 2n+1|:2< . )—I—( >:|Bm
p+1o5 2p — 25+ 1 2p — 217"
It is seen that S;,(n) has the form (14), and by comparison of (18) with

(14) formulas (15) and (16) follow. Theorem II, therefore, follows by mathe-
matical induction.
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TrEOREM II(A): The coefficients B,y can be expressed in the following deter-
minant form

(= 1)7*2+1D,,

(19) -Bpk = )
@2p+1@2p—1)--- 2k+1)
where
(20) Dy = | 03|,
i and j take on the values 1,2, 3, - - -, (p—F), and
» —j+1 —7+1
(21) o =a(f 0T )+ (230
2 — 274+ 3 29— 25+ 2

As in the determinant (9), all of the elements of (20) are zero for j>7-1.
This is valid for 2 <p. For k= p equation (19) gives the correct result if D,; is
arbitrarily set equal to 1.

The proof of this theorem is similar to that of Theorem I(A).

It may be true that the determinants (9) and (20) are always positive, since
for all values of p up to and including 5 the coefficients A pp, Ap.p—1, App2, * * * »
as well as By, By, p1, Bp,ps, - - -, alternate in sign as may be seen from Table I.
Thus far the writer has not found a proof of this, however.

TueoreM II(B): The coefficients By, satisfy the following recursion formula

1 ; i
22) By = — 2B, | 2 .
22) vt 2k+1.~=‘:‘:’,1 ”[(2i—2k+1>+(2i—2k>]

The proof is similar to that of Theorem I(B).

THaEOREM III:

(23) Ssp() = 3 Couln + 1/2)2+4,

k=0

where Cpy are rational numbers independent of n which satisfy the relation

(24) Cop = ,

and the recursion formulas

=g 1 /2p+1
25 Cpp = — :
(25) e ;2p+1_22p_2],( .

>Cjk, 1=k <p,

and

=1 1 /2p+1 11
26 Cpo = — : Cio — —
( ) »0 1{—4: ZP + 1 22p—2j< 2] ) 70 zp + 1 220
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The case p =0 is an exception since we have
So(n) = (n +1/2) — 1/2.
Proof. We begin with the identity
v /241
(s

(r + 1/2)22t1 — (r — 1/2)27+! = Z 2 >r2f(1/2)2p—21'+1_

Proceeding as in Theorems I and II the proof is easily obtained.

THEOREM IV:

p
27 Sap-1(n) = 2 Dpi(n + 1/2)%,
k=0
where Dy, are rational numbers independent of n that satisfy
(28) Dypp = !
pp = 2p ’

the recursion formulas

(29) D =—i§(1/2)2p—2:‘< 2 >D~ 1< k<p
o 2p i 2 — 1) - ’
and
1 = /2
Dy = — — (1/2)% — — 3 (1/2)20-2 Dao.
(30) o= =5 2 = 5 /2 (2],_1) 0

Proof. Starting with the identity

I R YR (I LT Ee
i=1 J —

and proceeding as before, the proof is easily obtained.

THEOREM V:

y4
(32) Rop_1(2n — 1) = Y En®*,

k=1

where E,;, are rational nuinbers independent of n that satisfy

22p—2
(33) Epp = )
pp p .
and the recursion formula
1221/ 2p
34 Eyp=—— E; k< p.
( ) pk ZP ;1(2] _ 1> ik ?
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Proof. Starting with the identity

RO it ) i (€ DRl Z 1 ( 2p >(2,_1)2,~_1

20 27 o 221\25 — 1

and proceeding as before, the proof follows by mathematical induction.
THEOREM VI:
4
(36) Rop(2n — 1) = D Fpun2h+t,

k=0

where Fy are rational numbers independent of n that satisfy

22
37 Fop =
(37) 21
and the recursion formula
1 22l/2p 41
38 For = — Fx.
( ) ok 2P+1i§0< 2j >:Ic

Proof. The starting point is the identity

39) [@r =1+ 1] [@2r—1) — 1] £ i<2p;—1

22p+1 22p+1 0 22p

) =1

and the proof is similar to that of the preceding theorems.

In the case of theorems III, IV, V and VI, determinant expressions similar
to those obtained in Theorems I(A) and II(A) can be found by the same meth-
ods. We will not do this, however, because determinant expressions of that type
can easily be obtained from the literature; for each coefficient in these theorems
is expressible as the product of an algebraic factor and a Bernoulli number,*
and every Bernoulli number can be written as a determinant expression.t

It is to be noted also that theorems analogous to I(B) and II(B) can be
established in the case of Theorems III-VI inclusive, by the same methods as
were used in proving I(B) and II(B).

N. Nielsen* gives a table of the formulas for S,(%) in powers of # from p=1
to 10 inclusive. We have put S,(#) into the forms indicated in Theorems I-IV
inclusive for p=0 to =10 inclusive. These formulas are given in Tables I
and II. It will be observed from Table I that when we use the form given in
Theorems I and IT the coefficients are the ratios of fairly small integers.

In conclusion the writer wishes to express his thanks to the Faculty Re-
search Committee of the University of Pennsylvania which provided funds
for an assistant, Dr. A. V. Bushkovitch, who did most of the routine calculations
connected with the paper, and to Prof. H. H. Mitchell for discussions and
criticisms.

* Cf. reference 2.
t Pascal, Determinanten, pp. 136-138.
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TaBLE I
Si(n) = m m = n(n+ 1)/2
So(n) = 2n+1) 2:—
S3(n) = m?

2 1
Su(n) = (21 + 1) (? e — Bm)
Si(n) = i md — %m’

2 )
So(n) = (2n + 1)( = rmt o

Se(n) = 2mt — d m + —1—m2
3 3

Ss(n) = (Zn-l—l)( m4—%m3+_m2__m)

16 12 3
So(n) = — md — 4m? +—m3 — — m?
5 5
Sw(n) = (2n+1)(11m5—— 4-[-_ 3 _ 2+_ )
TaBLE 1T

So(n)= (n+1/2)—%

Si(n) =% (n+1/2)2—-%

Sa(n =% (n+1/2)3—-T12— (n+1/2)

Ss(n)=% (n-|—1/2)4—-% (n+1/2)2+61‘—1-
S0= D Dy (12

S0= /25— /D ‘”“/2)2‘m

S = (/27— eH/ 2 e o2 (1)

1344

Sitn) =g 1/~ k1D e/ o +1/2>2+61 :

Sg(n)=% (n+1/2)9——~(n+1/2)7+—~(n-|—1/2)5 i (n+1/2,“. (n-|—1/2)

( +1/2)2—

So) = (/2 (1205 b1/2 o5 (/2 —

2555
Slo(")=ﬁ (n+1/2)“—1—2 (n+1/2)9+§ (n-l—1/2)7—3—2 (n+1/2)5+gg (n-l—1/2)3—-33792 (n+1/2)




