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NUMBERS GENERATED BY THE FUNCTION ¢!
G. T. WILLIAMS, Harvard University

1. Introduction. The integers which are the subject of this paper have been
discussed cursorily by several writers* who contented themselves with discover-
ing Lemma 1 and Corollary 1, and computing the first few. They occur in com-
binatory analysis, being, in fact, the sum of the horizontal entries in the table of
p. 169 of Netto's Lehrbuck der Combinatorik. Their interest is primarily number-
theoretic. Indeed, from Minetola’st work, it is evident that G, (as defined below)
is the number of ways in which a product of # distinct primes can be factored.
Thus, pipeps = (p1p2)ps = (p1ps)p2 = (paps)pr= (p1) (p2) (s), and so Gz =S5.

It will be convenient to give an algebraic definition of G,.

2. Definition and algebraic properties. We determine the sequence of G's
(we shall only be interested in the case where # is a non-negative integer) by the

following
DEFINITION.
©  .n
Gn6=‘z— (”=01 1! )‘
=0 f!
It is plain from this that
Go = Gl = 1.

More general summation are expressible in terms of the G’s; in fact

THEOREM 1.

>

7o

b n
I a4 e
7.

where the right-hand member means
Z(n
63 ) G
r=0 r

For, expanding the first member, we find it equals

* Wohlsentolme gave just this as a problem, on the Tripos: to prove Lem. 1, Cor. 1, and find
Gs. See, Bromwich, Infinite Series, p. 197.

t Silvio Minetola, Principii di Analisi Combinatoria, Jior. di Mat., vol. 45, 1907, pp. 333-366,
vol. 47, 1909, pp. 173-200.

} We shall make considerable use of this standard symbolic convention: whenever we write
a “product” of G’s, say,

GiGkGm - - - ,

we mean the sum of the exponents to be taken as a subscript

Gi+k+m+ seee
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= 12":( ) ,,,bn_._z( ) s

r=0 f' 8=0 8=0 r==0 rl
LEMMA 1. Gny1=(G+1)" (n=0,1, ---).

Write a =b=1 in Theorem 1 and multiply numerator and denominator of the
summand by (r+1) to reduce it to the form of the definition. This proposition,
together with the fact that the first two G’s are integers, insures that all the G’s
are positive integers.

The lemma gives us a ready method of computing the numbers. We find

Go= 1 Gy = 52 G = 115975
Gi= 1 Ge = 203 Gu = 678570
Gy= 2 Gy = 877 Gz = 4213597
Gs= 35 Gs = 4140 Gis = 27644437
Gy= 15 Gy = 21147 G1s = 190899322
and so on.
It is evident that the G’s increase very rapidly; this is reflected in
THEOREM 2. G.Zk"/k! (k=0,1,...).

For k=0 this is trivial; if it is true for some %k, we have
-1 Nk (k41
G,.=z;<" )G,gZ(" )——("') .
r r Rl (R4 1!

Unfortunately G,41 is not a very good upper bound for the function x*/T'(x);
e.g., the greatest value attained by the function x3/T'(x) is approximately 13.56.
Lemma 1 generalizes inductively to

THEOREM 3.

'_Z% (= )'( ) n—rl = %k(n - k)Gn-—r 0= k<.

This is certainly valid for 2=0. Now, let F(n, k) denote either member of
the equation which we assume true for this particular k. Then, by the well known
properties of the binomial coefficients, we have

F(n, k) —F(n — 1, k) = F(n, k + 1),

which establishes the theorem, by induction on k.
The case k =n is of some interest.

COROLLARY 1. Gun=G(G—1)".
We justify the title of the paper by
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THEOREM 4. e 1=¢CG7

where, again, e is the symbolic representation of

> Gar/rl.

For,

e =

;. orl 5 ! . s! %

This theorem gives rise to a recurrence relation for the G's which is quite
different from any we have yet stated.

THEOREM 3. G(G—1) - - - (G—n+1)=1 (n=0,1, ---).

We shall adopt the notation Sj to stand for the sum of all possible products
of the numbers 1, 2, - - -, (—1), taken j at a time. Then, by a change of varia-
ble (x =log (14+)) in Theorem 4,

”
xz

Gr r n—r n
e =Z;10g (142 = ZG,E( -) S,._,—

X" n—r_n
=2 ;Z( ) SaiGr,
whence,
> (=) SaGe = 1.
r=0

There is also an elegant symbolic proof of this.

g”=6010¢(1+t)= (1+x)0= EG... (G—n-’-l) -x_'.
n:

n=0
3. Number-theoretic properties. We are now in a position to discuss the
curious arithmetic properties which these numbers possess.
LeMMA 2. Gp,=2 (mod p),

where, as in all the following theorems, p is a prime number.

Write #=p in Theorem 5. By Lagrange’s proof of Fermat’'s Theorem, all
the intermediate coefficients are congruent to zero, modulo p; the first to +1;
and the last to —1.

This proposition is the starting point for a series of inductions, which cul-
minates in Theorem 6.

LEMMA 3. Gpin=Gp+Gns1 (mod p).

When 7 =0 this reduces to Lemma 2. Write p+#—1 for »n, and p for &, in
Theorem 3; then
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-1
Gpin —Ga= 2 (" , )GM,._,_1 (mod p).

Now, assume that, for all integers <n the statement is true. We then have

Gpin — G =3 (" : 1)G,._,_1 + X (” : I)G,,_, (mod p)
- }:(

Letting p =2 we obtain the significant
COROLLARY 2. GutGri1+Gri2=0 (mod 2).

LEMMA 4. Grprin=G"(G+5)* (mod p).

We shall show that its truth for fixed s, all #, and k=1, implies its truth for
the same s, all #, and all k. For, assume it for some s and k&, and all #; then

Gurp'tn = Grp'yrpteny = GP*(G + 5)* (mod p)
=G"G + 5)G + s)* = GG + s)¥.
Now, assume the theorem for all &, all #, and some s. Writing k=9,
Gp‘+l+n = Gp+n + SpGn = Gn+1 ‘+' (S + l)Gn (mod ﬁ),

which, by our preliminary remark, implies its validity for all k, all #, and s+1.
Since the statement is obviously correct for s =0, it is universally true by induc-
tion on s.

If the subscript of G is not of the form of the lemma, but is a polynomial in p,
it can be reduced by considering everything after the leading term as #. Re-
peated application of the proposition yields

THEOREM 6. Gzt =I1(G+7)*r (mod p),
where the limits of the summation and product are the same.
THEOREM 7. The G's have a “congruence-period” of (p?—1)/(p —1) places;i.e.,

Gt p-1)/ -1y = G» (mod p) (n=0,1,+--).

n

)Gn—r = Gn+1-

r

For, by Theorem 6, we have
G pptien =G™(G + 1) - - - (G+ p — 1) (mod p)
= Gpn — Gnp1 = G

We have shown therefore that the smallest period of the least residues of the
G's is a divisor of (p?—1)/(p —1). Indeed, when p=2, 3, or 5, it is precisely this,
although for p =35, either of the factors of 781, 11 and 71 might be a priori candi-
dates. The author has succeeded in computing the least residue pattern in these
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three cases, but since the latter is rather excessive, we give only the first two.

For 2,itis
1, 1,0

and for 3
1,1,2,2,0,1,2,1,0,0, 1, 0, 1.

For primes >35 the situation is unknown.
We close with what is, in view of Theorem 7, a natural generalization of
Corollary 2. We are indebted to Dr. Irving Kaplansky for the proof.

THEOREM 8. The sum of (p?—1)/(p —1) consecutive G’s-is a multiple of p.

We pass to the Galois field of p elements, so that congruence modulo p be-
comes equality. Solving the difference equation

Gntp —Gnp1 — G =0
by standard methods, we find
Gn = @121 + as23 + + - - + 4y
where x3, - - -, %, are the (distinct) roots of
a? —x—1=0.
Now, precisely as in the case of the G’s, we find

2 = x + n,

so that
x(P"‘l)/(P-l) = x(x-l— 1) R (x+ P f— 1) = x? — x = l,
whence
1—-1
14+ x4 - + z™-DIG-D-1 = N =0
x—

which proves the theorem.

DESCRIPTIVE GEOMETRY AS USED IN THE SLAUGHTER HOUSE

(As reported in the Kansas City Star to have been quoted from a 24-page booklet
from the Office of Price Administration)

“Then all fat shall be removed which extends above a flat plane using the following two lines
as guides for each edge of the plane: an imaginary line parallel with the full length of the protruding
edge of the lumbar section of the chine bone which line extends one inch directly above such pro-
truding edge; a line on the inside of the loin two inches from the flank edge, and running parallel
with such edge for the full length of the loin.”

Shades of Taurus—can it be that our classes soon will be filled with embryo butchers and

meat-cutters, learning the rudiments of their trade via courses in descriptive geometry?
W. B. Campbell,



