Generalized Catalan Numbers: Linear Recursion and Divisibility

B. Sury
Stat-Math Unit
Indian Statistical Institute
8th Mile Mysore Road
Bangalore 560059
India
sury@isibang.ac.in

Abstract

We prove a linear recursion for the generalized Catalan numbers $C_{a}(n):=\frac{1}{(a-1) n+1}\binom{a n}{n}$ when $a \geq 2$. As a consequence, we show $p \mid C_{p}(n)$ if and only if $n \neq \frac{p^{k}-1}{p-1}$ for all integers $k \geq 0$. This is a generalization of the well-known result that the usual Catalan number $C_{2}(n)$ is odd if and only if n is a Mersenne number $2^{k}-1$. Using certain beautiful results of Kummer and Legendre, we give a second proof of the divisibility result for $C_{p}(n)$. We also give suitably formulated inductive proofs of Kummer's and Legendre's formulae which are different from the standard proofs.

1 Introduction

The Catalan numbers $\frac{1}{n+1}\binom{2 n}{n}$ arise in diverse situations like counting lattice paths, counting rooted trees etc. In this note, we consider for each natural number $a \geq 2$, generalized Catalan numbers (referred to henceforth as GCNs) $C_{a}(n):=\frac{1}{(a-1) n+1}\binom{a n}{n}$ and give a linear recursion for them. Note that $a=2$ corresponds to the Catalan numbers. The linear recursion seems to be a new observation. We prove the recursion by a suitably formulated induction. This new recursion also leads to a divisibility result for $C_{p}(n)$'s for a prime p and, thus also, to another proof of the well-known parity assertion for the usual Catalan numbers. The latter asserts $C_{2}(n)$ is odd if and only if n is a Mersenne number; that is, a number of the form $2^{k}-1$ for some positive integer k. Using certain beautiful results of Kummer and Legendre, we give a second proof of the divisibility result for $C_{p}(n)$. We also give suitably formulated inductive proofs of Kummer's and Legendre's formulae mentioned below. This is different
from the standard proofs [2] and [3]. In this paper, the letter p always denotes a prime number.

2 Linear recursion for GCNs

Lemma 1. For any $a \geq 2$, the numbers $C_{a}(n)=\frac{1}{(a-1) n+1}\binom{a n}{n}$ can be defined recursively by

$$
\begin{gathered}
C_{a}(0)=1 \\
C_{a}(n)=\sum_{k=1}^{\left\lfloor\frac{(a-1) n+1}{a}\right\rfloor}(-1)^{k-1}\binom{(a-1)(n-k)+1}{k} C_{a}(n-k), n \geq 1
\end{gathered}
$$

In particular, the usual Catalan numbers $C_{2}(n)$ satisfy the linear recursion

$$
C_{2}(n)=\sum_{k=1}^{\left\lfloor\frac{n+1}{2}\right\rfloor}(-1)^{k-1}\binom{n-k+1}{k} C_{2}(n-k), n \geq 1
$$

2.1 A definition and remarks

Before proceeding to prove the lemma, we recall a useful definition. One defines the forward difference operator Δ on the set of functions on \mathbb{R} as follows. For any function f, the new function Δf is defined by

$$
(\Delta f)(x):=f(x+1)-f(x)
$$

Successively, one defines $\Delta^{k+1} f=\Delta\left(\Delta^{k} f\right)$ for each $k \geq 1$. It is easily proved by induction on n (see, for instance [1, pp. 102-103]) that

$$
\left(\Delta^{n} f\right)(x)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} f(x+n-k)
$$

We note that if f is a polynomial of degree d, then Δf is also a polynomial and has degree $d-1$. In particular, $\Delta^{N} f \equiv 0$, the zero function, when $N>d$. Therefore, $\left(\Delta^{N} f\right)(0)=0$.

Proof of 1. The asserted recursion can be rewritten as

$$
\sum_{k \geq 0}(-1)^{k}\binom{n}{k}\binom{a(n-k)}{n-1}=0
$$

One natural way to prove such identities is to try and view the sum as $\left(\Delta^{n} f\right)(0)$ for a polynomial f of degree $<n$. In our case, we may take $f(x)=a x(a x-1) \cdots(a x-n+2)$ which is a polynomial of degree $<n$. Then,

$$
\left(\Delta^{n} f\right)(x)=\sum_{k \geq 0}(-1)^{k}\binom{n}{k} f(x+n-k) \equiv 0
$$

This gives

$$
\left(\Delta^{n} f\right)(0)=\sum_{k \geq 0}(-1)^{k}\binom{n}{k}\binom{a(n-k)}{n-1}=0
$$

Thus the asserted recursion follows.
Using this lemma, we have the following:

Theorem 2. The prime $p \mid C_{p}(n)$ if and only if $n \neq \frac{p^{k}-1}{p-1}$ for all integers $k \geq 0$. In particular, $C_{2}(n)$ is odd if and only if n is a Mersenne number $2^{k}-1$.

Proof. We shall apply induction on n. The result holds for $n=1$ since $C_{p}(1)=1$. Assume $n>1$ and that the result holds for all $m<n$. Let $p^{r} \leq n \leq p^{r+1}-1$. Let us read the right hand side of

$$
C_{p}(n)=\sum_{k=1}^{\left\lfloor\frac{(p-1) n+1}{p}\right\rfloor}(-1)^{k-1}\binom{(p-1)(n-k)+1}{k} C_{p}(n-k)
$$

modulo p. We use the induction hypothesis that for $m<n, C_{p}(m)$ is a multiple of p whenever $(p-1) m+1$ is not a power of p. Modulo p, the terms in the above sum which are non-zero are those for which $n-k$ is of the form $\frac{p^{N}-1}{p-1}$. But, since $p^{r} \leq n<p^{r+1}$, the only non-zero term modulo p is the one corresponding to the index k for which $(p-1)(n-k)=p^{r}-1$ if $n \leq \frac{p^{r+1}-1}{p-1}$ (respectively, $(p-1)(n-k)=p^{r+1}-1$ if $n>\frac{p^{r+1}-1}{p-1}$). This term is, to within sign, $\left(\begin{array}{c}\left.\begin{array}{c}p^{r} \\ n-\frac{p^{r}-1}{p-1}\end{array}\right)\end{array} C_{p}\left(\frac{p^{r}-1}{p-1}\right)\right.$ if $n \leq \frac{p^{r+1}-1}{p-1}$ (respectively, $\binom{p^{r+1}}{n-\frac{p^{r+1}-1}{p-1}} C_{p}\left(\frac{p^{r+1}-1}{p-1}\right)$ if $\left.n>\frac{p^{r+1}-1}{p-1}\right)$. As the binomial coefficient $\binom{p^{r}}{s}$ is a multiple of p if and only if $0<s<p^{r}$, the above term is a multiple of p if and only if $0<n-\frac{p^{r}-1}{p-1}<p^{r}$ if $n \leq \frac{p^{r+1}-1}{p-1}$ (respectively, $0<n-\frac{p^{r+1}-1}{p-1}<p^{r+1}$ if $\left.n>\frac{p^{r+1}-1}{p-1}\right)$. This is equivalent to $p^{r}<(p-1) n+1<p^{r+1}$ if $n \leq \frac{p^{r+1}-1}{p-1}$ (respectively, $p^{r+1}<(p-1) n+1<p^{r+2}$ if $\left.n>\frac{p^{r+1}-1}{p-1}\right)$, which means that $(p-1) n+1$ is not a power of p. The theorem is proved.

3 Another proof of Theorem using Kummer's algorithm

Kummer proved that, for $r \leq n$, the p-adic valuation $\left.v_{p}\binom{n}{r}\right)$ is simply the number of carries when one adds r and $n-r$ in base- p. We give another proof of Theorem 2 now using Kummer's algorithm.

3.1 Another proof of Theorem 2

Write the base- p expansion of $(p-1) n+1$ as

$$
(p-1) n+1=a_{s} \cdots a_{r+1} 0 \cdots 0
$$

say, where $a_{r+1} \neq 0, s \geq r+1$ and $r \geq 0$. Evidently, $v_{p}((p-1) n+1)=r$. Thus, unless $(p-1) n+1$ is a power of p, the base- p expansion of $(p-1) n$ will have the same number of digits as above. It is of the form

$$
(p-1) n=* \cdots *\left(a_{r+1}-1\right) \underbrace{(p-1) \cdots(p-1)}_{r \text { times }}
$$

where $a_{r+1}-1$ is between 0 and $p-2$. So, the base- p expansion of n itself looks like

$$
n=* \cdots * 1 \cdots 1
$$

with r ones at the right end. Also, there are at least r carries coming from the right end while adding the base- p expansions of n and $(p-1) n$. Moreover, unless $(p-1) n+1$ is a power of p, consider the first non-zero digit to the left of the string of $(p-1)$'s at the end of the expansion of $(p-1) n$. If it is denoted by u, and the corresponding digit for n is v, then $(p-1) v \equiv u(\bmod p)$; that is, $u+v$ is a non-zero multiple of p (and therefore $\geq p$). Thus, there are at least $r+1$ carries coming from adding the base- p expansions of n and $(p-1) n$ unless $(p-1) n+1$ is a power of p. This proves Theorem 2 again.

4 Kummer and Legendre's formulae inductively

Legendre observed that $v_{p}(n!)$ is $\frac{n-s(n)}{p-1}$ where $s(n)$ is the sum of the digits in the basep expansion of n. In [2], Honsberger deduces Kummer's theorem (used in the previous section) from Legendre's result and refers to Ribenboim's book [3] for a proof of the latter. Ribenboim's proof is by verifying that Legendre's base- p formula agrees with the standard formula

$$
\begin{equation*}
v_{p}(n!)=\left\lfloor\frac{n}{p}\right\rfloor+\left\lfloor\frac{n}{p^{2}}\right\rfloor+\left\lfloor\frac{n}{p^{3}}\right\rfloor+\cdots . \tag{1}
\end{equation*}
$$

Surprisingly, it is possible to prove Legendre's formula without recourse to the above formula and that the standard formula follows from such a proof. What is more, Kummer's formula also follows without having to use Legendre's result.

4.1 Legendre's formula:

Lemma 3. Let $n=\left(a_{k} \cdots a_{1} a_{0}\right)_{p}$ and $s(n)=\sum_{r=0}^{k} a_{r}$. Then,

$$
\begin{equation*}
v_{p}(n!)=\frac{n-s(n)}{p-1} \tag{2}
\end{equation*}
$$

Proof. The formulae are evidently valid for $n=1$. We shall show that if Legendre's formula $v_{p}(n!)=\frac{n-s(n)}{p-1}$ holds for n, then it also holds for $p n+r$ for any $0 \leq r<p$. Note that the base- p expansion of $p n+r$ is

$$
a_{k} \cdots a_{1} a_{0} r .
$$

Let $f(m)=\frac{m-s(m)}{p-1}$, where $m \geq 1$. Evidently,

$$
f(p n+r)=\frac{p n-\sum_{i=0}^{k} a_{i}}{p-1}=n+f(n) .
$$

On the other hand, it follows by induction on n that

$$
\begin{equation*}
v_{p}((p n+r)!)=n+v_{p}(n!) . \tag{3}
\end{equation*}
$$

For, if it holds for all $n<m$, then

$$
\begin{aligned}
v_{p}((p m+r)!) & =v_{p}(p m)+v_{p}((p m-p)!) \\
& =1+v_{p}(m)+m-1+v_{p}((m-1)!)=m+v_{p}(m!)
\end{aligned}
$$

Since it is evident that $f(m)=0=v_{p}(m!)$ for all $m<p$, it follows that $f(n)=v_{p}(n!)$ for all n. This proves Legendre's formula.

Note also that the formula

$$
v_{p}(n!)=\left\lfloor\frac{n}{p}\right\rfloor+\left\lfloor\frac{n}{p^{2}}\right\rfloor+\left\lfloor\frac{n}{p^{3}}\right\rfloor+\cdots
$$

follows inductively using Legendre's result.

4.2 Kummer's algorithm:

Lemma 4. For $r, s \geq 0$, let $g(r, s)$ be the number of carries when the base-p expansions of r and s are added. Then, for $k \leq n$,

$$
\begin{equation*}
v_{p}\left(\binom{n}{k}\right)=g(k, n-k) . \tag{4}
\end{equation*}
$$

Proof. Once again, this is clear if $n<p$, as both sides are then zero. We shall show that if the formula holds for all integers $0 \leq j \leq n$ (and every $0 \leq k \leq j$), it does so for $p n+r$ for $0 \leq r<p$ (and any $k \leq p n+r)$. This would prove the result for all natural numbers.

Consider a binomial coefficient of the form $\binom{p n+r}{p m+a}$, where $0 \leq a<p$.
First, suppose $a \leq r$.
Write $m=b_{k} \cdots b_{0}$ and $n-m=c_{k} \cdots c_{0}$ in base- p. Then the base- p expansions of $p m+a$ and $p(n-m)+(r-a)$ are, respectively,

$$
\begin{aligned}
p m+a & =b_{k} \cdots b_{0} a \\
p(n-m)+(r-a) & =c_{k} \cdots c_{0} r-a .
\end{aligned}
$$

Evidently, the corresponding number of carries is

$$
g(p m+a, p(n-m)+(r-a))=g(m, n-m) .
$$

By the induction hypothesis, $g(m, n-m)=v_{p}\left(\binom{n}{m}\right)$. Now $v_{p}\left(\binom{p n+r}{p m+a}\right)$ is equal to

$$
\begin{aligned}
& v_{p}((p n+r)!)-v_{p}((p m+a)!)-v_{p}((p(n-m)+r-a)!) \\
= & n+v_{p}(n!)-m-v_{p}(m!)-(n-m)-v_{p}((n-m)!)=v_{p}\left(\binom{n}{m}\right) .
\end{aligned}
$$

Thus, the result is true when $a \leq r$.
Now suppose that $r<a$. Then $v_{p}\left(\binom{p n+r}{p m+a}\right)$ is equal to

$$
\begin{aligned}
& v_{p}((p n+r)!)-v_{p}((p m+a)!)-v_{p}((p(n-m-1)+(p+r-a))!) \\
= & n+v_{p}(n!)-m-v_{p}(m!)-(n-m-1)-v_{p}((n-m-1)!) \\
= & 1+v_{p}(n)+v_{p}((n-1)!)-v_{p}(m!)-v_{p}((n-m-1)!) \\
= & 1+v_{p}(n)+v_{p}\left(\binom{n-1}{m}\right) .
\end{aligned}
$$

We need to show that

$$
\begin{equation*}
g(p m+a, p(n-m-1)+(p+r-a))=1+v_{p}(n)+g(m, n-m-1) . \tag{5}
\end{equation*}
$$

Note that $m<n$. Write $n=a_{k} \cdots a_{0}, m=b_{k} \cdots b_{0}$ and $n-m-1=c_{k} \cdots c_{0}$ in base- p. If $v_{p}(n)=d$, then $a_{i}=0$ for $i<d$ and $a_{d} \neq 0$. In base- p, we have

$$
n=a_{k} \cdots a_{d} 0 \cdots 0
$$

and, therefore,

$$
n-1=a_{k} \cdots a_{d+1}\left(a_{d}-1\right)(p-1) \cdots(p-1) .
$$

Now, the addition $m+(n-m-1)=n-1$ gives $b_{i}+c_{i}=p-1$ for $i<d$ (since they must be $<2 p-1$). Moreover, $b_{d}+c_{d}=a_{d}-1$ or $p+a_{d}-1$.

Note the base- p expansions

$$
\begin{aligned}
p m+a & =b_{k} \cdots b_{0} a \\
p(n-m-1)+(p+r-a) & =c_{k} \cdots c_{0}(p+r-a) .
\end{aligned}
$$

We add these using that fact that there is a carry-over in the beginning and that $1+b_{i}+c_{i}=p$ for $i<d$. Since there is a carry-over at the first step as well as at the next d steps, we have

$$
p n+r=* * \cdots a_{d} \underbrace{0 \cdots 0}_{d \text { times }} r
$$

and

$$
g(p m+a, p(n-m-1)+(p+r-a))=1+d+g(m, n-m-1)
$$

This proves Kummer's assertion also.

5 Acknowledgment

It is a real pleasure to thank the referee who read through the paper carefully and made a number of constructive suggestions and a few corrections as well.

References

[1] M. Aigner, Combinatorial Theory, Springer-Verlag, 1997.
[2] R. Honsberger, In Polya's Footsteps, Miscellaneous Problems and Essays, The Dolciani Mathematical Expositions, No. 19, Mathematical Association of America, 1997.
[3] P.Ribenboim, The New Book of Prime Number Records, Springer-Verlag, 1996.

2000 Mathematics Subject Classification: Primary 05A10; Secondary 11B83.
Keywords: generalized Catalan numbers, linear recursion, divisibility.
(Concerned with sequence $\underline{\text { A000108.) }}$

Received May 21 2009; revised version received October 28 2009. Published in Journal of Integer Sequences, November 42009.

Return to Journal of Integer Sequences home page.

