EXPLICIT EXPRESSIONS FOR POWERS OF LINEAR RECURSIVE SEQUENCES

A. G. SHANNON
The New South Wales lnstitute of Techmology, Broadway, N.S.W., Australia

1. DEFINITIONS

Van der Poorten [6] in a generalization of a result of Shannon and Horadam [8] has shown that (in my notation) if $\left\{w_{n}^{(i)}\right\}$ is a linear recursive sequence of orbitrary order $;$ defined by the recurrence relation

$$
\begin{equation*}
w_{n}^{(i)}=\sum_{i=1}^{i} P_{i j} w_{n-j}^{(i)}, \quad n \geqslant i \tag{1.1}
\end{equation*}
$$

where the $P_{i j}$ are arbitrary integers, with suitable initial values $w_{o}^{(i)}, w_{j}^{(i)}, \cdots, w_{i-1}^{(i)}$, then the sequence of powers $\left\{w_{n}^{(i) r}\right\}$, for integers $r \geqslant 1$, satisfies a similar recurrence relation of order at most

$$
\binom{r+i-1}{r}
$$

In other words, he has established the existence of generating functions

$$
\begin{equation*}
w_{r}^{(i)}(x)=\sum_{n=0}^{\infty} w_{n}^{(i) r_{r}^{n}}, \quad\left(w_{n}^{(i) r} \equiv\left(w_{n}^{(i)}\right)^{r}\right) . \tag{1.2}
\end{equation*}
$$

The aim here is to find the recurrence relation for $\left\{w_{n}^{(i) r}\right\}$ and an explicit expression for $w_{r}^{(i)}(x)$. We shall concern ourselves with the non-degenerate case only; the degenerate case is no more difficult because the order of the recurrence relation for $\left\{w_{n}^{(i) r}\right\}$ is then lower than

$$
\binom{r+i-7}{r} .
$$

It is worth noting in passing that Marshall Hall [1] looked at the divisibility properites of a third-order sequence by a similar approach. From a second-order sequence with auxiliary equation roots a_{1} and a_{2} he formed a third-order sequence with auxiliary equation roots $a_{1}^{2}, a_{2}^{2}, a_{1} a_{2}$.

2. RECURRENCE RELATION FOR SEQUENCE OF POWERS

Van der Poorten proved that if the auxiliary equation for $\left\{w_{n}^{(i)}\right\}$ is

$$
\begin{equation*}
g(x) \equiv x^{i}-\sum_{j=1}^{i} P_{i j} j^{i-j}=\prod_{t=1}^{i}\left(x-a_{i t}\right)=0, \tag{2.1}
\end{equation*}
$$

then the sequence $\left\{w_{n}^{(i) r}\right\}$ satisfies a linaar recurrence relation of order

$$
\binom{r+i-1}{r}
$$

with auxiliary equation

$$
\begin{equation*}
g_{r}(x) \equiv \prod_{\Sigma \lambda_{n}=r}\left(x-a_{i j}^{\lambda_{1}} a_{i 2}^{\lambda_{2}} \cdots a_{i j}^{\lambda_{i}}\right)=0, \tag{2.2}
\end{equation*}
$$

the zeros of which are exactly the zeros of $g(x)$ taken r at a time.

We now set

$$
\begin{equation*}
g_{r}(x)=x^{u}-\sum_{j=1}^{u} R_{u j} x^{u-j}, \quad u=\binom{r+i-1}{r} \tag{2.3}
\end{equation*}
$$

and we seek the $R_{u j}$.
Macmahon [$5, \mathrm{p} .3$] defines h_{j}, the homogeneous product sum of weight j of the quantities $a_{i r \text {, }}$ as the sum of a number of symmetric functions, each of which is denoted by a partition of the number j. He showed that in our notation

$$
h_{j}=\sum_{\Sigma m \lambda_{n}=j} \frac{(\Sigma N!}{\lambda_{1} \lambda_{2}!\cdots \lambda_{j}!} P_{i 1}^{\lambda_{1}} P_{i 2}^{\lambda_{2}} \cdots P_{i j}^{\lambda_{j}}
$$

The first three cases of h_{j} are

$$
\begin{gathered}
h_{1}=P_{i 1}=\Sigma a_{i 1} \\
h_{2}=P_{i 1}^{2}+P_{i 2}=\Sigma a_{i 1}^{2}+\Sigma a_{i 1} a_{i 2} \\
h_{3}=P_{i 1}^{3}+2 P_{i 1} P_{i 2}+P_{i 3}=\Sigma a_{i 1}^{3}+\Sigma a_{i 1}^{2} a_{i 2}+\Sigma a_{i 1} a_{i 2} a_{i 3}
\end{gathered}
$$

Now $g_{r}(x)=0$ is the equation whose zeros are the several terms of h_{r} with $a_{i j}=0$ for $j>i$, since from its construction its zeros are $a_{i j}$ taken r at a time; that is,

$$
R_{u 1}=h_{r} \quad \text { with } \quad a_{i j}=0 \quad \text { for } \quad j>i,
$$

since we have supposed that there are

$$
\binom{r+i-1}{r}=u
$$

distinct zeros of $g_{r}(x)=0$.
Macmahon has proved [5, p. 19] that H_{r} the homogeneous product sum, j together, of the whole of the terms of h_{r}, can be represented in terms of the symmetric functions (denoted by []) of the roots of

$$
x^{i}-h_{1} x^{i-1}+h_{2} x^{i-2}-\cdots=0
$$

by

$$
\begin{equation*}
H_{j}=\sum_{\Sigma n \mu_{n}=j}(-1)^{r\left(3 \mu_{2}+5 \mu_{4}+\cdots\right)} \frac{\left.[1]^{\mu_{1}}\left[2^{r}\right]^{\mu_{2}} / 3^{r}\right]^{\mu_{3}} \ldots}{1^{\mu_{1}} \cdot 2^{\mu_{2}} \cdot 3^{\mu_{3}} \cdots \mu_{1}!\mu_{2}!\mu_{3}!\cdots} \tag{2.4}
\end{equation*}
$$

Some examples of H_{r} are (with $a_{i j}=0$ for $\left.j>i\right)$

$$
\begin{gathered}
H_{2}=a_{21}^{2}+a_{22}^{2}+a_{21} a_{22} \\
H_{2}=a_{21}^{4}+a_{22}^{4}+2 a_{21}^{2} a_{22}^{2}+a_{21}^{3} a_{22}+a_{21} a_{22}^{3}, \\
H_{2}=a_{21}^{6}+a_{22}^{6}+2 a_{21}^{3} a_{22}^{3}+a_{21}^{5} a_{22}+a_{21} a_{22}^{5}+2 a_{21} a_{22}^{2}+2 a_{21}^{2} a_{22}^{4}, \\
H_{2}^{2}=H_{2} H_{1} H_{1}=a_{21}^{4}+a_{22}^{4}+3 a_{21}^{2} a_{22}^{2}+2 a_{21}^{3} a_{22}+2 a_{21} a_{22}^{3} \\
H_{1}^{3}=a_{21}^{6}+a_{22}^{6}+7 a_{21}^{3} a_{22}^{3}+3 a_{21}^{5} a_{22}+3 a_{21} a_{22}^{5}+6 a_{21}^{4} a_{22}^{2}+6 a_{21}^{2} a_{22}^{4}
\end{gathered}
$$

h_{m} is the homogeneous product sum of weight m of the terms of $P_{i 1} . H_{r}$ is the homogeneous product sum of weight m of the terms of $R_{u 1}$.
$(-1)^{i+1} P_{i j}$ is the product sum, j together, of the terms of $P_{i 1}$.
$(-1)^{j+1} R_{u j}$ is the product sum, j together, of the terms of $R_{u j}$. It follows directly from Macmahon $[5$, p. 4] that
and so

$$
P_{i j}=\sum_{\Sigma n \lambda_{n}=j}(-1)^{1+\Sigma \lambda} \frac{(\Sigma \lambda)!}{\lambda_{1} I \lambda_{2} I \cdots \lambda_{j} I} \prod_{m=1}^{j} h_{m}^{\lambda_{m}}
$$

For example,

$$
R_{u j}=\sum_{\Sigma n \lambda_{n}=j}(-1)^{1+\Sigma \lambda} \frac{(\Sigma \lambda /!}{\lambda_{1}!\lambda_{2}!\cdots \lambda_{j}!} \prod_{m=1}^{j} H_{m}^{\lambda_{m}}
$$

$$
\begin{gathered}
R_{31}=H_{2}=a_{21}^{2}+a_{22}^{2}+a_{21} a_{22}, \\
R_{32}=-H_{1}^{2}+H_{2}=-\left(\Sigma a_{21}^{4}+2 \Sigma a_{21}^{3} a_{22}+3 a_{21}^{2} a_{22}^{2}\right) \\
+\left(\Sigma a_{21}^{4}+\Sigma a_{21}^{3} a_{22}+2 a_{21}^{2} a_{22}^{2}\right) \\
=-\Sigma a_{21}^{3} a_{22}-\Sigma a_{21}^{2} a_{22}^{2} \\
R_{33}=H_{1}^{3}+H_{2}-2 H_{2} H_{2}=a_{21}^{3} a_{22}^{3}
\end{gathered}
$$

We can verify these results by utilizing some of the properties of the generalized sequence of numbers $\left\{w_{n}^{(2)}\right\}$ developed by Horadam [3].
From Eq. (27) of Horadam's paper we have that

$$
\begin{equation*}
w_{n}^{(2)} w_{n-2}^{(2)}-w_{n-1}^{(2)^{2}}=\left(-p_{22}\right)^{n-2} e \tag{2.5}
\end{equation*}
$$

where

$$
e=\rho_{21} w_{0}^{(2)} w_{1}^{(2)}+P_{22} w_{0}^{(2)^{2}}-w_{1}^{(2)^{2}}
$$

Thus

$$
w_{n-1}^{(2)} w_{n-3}^{(2)}-w_{n-2}^{(2)^{2}}=\left(-P_{22}\right)^{n-3} e
$$

and
(2.6)

$$
P_{22} w_{n-2}^{(2)^{2}}-P_{22} w_{n-1}^{(2)} w_{n-3}^{(2)}=\left(-P_{22}\right)^{n-2} e
$$

Subtracting (2.5) from (2.6), we get

$$
\begin{equation*}
P_{22^{w-2}}^{(2)}+w_{n-1}^{(2)}=P_{22^{(w n-1}}^{(2)} w_{n-3}^{(2)}+w_{n}^{(2)} w_{n-2}^{(2)} \tag{2.7}
\end{equation*}
$$

But

$$
w_{n}^{(2)}-P_{22} w_{n-2}^{(2)}=P_{21} w_{n-1}^{(2)}
$$

and

$$
w_{n-1}^{(2)}-P_{22} w_{n-3}^{(2)}=P_{21} w_{n-2}^{(2)}
$$

so

$$
w_{n}^{(2)}+p_{22}^{2} w_{n-2}^{(2)^{2}}-2 P_{22} w_{n}^{(2)} w_{n-2}^{(2)}=P_{21} w_{n-1}^{(2)^{2}}
$$

and

$$
P_{22} w_{n-1}^{(2)^{2}}+P_{22} w_{n-3}^{(2)^{2}}-2 P_{22} w_{n-1}^{(2)} w_{n-3}^{(2)}=P_{21}^{2} P_{22} w_{n-2}^{(2)^{2}}
$$

Adding the last two equations we ohtain $w_{n}^{(2)^{2}}+p_{22} w_{n-1}^{(2)^{2}}+P_{22}^{2} w_{n-2}^{(2)^{2}}+p_{22}^{3} w_{n-3}^{(2)^{2}}-2 P_{22}\left(P_{22} w_{n-1}^{(2)} w_{n-3}^{(2)}+w_{n}^{(2)} w_{n-2}^{(2)^{2}}\right)=p_{21}^{2} w_{n-1}^{(2)^{2}}+p_{21}^{2} p_{22} w_{n-2}^{(2)^{2}}$.

Combining this with (2.7) we then have

$$
\begin{equation*}
w_{n}^{(2)^{2}}=\left(P_{21}^{2}+P_{22}\right) w_{n-1}^{(2)^{2}}+\left(P_{22}^{2}+P_{21}^{2} P_{22}\right) w_{n-2}^{(2)^{2}}+\left(-P_{22}^{3}\right) w_{n-3}^{(2)^{2}} \tag{2.8}
\end{equation*}
$$

so

$$
\begin{gathered}
R_{31}=p_{21}^{2}+P_{22}=a_{21}^{2}+a_{22}^{2}+a_{21} a_{22} \\
R_{32}=P_{22}+P_{21} P_{22}=-a_{21}^{3} a_{22}-a_{21} a_{22}^{3}-a_{21}^{2} a_{22}^{2} \\
R_{33}=-P_{22}^{3}=a_{21}^{3} a_{22}^{3}
\end{gathered}
$$

as required.
To obtain an expression for H_{r} in terms of $a_{i j}$, we now use a result of Macmahon, namely,

$$
\left[u^{r}\right]=(-1)^{r(u+1)} \sigma_{u}
$$

where σ_{u} denotes the sum of the $u^{\text {th }}$ powers of the roots of $g_{r}(x)=0$. It is sufficient for our purposes to state that Macmahon has shown that σ_{u} is the homageneous product sum of order r of the quantities $a_{i j}^{u}$. It is thus given by
by analogy with

$$
\sigma_{u}=\sum_{\Sigma=r m} \Pi a_{i m}^{u t_{m}}
$$

$$
h_{r}=\sum_{\Sigma t=r m} \Pi a_{i m}^{t_{m}}
$$

the homogeneous product sum of order r of the quantities $a_{i j}$. We now define $\sigma_{i u}$, the homogeneous product sum of order r of the quantities $a_{i j}^{L}$ such that $a_{i j}=0$ for $j>i$:

$$
\sigma_{i u}=\sum_{\Sigma v=r} \prod_{j=1}^{i} a_{i j}^{u v_{j}}
$$

and we introduce the term

$$
\sigma_{i u r}=(-1)^{r(u+1)} \sigma_{i u}
$$

We have thus established that for
where

$$
\begin{equation*}
R_{u j}=\sum_{\sum_{n} \lambda_{n}=j}(-1)^{1+\Sigma \lambda} \frac{(\Sigma \lambda)!}{\lambda_{1} / \lambda_{2} l \cdots \lambda_{j} l} \quad \prod_{m=1}^{i} H_{r}^{\lambda_{m}} \tag{2.9}
\end{equation*}
$$

$$
H_{r}=\sum_{\Sigma n \mu_{n}=m}(-1)^{r\left(3 \mu_{2}+5 \mu_{4}+\cdots\right)} \prod_{v=1}^{m} \frac{\left(\sigma_{i u r}\right)^{\mu_{v}}}{\mu_{v} \cdot \mu_{v}}
$$

and

$$
w_{n}^{(i)^{r}}=\sum_{j=1}^{u} R_{u j} w_{n-j}^{(i)^{r}}
$$

and

$$
\sigma_{i u r}=(-1)^{r(u+1)} \sum_{\Sigma v=r} \prod_{i=1}^{i} a_{i j}^{u v_{j}}
$$

$$
u=\binom{i+r-1}{r}
$$

It is of interest to note that another formula for $\sigma_{\text {iur }}$ can be given by

$$
\begin{equation*}
\sigma_{i u r}=(-1)^{r(u+1)} \sum_{i=1}^{i} a_{i j}^{(i+r-1)} \prod_{i>k}\left(a_{i j}^{u}-a_{i k}^{u}\right) \tag{2.9}
\end{equation*}
$$

We prove this by noting that

$$
\sigma_{i u}=\sum_{\sum v=r} \prod_{j=1}^{\eta} a_{i j}^{u v_{j}}=(-1)^{r(u+1)} \sigma_{j u r}
$$

and defining

$$
h_{r}^{\prime}=\sum_{\Sigma v=r} \prod_{j=1}^{i} a_{i j}^{v_{j}}
$$

and showing that

$$
h_{j}^{\prime}=\sum_{j=1}^{i} a_{i j}^{i \gamma r-1}, \prod_{j>k}\left(a_{i j}-a_{i k}\right)
$$

It follows from Macmahon [5, p. 4] that h_{r}^{e} satisfies a linear recurrence relation of order $;$ given by

$$
\begin{array}{ll}
h_{r}^{\prime}=\sum_{n=1}^{i} p_{i n} h_{r-n}^{\prime}, & r>0 \\
h_{r}^{\prime}=1, & r=0 \\
h_{r}^{\prime}=0, & r<0,
\end{array}
$$

the $P_{i r}$ and $a_{i r}$ are those of (2,1). We again assume that the $a_{i r}$ are distinct so that from Jarden [4, p. 107]

$$
\begin{equation*}
h_{r}^{\prime}=\sum_{j=1}^{i} a_{i j}^{F} D_{j} / D \tag{2.10}
\end{equation*}
$$

where D is the Vandermonde of the roots, given by

$$
\begin{equation*}
D=\sum_{j=1}^{i} a_{i j}^{i-1} \prod_{\substack{j \neq n \neq m \\ n<m}}\left(a_{i n}-a_{i n}\right)=\Pi \quad\left(a_{i j}-a_{i n}\right) \prod_{\substack{j \neq n \neq m \\ n<m}}\left(a_{i m}-a_{i n}\right) \tag{2.11}
\end{equation*}
$$

and D_{j} is the determinant of order i obtained from D on replacing its $j^{\text {th }}$ column by the initial terms of the sequence, $h_{0}^{\prime}, h_{7}^{\prime}, \cdots h_{i-1}^{\prime}$. It thus remains to prove that

$$
\begin{equation*}
D_{j}=a_{i j}^{i-1} \prod_{\substack{j \neq n \neq m \\ n<m}}\left(a_{i m}-a_{i n}\right)=D a_{i j}^{i-3} / \underset{i>n}{\prod}\left(a_{i j}-a_{i n}\right) \tag{2.12}
\end{equation*}
$$

We use the method of the contrapositive. If

$$
a_{j} \neq a_{i j}^{i-1} \prod_{\substack{j \neq n \neq m \\ m>m}}\left(a_{i m}-a_{i n}\right)
$$

then

$$
D=\sum_{j=1}^{i} D_{j}
$$

(from (2.10) with $n=0$)

$$
\neq \sum_{j=1}^{i} a_{i j}^{i-1} \prod_{\substack{j \neq n \neq m \\ m>n}}\left(a_{i m}-a_{i n}\right)
$$

which contradicts (2.11). This proves (2.12) and we have established that
as required.

$$
h_{r}^{\prime}=\sum_{j=1}^{i} a_{i j}^{r} a_{j} / D=\sum_{j=1}^{i} a_{i j}^{i+n-1} D_{j} / D a_{i j}^{i-1}=\sum_{j=1}^{i} a_{i j}^{i+r-1} / \prod_{j>n}\left(a_{i j}-a_{i n}\right)
$$

3. GENERATING FUNCTION FOR SEQUENCE OF POWERS

Van der Poorten [6] further proved that if

$$
\begin{equation*}
w^{(i)}(x)=\sum_{n=0}^{\infty} w_{n}^{(i)} x^{n}=f(x) / x^{i} g\left(x^{-1}\right) \tag{3.1}
\end{equation*}
$$

then there exists a polynomial $f_{f}(x)$ of dagree at most $u-1$, such that

$$
\begin{equation*}
w_{r}^{(i)}(x)=f_{r}(x) / x^{u} g_{r}\left(x^{-1}\right), \quad u=\binom{r+i-1}{r} \tag{3.2}
\end{equation*}
$$

We first seek an expression for $f_{r}(x)$.

$$
\begin{gathered}
w_{r}^{(i)}(x)=w_{O}^{(i)^{r}}+w_{1}^{(i) r^{r}} x+w_{2}^{(i)^{r}} x^{2}+\cdots+w_{u-1}^{(i)^{r}} x^{u-1}+w_{u}^{(i)^{r}} x^{u}+\cdots \\
-R_{u 1} x w_{r}^{(i)}(x)=-R_{u 1} w_{O}^{(i)^{r}} x-R_{u 1} w_{1}^{(i)^{r}} x^{2}-\cdots-R_{u 1} w_{n-2}^{(i)^{r}} x^{u-1}-R_{u 1} w(i)^{r} x^{u}-\cdots \\
-R_{u 2^{\prime}} x^{2} w_{r}^{(i)}(x)=-R_{u 2} w_{o}^{\left(i r^{r}\right.} x^{2}-\cdots-R_{u 2} w_{n-3}^{(i)^{r}} x^{u-1}-R_{u 2} w_{u-1}^{(i)^{r}} x^{u}-\cdots \\
\vdots \\
-R_{u, u-1} x^{u-1} w_{r}^{(i)}(x)=-R_{u, u-1} w_{O}^{(i)^{r}} x^{u-1}-R_{u, u-1} w_{1}^{(i)^{r}} x^{u}-\cdots \\
-R_{u u u^{\prime}} x^{u} w_{r}^{(i)}(x)=-R_{u u} w_{O}^{(i)^{r}} x^{u}-\cdots
\end{gathered}
$$

We then sum both sides of these equations. On the left we have

$$
w_{r}^{(i)}(x)\left(1-\sum_{i=1}^{u} R_{u j} x^{j}\right)=w_{r}^{(i)}(x) x^{u}\left(x^{-u}-\sum_{i=1}^{u} R_{u j^{-}}{ }^{-(u-j)}\right)=w_{r}^{(i)}(x) x^{u} g_{r}\left(x^{-1}\right),
$$

as in van der Poorten.
On the right we obtain
where
since

$$
\begin{equation*}
f_{r}(x)=\sum_{j=0}^{u-1} T_{u j} x^{i} \tag{3.3}
\end{equation*}
$$

sin

Thus we have

$$
T_{u j}=w_{j}^{(i)^{r}}-\sum_{m=0}^{j} R_{u m} w_{j-m}^{(i)^{r}}, \quad R_{u 0} \equiv 0
$$

$$
w_{n}^{(i)^{r}} x^{n}=\sum_{j=1}^{u} R_{u j} w_{n-j}^{(i)^{r}} x^{n}
$$

$$
\begin{equation*}
w_{r}^{(i)}(x)=\left(\sum_{i=0}^{u-1}\left\{w_{j}^{(i)^{r}}-\sum_{m=1}^{J} R_{u m} w_{j-m}^{(i)^{r}}\right\} x^{i}\right) / x^{u} g_{r}\left(x^{-1}\right) \tag{3.4}
\end{equation*}
$$

We now show how (3.4) agrees with Eq. (33) of Horadam [3] when $i=2$ and $r=2$. We first multiply each side of the equation by $x^{3} g_{2}\left(x^{-1}\right)$.
The lefthand side of (3.4) is then

$$
\begin{aligned}
x^{3} g_{2}\left(x^{-1}\right) w_{2}^{(2)}(x) & =\left(-1\left(P_{21}^{2}+P_{22}\right) x-\left(P_{22}^{2}+P_{21}^{2} P_{22}\right) x^{2}+P_{22}^{3} x^{3}\right) w_{2}^{(2)}(x) \\
& =\left(1+P_{22} x\right)\left(1-\left(P_{21}^{2}+2 P_{22}\right) x+P_{22}^{2} x^{2}\right) w_{2}^{(2)}(x)
\end{aligned}
$$

When $i=2$, the right-hand side of (3.4) is

$$
\begin{aligned}
& \sum_{j=0}^{2}\left\{w_{j}^{(2)^{2}}-\sum_{m=1}^{j} R_{3 m^{w}-m-m}^{(2)^{2}}\right\} x^{j}=w^{(2)^{2}}+w_{1}^{(2)^{2}} x+w_{2}^{(2)^{2}} x^{2}-R_{31} w_{0}^{(2)} x^{2}-R_{31} 1_{1}^{(2)} x^{2}-R_{32} w_{0}^{(2)^{2}} x^{2} \\
& =w_{0}^{(2)^{2}}+w_{7}^{(2)^{2}} x+P_{27} w_{7}^{(2)^{2}} x^{2}+P_{22}^{2} w_{0}^{(2)^{2}} x^{2}+2 P_{27} P_{22^{2}} w_{0}^{(2)} w_{i}^{(2)} x^{2} \\
& -P_{21} w_{0}^{(2)^{2}} x-P_{22 w_{0}} w_{0}^{(2)^{2}} x-P_{21} w_{1}^{(2)^{2}} x^{2}-P_{22^{w}}{ }^{(2)^{2}} x^{2} \\
& -P_{22}^{2} w_{0}^{(2)^{2}} x^{2}-P_{21}^{2} P_{22} w_{0}^{(2)^{2}} x^{2} \\
& =\left(1+P_{22^{x}}\right) w_{0}^{(2)^{2}}-\left(1+P_{22^{x}}\right)\left(P_{21} w_{0}^{(2)}-w_{7}^{(2)}\right)_{x}^{2} \\
& -2 x\left(P_{27} w_{0}^{(2)} w_{1}^{(2)}+P_{22} w_{0}^{(2)^{2}}-w_{7}^{(2)^{2}}\right) \frac{\left(1+P_{22^{x}}\right)}{\left(1+P_{22^{x}} x\right.} \\
& =\left(1+P_{22^{x}}\right)\left(w_{0}^{(2)^{2}}-x\left(P_{21} w_{0}^{(2)}-w_{1}^{(2)}\right)^{2}-2 x e w_{0}^{(2)}\left(-P_{22^{x}}\right)\right) \\
& \left.=\left(1+P_{22^{x}}\right)^{-1}\right) . \\
& \text { (since } w_{0}\left(-P_{22^{x}}\right)
\end{aligned}
$$

if we multiply that equation through by $\left(1+P_{22^{x}}\right)$ and note that $a_{21}^{2}+a_{22}$
This agrees with Horadam's Eq. (33) if we multiply that equation through by $\left(1+P_{22^{x}}\right)$ and note that $a_{21}^{2}+a_{22}$ $=\rho_{21}^{2}+2 P_{22}$. When $r=1$, we get $u=i, R_{i m}=P_{i m}$. If we consider the special case of $\left\{w_{n}^{(i)}\right\}$:

$$
\begin{array}{ll}
w_{n}^{(i)}=0, & n<0 \\
w_{n}^{(i)}=1, & n=0 \\
w_{n}^{(i)}=\sum_{r=1}^{i} P_{i r} w_{n-r}^{(i)}, & n>0,
\end{array}
$$

then $\left\{w_{n}^{(i)}\right\} \equiv\left\{u_{n}^{(i)}\right\}$, the fundamental sequence discussed by Shannon [7], and (3.4) becomes

$$
\begin{aligned}
u^{(i)}(x) & =\left\{\sum_{j=0}^{n-1}\left\{u_{j}^{(i)}-\sum_{m=1}^{j} P_{i m} u_{j-m}^{(i)}\right\} x^{i}\right\} / x^{j} g\left(x^{-1}\right)=\left\{u_{o}^{(i)}+\sum_{i=1}^{n-1}\left(u_{j}^{(i)}-u_{j}^{(i)}\right) x^{j}\right\} / x^{i} g\left(x^{-1}\right) \\
& =1 / x^{i} g\left(x^{-1}\right), \quad n=\binom{i+r-1}{r}
\end{aligned}
$$

which is effectively Eq. (1) of Hoggatt and Lind [2]. (Equation (2) of Hoggatt and Lind [2] is essentially the same as Eq. (2.4) of Shannon.)
Thus in (2.9) we have found the coefficients in the recurrence relation for $\left\{w_{n}^{(i)^{r}}\right\}$ and in (3.4) an explicit expression for the generating function for $\left\{w_{n}^{(i) r}\right\}$.
Thanks are due to Professor A.F. Horadam of the University of New England for his comments on drafts of this paper.

references

1. Marshall Hall، "Divisibility Sequences of Third Order," Amer. Jour. of Math., 58 (1936), pp. $577-584$.
2. V.E. Hoggatt, Jr., and D.A. Lind, "Fibonacci and Binomial Properties of Weighted Compositions," Jour. of Combinatorial Theory, 4 (1968), pp. 121-124.
3. A.F. Horadam, "Generating Functions for Powers of a Certain Generalized Sequence of Numbers," Duke Math. Jour, 32 (1965), pp. 437-446.
4. Dov Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem, 1966.
5. Percy A. Macmahon, Combinatory Analysis, Voi. 1, Cambridge University Press, 1915.
6. A.d. van der Poorten, "A Note on Powers of Recurrence Sequences," Duke Math. Jour, submitted.
7. A.G. Shannon, "Some Properties of a Fundamental Recursive Sequence of Arbitrary Order," The Fibonacci Quarterly,
8. A.G. Shannon and A.F. Horadam, "Generating Functions for Powers of Third-Order Recurrence Sequences," Duke Math. Jour., 38 (1971), pp. 791-794.
