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EXPLICIT EXPRESSIONS FOR POWERS OF LINEAR RECURSIVE SEQUENCES

A, G. SHANNON
The New South Wales nstitute of Technology, Broadway, N.S.W., Australia

1. DEFINITIONS

Van der Poorten [6] in a generalization of a result of Shannon and Horadam [8] has shown that (in my notation)
if % w,g’) } is a linear recursive sequence of orbitrary order 7 defined by the recurrence relation

i
(1.1) w,ﬁ”‘ = Zpijw,ﬁ’_’j ., on=i
=

wher? thg Py are arbitrary integers, with suitable initial values Wg}, w;"), -, Wﬁ’,, then the sequence of pow-

ers yw, "¢ ,forintegers r > 1, satisfies a similar recurrence refation of order at most

( r+i—1 )
r
In other words, he has established the existence of generating functions
(1.2) W,m {x) = E W,ﬁ”’x", (W,Ci)r = (i’ /).
n=0

The aim here is to find the recurrence relation for { w,ﬁ”’ and an explicit expression for w,m (x). We shall con-
cern ourselves with the non-degenerate case only; the degenerate case is no more difficult because the order of the
recurrence relation for { W,g”’ } is then lower than

()

It is worth noting in passing that Marshall Hail [1] looked at the divisibility properites of a third-order sequence
by a similar approach. From a second-order sequence with auxiliary equation rosts @y and ap he formed a
third-order sequence with auxiliary equation roots af1? , ag , 0103 .

2. RECURRENCE RELATION FOR SEQUENCE OF POWERS

Van der Poorten proved that if the auxiliary equation for { w'? } is

n
o S

(2.1} glx) = x' —Z Pt = Wix—ay =0,
j=1 =1

then the sequence % w,g”’ } satisfies a linear recurrence relation of order
r+i—1
Is

ANy A
(2.2} g-x) = E)]\H (x—aza —af} =0,

-

with auxiliary equation

the zeros of which are exactly the zeros of glx) taken r ata time.
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We now set

u
= ~f = -1
(2.3) arlx) = x4 =3 Ry, w= (7 ) ,
i=1
and we seek the ;. g
Macmahon [5, p. 31defines #;, the homogeneous product sum of weight j of the quantities a;, as the sem
of a number of symmetric functions, each of which is denoted by a partition of the number j. He showed that in
our notation
(M A ha i
b = e plpt ol p.
j Z_j 7\1”\2! )\j' 172 lj

The first three cases of #; are
hy = Pjg = Zaj7 ,
_ p2 — 2
ha = Pjg#Pjp = Zaj; + 2aja;5 ,
h3 = P+ 2P P.ytPs = Za3 +2a% G+ Saa.00
3 i1 12" ris i1 i1 %i2 i1%2%i3 -

Now g,{x) =0 is the equation whose zeros are the several terms of /1, with ;=0 for j>i, sincefrom
its construction its zeros are a;; taken r at a time; that is,

Ry = h, with ay=0 for j>i,

(r+i—1)___u
r

/

since we have supposed that there are

distinct zeros of g,{x) = 0.
Macmahon has proved [5, p. 19] that He  the homogeneous product sum, j together, of the whole of the
terms of A, can be represented in terms of the symmetric functions {denoted by [ 1) of the roots of

xf —h,xi'7 +h2xi'2— =0

by

TR TR rpMy [or My [3r7Ms ..
(2.4) He= 3 =1/ 0000 (T2 277 5]

i 2”#[7:/. 7“1 .2”2 ° 3“3 #1’”2’“3’
Some examples of #, are (with a; = 0 for j > i)
g Ho = a2 +a2 +a,,0
g 217 %22 T%21%22 -
_ 4 .4 2 2 3 3
Hg S Gy, t 05yt 205,05, 05 Gyt Uy By
_ 6 . 6 ,,3 3 . 5 5 2 2 4
Hz = @y +ay, 205,05, +0y, Ayy* 0y, a5, +20,,05, +205, 85, ,

3

2 _ _ 4 4 2 3
HZ,’ = H?”g Gpy #8022 *3‘151 @2 *2“21”'22*2“21“;2 .

3_ 6 6 3 3 5 5 4 .2 2 4
Hz =y + 05, +705, 05y + 305 Ggy* 30y, Ay + 60y, a5y +6a5, 0y
hy, is the homegeneous product sum of weight m of the terms of P;;. H, is the homogeneous product sum of
weight m of the terms of A,;. m
{~ 7)’+1P,-,- is the product sum, j together, of the terms of P;y7.
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(—1)i*1 Ayj is the product sum, j together, of the terms of R, ;. it follows directly from Macmahon [5, p. 4] that

i
~ g f+Ea__ (T A
E"’ =1 )\7!}\2! )\j! 1 fim
m=1

Znhg=f
and so n
B = z (—7)THEA (ZWi fl H}\m
u - - At - Nif r
S Nyl hgf - N oy
For example,

Hg] = H2 = ag, + CL§2 + a.21a22 ,
1
_ 2 _ 4 3 2 2
Rag = —H3+Hy = ~(Za3; +22a3,0,5 * a3, azp)
7 2
4 3 2 2
*(Zayy + Zpy095 + 2051055)
3 2 2
—Zt51ay, — Za3,05;

[}

3 3
Ras H2 tHy—2HoH, = a55a55 .
7 3 27

We can verify these results by utilizing some of the properties of the generalized sequence of numbers I Wf};(
developed by Horadam [3]. )
From Eq. (27) of Horadam's paper we have that

(2.5) w2 w2 - w2 = (P12,

4

where (2} (2) 27 _ (2? .
e = Poyywg” wi™ +Poowg” —wj
Thus 2
wf,z_) 14/{,2_{3 —W;(fé = (—Pzzln"?e
and 5
Subtracting {2.5) from (2.6), we get
2.7 P2 (2} +W,(£)1 = P22W(g)1 Wrgg‘}fs’ +W(2) (2)
But
2] _ 2,
w? —poowf?y = Pywl?
and
2, (2} {2)
Wrg_} —P22W -3 = PZTW -2
0
w,?) + P‘ng{z_}z 2P, w2, = p, W’Z’, ’
and

2
Addmg the last two eguations we nhtasn

2 2 2
(2) +Py W(2}£+P22 ,fé +P22 w(é ~ 2P 2(P22W(2) le}é (27 (2) 5 )= P2 ,g'?_;, +p21P22W22_)2 ;

() = (
2 = P2 P

Combining this with {2.7) we then have
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(2.8)

S0

as required.
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2
w2

,

2
= (B3, +Pyp ) + (P2 + P2 Popiw (2 5 (P2 2%

2
Ray = P3y +Pyp = a27 +055+ 02709, .
- P, _ 3 2 2
R3p = Pop+PaiPay = —3; Gpp — Gpy03s — 03,03,
_ 53 _ 3 3
R3z = —P35 = a37a5; ,

To obtain an expression for A, in terms of a;;, we now use a result of Macmahon, namely,

where ¢, denotes the sum of the o

i
Wi = (__7)r(u+1)o.u ,

m

th

{ocT.

powers of the roots of g,x) = 0. It is sufficient for our purposes to state

that Macmahon has shown that o, is the homogeneous product sum of order r of the quantities a}j’-. It is thus

given by

by analogy with

utm
= Z I Tim

Zt=r m

- Y nen,

Zt=r m

the homogeneous product sum of order r of the quantities a;;. We now define oj,, the homogeneous product

sum of order r

of the guantities a such that a; = 0 for j>i:

l .
_ E Ha’;jvl ,

v=r j=1

and we introduce the term

= (_1}"(""‘1’0..

Ojur iu -

We have thus established that for

{2.9)

where

and

and

u
F
W,g" =Zﬁujwrlrl)j .

i
= 2. 7}”‘” oot il LA
£nhy=f R
Gugtiar-) 1 (0™
H, = Z (—1)" M2tSig {Gur/
m En:u,,=m v=1 VMV‘P‘V

. i
- rlu+1} 2 : uvy
Ciur = (—7} v II au/ ’,
zv=r j=1

U=(1+r—1)
r

It is of interest to note that another formula for aiu, can be given by

(2.9)

Ojur = (- prluti) Ea(ﬁr-/ il (a.l/ /k}

=1
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We prove this by noting that

i
uvi _ rlut1)
0y = 2 Ma;l=(-1)" g,

ur
Ty=r j=1
and defining
d 14
s i
hy Z i o
Tv=r j=1

and showing that

i
[ jtr~1
hi= E a; I (a,jmaik} )
=1 i>k

It follows from Macmahon [5, p. 4] that A, satisfies a linear recurrence relation of order / given by

i
i = Piphin . r>a,
=7

ht =1, r=20
hr =0, r<@;

the P; and a arethose of (2.1). We again assume that the ay, are distinct so that from Jarden {4, p. 107]

i
(2.10) hp= Db,
=1
where [ is the Vandermonde of the roots, given by

i
{2.11) D=3 0" I Aapy—ap)= T (a5-ap) T (6,
=1 JEnEm i>n f#En#m
n<m n<m

285

and [J; is the determinant of order / obtained from I on replacing its /'t” column by the initial terms of the

sequence, fp, A7, - -y . i thus remains to prove that

(2.12) pi=di' M Atpm—ap) = 0df’/ T faz—aj) .
JENFEm >n
n<m

We use the method of the contrapositive. If

i1 v
Dj # g 0 fa;,-ayt.

then m >

{from (2.10) with n =0}
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which contradicts (2.11). This proves (2,12 ) and we have established that

hy 'Z @ 0;/0 = Falﬁﬂu /Doy’ Za’+"/ﬂ (4;-a,),

as required. =1 =7 i>n

3. GENERATING FUNCTION FOR SEQUENCE OF POWERS
Van der Poorten [6] further proved that if

{3.1) wi(x) = Z (30 = fx)/x iotx7),
n=0

then there exists a polynomial f.(x) of degree at most v — 7, such that

(3.2) wi (x) = £ /xYg,(x7), u= ( rti=t )

We first seek an expression for 7.(x/.
(/}(X} = Wt’l/’ ,,.W(/) X+W(l} 2, _,_WL(Ii_}; u—1+W(i)r uy

Ry (x) = —R i x~ Ry Wl x? o R Wy g WX
~R,ox w(’)(x}- ~R, W{” 2_. -R, wf’{_gx —Ruzwé’bx -

. 's
—Rulu_1x”'7wl’)(x} = =Ry ,Wg) x4t -R,, 1W;’) x4 — .
Ry x"wx) = R, Wg} x4

We then sum both sides of these equations. On the left we have

u \ u
W,{i)(X} 7_2 ’qujxj> _ W,(”(X)XU x4 _E Rujx—lu-li = W,(”(X)Xu!],-(X-U,

=1 =1
as in van der Poorten,

On the right we obtain

(3.3) flx) =D Tux!
where ) =0
J
Ti=w = Buwfl, . Bu=0,

since m=0

s s

w,{,') x" = 2 Hu/W)(;I—}an

Thus we have =1

- u-1 b
(3.4) w (x) = (E ; =5 Bumw, ,‘_'fné > / XU tx77).
=0 m=1

[oCT.

We now show how (3.4) agrees with Eq. (33) of Horadam [3] when /=2 and r=2We first multiply each side

of the equation by xZgo(x~7).
The left-hand side of (3.4) is then

x‘?gz(x")Wf) (x) = (~1(PZ, +Pyp)x — (P§2 + P2, Poyix? + szxglwéﬂ (x)
= (1P )1 — (P2, + 2P 5o)x + P2 x? )P (x) .
When =2, the right-hand side of (3.4} is
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2

, 2 2 2 2
Z Zﬁgm ,{.2’,{, x = W({,‘?)1 +W§2" X+W£2) X2—1?3 w{‘?}x ~R3 w(2)x2—l? W(z) x?
=0 J 2 2 2 2
= Wéz) +w;2) X+P 7w;2) x2+P§2w(2) X +2P2,P2 W(()2W1(2} 2
2 2
~P21W” X —=FPos W(‘?) X—P21W(2} X ——P W(Z} x2

2 (2
-P5 W())(Z—P27 zwélx

i

2
{1 +P22X)W(92} ~ {1+ PooxiPyyw (2} (2}) X

2 2 (1 +Poox)

— 2xlP P+ p 2 _ (2P (1 P22X)

x(Paqwg w1 +Popwg™ —wi™ ) - FPgpx)

2 2

{1+ P22x)(w{72} - X(P27W52) - W;zi )} —2xe w52, (—P5ox))
{since wy(—Poox) = (1+Py0)7").
This agrees with Horadam’s Eq. (33} if we multiply that equation through by (7 +Poox) and note that ag, +0dps
= P27 +2Py,. When r=1, weget v=/ A, =P, . If weconsider the special case of W }

()

wy' =0, n<0
Wl =1, "=
W,{,i) = ZP,,W,?_), n >0,

then { w,f” } = ium} , the fundamental sequence discussed by Shannon {71, and (3.4) becomes

] r] n_1 . » . .
u(i}(x) = gz 3 ul? Z'Dfm”ﬂ:{ng jS / ng(x=-7) = 3”5”*2 (ul_(I}_ujll))Xj ’g/(’g(x'U
0 1

jt+r—1
r

= I/ g(x' }, where n= (

s

which is effectively Fg. {1} of Hoggatt and Lind [2]. (Equation (2) of Hoggatt and Lind [2] is essentially the same
as Eq. (2.4) of Shannon.) .

Thus in {2.8) we have found the coefficients in the recurrence relation for f W,CU } and in (3.4) an explicit ex-
pression for the generating function for { Wg”’

Thanks are due to Professor A.F. Horadam of the University of New England for his comments on drafts of this paper.
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