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POLYNOMIALS DEFINED BY

GENERATING RELATIONS
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HARI BALLABH MITTAL

Abstact. Various authors have made efforts for finding new generating functions

for known polynomial sets. In the present paper, by making use of the operator

Tk = x(k + xD), a number of generating functions and characterizations have been

obtained for various polynomials in a systematic manner.

1. Introduction. Various authors have made efforts for finding new generating

functions for known polynomial sets. By means of purely manipulative skill some

remarkably interesting results have been obtained.

Recently, in view of the results of Toscano [23], Brown [6] proved that for the

Laguerre polynomials

(l.i) 2 Ln +mn\x)tn = ^y^1— e'x\
n=o l—mv

where zj = /(1 +v)m + 1, m being an integer. Also, assuming

00

(1.2) 2 L(na + mn)(x)tn = A(t)exBm,
zi = 0

he proved that

(1.3) £X~**~W - T^exp [t^§

Carlitz [8] extended the results of Brown and showed that (1.1) and (1.3) hold

for all values of m. In view of the results of Brown one may have under view the

following question:

Can we obtain generating relations of the type (1.1) and (1.3) for other

known polynomial sets and, in general, can we give a general method of

obtaining such generating relations for special functions of interest?

The present paper is an answer to this question. By making use of the operational

methods we obtain, in §2, an operational generating relation. We have proved, in
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74 H. B. MITTAL [June

§3, that generating relations of the type (1.1) and (1.3) are inherent to all special

functions which are defined by (3.1). As illustrations, we obtain generating relations

for the generalized Laguerre polynomials, generalized Hermite polynomials, Bessel

polynomials and Jacobi polynomials. Further, in order to show the usefulness of

our technique, a general class of polynomials has been considered, in §9, which

incorporates the polynomials studied by Bedient [4], Sister Celine Fasenmyer [10],

Rainville [20], Shively [22], Weisner [24] and others as special cases.

In this paper we have made use of the differential operator Tk = x(k + xD), k

being a constant (Mittal [14], [18]). It is easily seen that

Tff{xb+r} = (b + r + k)nxb + r + n,

where n is a positive integer.

2. An operational generating relation.    By making use of the Lagrange expansion

formula

cu, 0+cr. = 1+(a+1)jj«77>7i;,

where v = t(\ +v)b + 1, <;(0) = 0, Pólya and Szegö [19] showed that

where v = t(l+v)b + 1, b being a constant.

Let /(x) = 2"= o arXr be uniformly convergent in (a, ß) and let b be a constant.

Consider the sum

oo      .n oo      .71 Z*    00 ^

Z,   Tí P(m-l)n+a+l{xf(x)} =   _¿   ~t T(m- l)n+ a+ i\   ¿, °1X     A
71 = 0"! n=0'î! lr = 0

where m is a constant.

Because term-by-term differentiation is justified, interchanging the order of

summation, assumed to be justified, we have

a,     tn J»   ■- J» v-TW 71

,j    .      n=0"- n-
J ^r("m_1)n+a+1{xö/(x)} = J arxb + ' 2 (b + r + (m-l)n + a+l)n

r = 0 7i = 0

I <&*< I (b+r+™+a)x»r.
r=o n=o\ n !

Making use of (2.2), in (2.3), we get

»     jn 00 Zl_|_7;y

Z.   ZriP(m-l)n+a+l{x f(x)¡ =   ¿   ürX     r —:      j-
n = 0 " ; r = o v     \rr(m — l)v

where v = xt(l +v)m, m being a constant. Hence, we have the operational generating

formula

oo    fn Yb(]   ¡,.\a + b + l

(2-4) 2á-f\ *&-W+*Wrt*» =    l-(m-l)v AxV+W'

where v = xt(l +v)m, tn being a constant.
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1972] POLYNOMIALS DEFINED BY GENERATING RELATIONS 75

It might be of interest to write the form of the result when m is negative. From

(2.1), by putting b = m—l, we have

(2.5) a+^+i = i+o+i)2(a;T)^
zi = i \ "    l / n

where v = t(l +v)m, m a constant. Taking a = 0 in (2.5), we get

(2.6) v=t(mnyi,
á?i\n-\J n

where v = t(l +v)m, m a constant. Similarly, for a— —2, (2.5) gives

n~ v ^ lmn-2\tn

(2-7) T+v = Mn-l)V

where v = t{\ +v)m, m a constant. Define

«•»--¿ras
(2.9) A(t, a, c, d) = (l-B(t, c)f + i + 1/(l+cB(t, c)).

In view of (2.6), (2.8) and (2.9), the relation (2.4) takes the form

oo     ^n

(2.10) 2 Z] T?m.1)n+a+1{x»f(x)} = xM(x/, a,m-l, b)f[x(l-B(xt, m-l))].
n = a n.

Again, making use of (2.7), it is easy to see that

(2.11) B(t,-c-l)= -B(-t,c)/(l-B(-t,c)),

(2.12) A(t, -a, -c-l, -d) = A(-t, a, c, d-l)

(2.13) = A(-t,a,c,d)/(l-B(-t,c)).

Therefore, by using (2.11) and (2.12) in (2.10), we have the operational formula

co    .n

(2 14")     ^ «Ï      <-m-1)n-a+'L'-x   Jix)>

= x-"A(-xt, a, m-2, b-l)f[x/(l-B(-xt, m-2))],

where m is a constant. Again, if we use (2.11) and (2.13) in (2.10), we get the form

co    .n

Z   ZA T- (m - l)n - a + l{x ~ "f(x)}
(2.15)        n-°nl

-bAi — xt, a, m — 2,_b)f\_x_
2) J [l-B(-xt,l-B(-xt,m-2) J \l-B(-xt,m-2)

The results in (2.14) and (2.15) are precisely the same.

3. Some characterizations.    Let f(x) admit a formal power series expansion

f(x) = Z?=0arxr, and, let

(3.1) H+1{/(x)} = «!x^0)/zio)0),
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76 H. B. MITTAL [June

where Ta+X = x(a+ 1 +xD), a being a constant and g(x) being a function of x

alone. We have the following characterization for/ia)(x):

Theorem 1. A necessary and sufficient condition that fia\x) be defined by the

generating relation

(3.2) | f^^-^{x)tn = [g(x)]-i .il^a][f[x(l+v)],
71 = 0 l —\jn~ i)v

where v=t(l+vY and m is a constant, is that it be given by (3.1).

Proof. The proof is simple and hence is omitted.

The generating function (3.2) can be rewritten in various other forms. As for

example, let

(3.3) G(x,y(t)) = [g(x)]-y[xy(t)],

where y(t) is some function independent of x. In view of (3.3), we can write (3.2) as

(3.4) 2 f^ + im-1)n\x)r =   UT"J        G[x, l+v],
71 = 0 ' \m l)V

where v = t(l+v)m, m being a constant.

Again, if F(x, t) is a function of x and t, and if

(3.5) G(x,t) = F(x,(t-\)ft),

then, from (3.4), we have

(3.6) J ßa+o»-!>»>(*),» =   Vjv>       Fix,-r-î—
v    !                    ¿?o w        l-(m-l)i;    \    l+v)

where m is a constant and v = t(l+v)m. In particular, putting zti=1 in (3.6), we

immediately get

(3.7) ff^(x)t- = (l-tYa-1F(x,t).
71=0

Again, putting m= — 1 in (3.6), we get

"l+(l+4/)1,2]a + 1c.r At™ n +fi +4/',i'2ia+1  r
(3.8)    g )g—"W = (1 +4f)-^[X +U yt}   j     F[x,

(l+(l+4i)1/2)2J

where (1 +4?)1'2 -> 1 as / ->■ 0. In view of Theorem 1, we have the result:

Theorem 2. A necessary and sufficient condition that Aa)(x) have a generating

function of the form (3.8) is that it be given by (3.7).

A result similar to Theorem 2 has been derived by Brown [5]. A number of

interesting special cases of Theorem 1 occur in the author's doctoral thesis [18]

(see also [17]).
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1972] POLYNOMIALS DEFINED BY GENERATING RELATIONS 77

Replacing a by — a and putting m= — b in (3.6), we get

(3-9) l^"^<1+wn,(^-ri^4''iTi>

and, in view of Theorem 1, we have the following result:

Theorem 3. A necessary and sufficient condition that fna)(x) have a generating

relation of the form

(3-10> lfy^^(x)r = f^^^x,^

where v(l +vf = t is that it be given by (3.7).

Recently Brown [7] also derived a result similar to that in Theorem 3.

4. A generalization of a result of Bailey. It is interesting to note that from the

operational formula (2.4) one can easily derive a result due to Bailey [3]. In fact,

putting f(x)= 1 in (2.4), we get

(4 u f   i"+t>+i)mn  r = ii+vy+b+1

néoia + b+l\m-mn\      l-im-iy'

where v = t(l +v)m, m being a positive integer now. Substituting the value of t in

terms of v, we get the result due to Bailey [3].

The operational formula (2.4) suggests an extension of (4.1). For, let/(x) be

defined by f(x) = 2^= o arxr. Using the definition of the operator, we have

(4.2) J ^7?m_m+0+1{x»/(x)} = |  | S%«+^+l)1)m
n = 0n- n = Or = On-        Ka  ' ° + '   >   'Am-l)zl

where m is a positive integer. Hence, from (2.4), we have

fa+b+r+l  a + b + r + 2 a + b + r + m - 1.

(4.3) Ía,*'„A-!
a + b + r+l a + b + r + 2 a + b + r + m-l.    (zn-l)"-1(l + »)'"

ZZZ — 1 Ttt — 1 ' ' ' " ' 272 — 1

(l+v)a + b + 1

l-{m-l)v
fMl+v)].

where m is a positive integer. If, in (4.3), we take/(x) = const, (i.e., a0¥=0 and ar = 0

for z-#0) then it reduces to the result of Bailey [3]. In fact giving different values to

the coefficients ar, we get different relations of the form (4.3).

5. Generalized Laguerre polynomials.    Earlier [13] we considered a generaliza-

tion of the Laguerre polynomial, defined by

(5.1) rrl\x) = n\-1x-azxp {pr(x)}Dn[xa+n exp {-pr(x)}],

where pr(x) is a polynomial in x of degree not exceeding r, a being a constant. In

another communication [14] we proved that, for m a constant,

(5.2) T£{xa -m +1 exp {-Pr(x)}} = n ! x"" m +1 + » exp {-Pr(x)}T%(x),
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78 H. B. MITTAL [June

which gives a class of operational representations for the set of polynomials

F^'(x). In particular, putting m = a+l in (5.2), we obtained the result

(5.3) 77\ 7exp {-pr(x)}} = n!*» exp {-pr(x)}T^(x).

The polynomial TT^(x), defined in (5.1), reduces to generalized Laguerre polynomial

of Chatterjea [9] for pr(x)=pxr and to the Laguerre polynomial for pr(x) = x.

Putting z3 = 0 and/(x) = exp {— pr(x)} in (2.4) and using (5.3) we immediately get

the following generating function for the generalized Laguerre polynomial

(5.4) J 7S*«-»»(x)/" = ,(1t")an„ exp *M*)} exPi-PrW + »)]>
7i=o l—(m—l)v

where v = t(l +v)m, m being a constant and pr(x) a polynomial in x of degree not

exceeding r.

Also, putting 6 = 0 and/(x) = exp {—p,(x)} in (2.15), we get the result

00

2 Fr(n-a-(m-1)n)(x)i'1
(5.5) n = 0

A(-t, a, m-2,0)        ,   / ¿. f
'- exp {pr(x)} exp 1 -p,

l-B(-t,m-2) l-B(-t,m-2)

where pr(x) is a polynomial in x of degree not exceeding r, mis a constant and

B(t, c) and A(t, a, c, d) are defined by (2.8) and (2.9) respectively.

In particular, putting pr(x) = x in (5.4), we get the following generating relation

for the Laguerre polynomial

00 (] -LiAa + l

(5.6) 2 I4° + <B,-1)n>WiB = ,    T      ñ  e~xv>
nt'o l-(m-l)v

where 7J = i(l-r-7j)m, m being a constant. Also, putting pr(x) = x in (5.5), we get the

result

(5.7) j, ft---**"w*> = r^) -P {r^j

where ^( —/) = /!( —/, <7, w, 0) and B( — t) = B(—t, m), m being a constant. For w a

positive integer, the results in (5.6) and (5.7) were initially proved by Brown [6].

Carlitz [8] showed that (5.6) and (5.7) hold for all m. A number of special cases of

(5.4) and (5.5) have been derived in [18].

6. Generalized Hermite polynomials. As generalizations of the Hermite poly-

nomial, we [18] considered a set of polynomials {Hn(x, a,pr(x))}, defined by the

«th derivative formula

(6.1) Hn(x, a,Pr(x)) = (- l)nx-a exp {pr(x)}D»[xa exp {-Pr(x)}],

pr(x) being a polynomial in x of degree not exceeding r. The polynomial in (6.1)

reduces to the polynomial considered by Gould and Hopper [11] for pr(x) =pxr

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1972] POLYNOMIALS DEFINED BY GENERATING RELATIONS 79

and to the Hermite polynomial for pr(x) = x2 and a = 0. Earlier [15] we proved that

(6.2) Hn(x, a, pr(x)) = (-1 fxm-•-•-» exp {pr(x)}T^{xa" " " m + * exp {-Pr(x)}},

where m is a constant. The relation in (6.2) gives a class of operational formulae

for the generalized Hermite polynomial. In particular, for m = a+ 1 — n, we get

(6.3) Hn(x, a,Pr(x)) = (- lyx-2" exp {pr(x)}T2+1-Aexp {-pr(x)}},

pr(x) being a polynomial in x of degree not exceeding r.

Putting z3 = 0 and/(x) = exp {— pr(x)} in (2.4) and using (6.3) we immediately get

the generating relation

CO       ̂ Zl (Y+lf)a + 1

(6-4)    2 Z\ H»(x> a + mn,pr(x)) = -—j-—¡-r- exp {pr(x)} exp {-pr[x(l +v)]},
11 = 0"! I — \m       l)V

where v= —(t/x)(l+v)m, m being a constant. Also, putting b = 0,

f(x) = exp{-/Mx)}

in (2.15), and using (6.3), we get the result

co    ¿n

2 —,Hn(x, -a-(m-2)n,pr(x))
(6.5)   n-°n-

A(t/x'a'm-2'0)cxp{pr(x)}cxp
1 -B(t/x, m-2)      r u-ivv -r ^    n|_, _ß(//jc> m_2)

where misa constant. Putting pr(x)—pxr in (6.4) and (6.5) one immediately gets

the corresponding results for the generalized Hermite polynomial considered by

Gould and Hopper [11]. A number of special cases of (6.4) have been given in

[16], [18].

7. Bessel polynomials.    Krall and Frink [12] considered a set of polynomials

{yn(a, b, x)}, defined by

(7.1) yA.aA-2, b, x) = b~nx~*e>>lxDn[x2n + ae-'"x].

The polynomial jn(a + 2, b, x) is known as the Bessel polynomial. Al-Salam [1], [2]

obtained a number of interesting results concerning Bessel polynomials. Earlier

[15], [18], in making a study of these polynomials, we obtained the following class

of operational representations for these polynomials

(7.2) Tn^xn-m + a + le-blx^  = xn + a + 1 - m£ - blxbny^a + 2> ^ ^

where m is a constant. As a particular case, for m — a+l+n, we obtained the

result

(7.3) TS+1 + n{e-blx} = bne-"lxyn(a + 2, b, x).

Putting 6 = 0 and f(x) = e~blx in (2.4), and using (7.3), we immediately get the

following generating relation for the Bessel polynomials

„' ^ b"tn     ' (l+v)a + 1 (    bv
O-4) >  —r- yn(a + (m-2)n + 2, b, x) = ,v exp^   ., ,   .

„4*0  n\ '*v     v        ' l-(m-l)t>        lx(l+*0
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80 H. B. MITTAL [June

where v = xt(l +v)m, m being a constant. Also, putting b = 0 and/(x) = exp { — b/x}

in (2.15), we get the interesting result

,_„     ^ b"tn .      A(-xt,a,m-2,0)        (b _.      t        _
(7"5)    Zo^*(-«-"»» + 2.¿.*)-   l-£(-x/,m-2) exp(-^(-x/,777-2)

where w is a constant, B(t, c) and ^(z1, a, c, d) being defined by (2.8) and (2.9)

respectively.

8. Jacobi polynomials.    The Jacobi polynomial may be defined by the Rodrigues

formula

(8.1) Pia-b\x) = (-O'O-*)   "(l+x)       Dnr/{ _*)» + «(! +*)» + *].

Earlier [18], we obtained the following class of operational representations for

Jacobi polynomials

(8.2) F^{xa + 1-m(l-x)n + 7 = n!(l-x)i,xa + 1 + 'l-mFicl>w(l-2x),

where m is a constant. In particular, we obtained

(8.3) TS+X{(1 -x)n + b} = n!(l -x)"xnP(na-b)(l-2x).

Putting b = 0 and /(x) = (l — xf in (2.4), and using (8.3), we get the following

generating function for the Jacobi polynomials

(1-X)(1+D)
(8.4) ¿QPn (x)t    -1_(m_1)^   2   )

where 2v = /( 1 + x)( 1 + v)m, m being a constant. Also, putting b = 0 and /(x) = ( 1 — x)b

in (2.15), and using (8.3), we get the result

Y   P(-a-(m-l)7i,0-71)7^.n

71 = 0

'1 +x\ -" A(-(t/x)(l +x), a, m-2, 0)m l-B(-t(l+x)/2,m-2)

i r
l

i r l-x        ii"

(8.5)

2 U--S(-f(l+*)/2,/w-2)

where m is a constant. Various special cases of (8.4) have been derived in [18]

9. Polynomials defined by generating relations.    Let

(9.1) 0(«) =   2 yn"\ YO ?* o,
71 = 0

be a formal power series in u. Consider the power series

(9.2) ¡//(cx'f) = 2 yncnxpntm,

71 = 0
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1972] POLYNOMIALS DEFINED BY GENERATING RELATIONS 81

where p and q are positive integers and c is a constant. Now putting f(x) = xp(cxpt")

and 6 = 0 in (2.4), we immediately get

co    .zi /]   i  „\a + l

l-j?m-1)n+a+1{xr(cx*n} = ;j¡m,_l)vñct"x"(i+vn

where i> = xf(l +v)m, m being a positive integer. By making use of the definition of

the operator Tk, we have

co    .n

I   ̂ 7?m-1)n+a+1{<Kcx''z*)}
zi = 0'

co      co    .n + qr

=   2.    Z,      „I     YrC /(m-l)zn- a -UV*" }
n = 0 r = 0     zz1

= 2  Í~ryrCriim-l)n + a+l+pr)nx"r + n

co   [Zl/Q] tn

= 2  2 z-»   nr^yrCripr + im-l)n-(m-l)qr + a+l)n_qrx^^-^
zt = 0 r = 0 \n~qr)i

(93) = y    (fl+1)»»   x"?"^] (-n),r(a+1 +m«)(p_mg)r (- iyyrc<x«-<>»

^(a+Umn-n    "!    r<4 (a + 1 + (w - l)rt)(p _(m _ 1)Q)r

(94) _   y    (fl+lU   x"r[^(-»U-«-ffl« + «)(ma_q_p)ryrc''x(''-^

^(a+Umn-zz    «!    r = 0 ( - Û - m«)(m„ _ p)r

wherep^mq in (9.3) andp^mq in (9.4), m,/> and # being positive integers. Also, let

(9.5) /.<»;*) =1 L~+n(mau7)lV~mQ)r i-VArCA*-*»
T = 0\a + \m— l)n)(v-mq+g)r

where m, n,p and ç are positive integers. Using (9.5) in (9.3) we immediately get the

relation

(9-6)    locfe^^")(c:x)^r = t3^*«w+w
where tz=xr(l +v)m, m being a positive integer and ¡/j(w) being a formal power series

in u. Hence, we conclude that

"Corresponding to every power series x/i(u), we can define a set of polynomials

{/Ä'(c;x)}, given by

y      (fl+l)mzi     f(a + l,m,(c. x) ^^ _    A+V)a-éicfxHl+V)P)

¿oia+l)mnJn-™   (C'X) »!       l-On-D»***^1''*

where a and c are constants, /? and «7 are positive integers and m is any integer and

v = xt(l+v)mA

It might be of interest to cite certain special cases of interest of the polynomials

fn.hVAc; x) introduced in (9.5). Let

(9.7) x/,(u) = 2F1(a',b';c';u).

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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With tfi(u) as defined in (9.7), it is easily seen that, forp = m=l, (9.5) becomes

fn,i.q(z\ X) = Q + 2rQ+x

,  ,,  —n  1 —n q — n— 1

l-a-n q-a-n-l       (q-l)"'1
c, a» —

zq^x1-"

q-l 9 *  *  • J 77-1      '

and, using (9.6), we have the result

^    Í7T (a)*Xn 9+2Fq+1

(9.8)

, ,,  — n  1 — « q — n—1
a', b

c ,a,

zqQx1-qq    i q

-a-n q-a-n-l,     (q-l)"'1

q-l   '•'       q-l       '

= (l-xt)-"2Fx(a',b';c';0^

where q is a positive integer, |xi| < 1, |xzz"5| < 1, \xzt"/(l —xt)\ < 1. If, however, we

put q= 1 in (9.8), then we get

(9-9)      XfaAl~K'£\s] = (i-0-%4',ft';C^).
which reduces to a result of Weisner [24] for a = a' and to a result of Rainville

[21, p. 59] for a = a' and z= 1.

Further, if in (9.8), we replace x by 2x and 2z by — 1/x, then, for q = 2, we get the

result

(9.10)

2 —¿T-ia)niF*
71=0 "!

a',/3', -#i/2,(l-n)/2;
c'j a, 1—a — n;

1/x2]

= (l-2xi)-a2JFi
0,

":-/2/(i-2xi)
^     7

which is a generalization of the polynomial Rn introduced by Bedient [4], In fact,

putting a = a' = ß, b' = y — ß and c' = y the polynomial in (9.10) immediately reduces

to the Bedient's polynomial Rn(ß, y ; x) and (9.10) to the relevant generating function

(Rainville [21, p. 297]).

Again, if in (9.6), we take

if(u) = TFs(ax, a2,...,ar; bx, b2,..., bs; u)

where r^s+l and put m = 2, p=l and c = z in (9.6), we get after some simple

manipulations

S. (a)2nx"t"

(9.11)

Z7i, Z72, . . -, Z7„

/3i,62, ■ ■ .,b„

— 77 1—7Z q—l—n l—a — n q—l—a — n

a '    q   '"

1 — a — 2z7

2q-l   •••■'■••'■•••        2q-l

q q-l    ' q-l       ' q"(q- ly-^zx1-"

2g-l-a-2n. {2q-lY^

a-Axt)M_%-_Ia"1 F\au-■'"''•_^111_1
U      «XI) [1+(1_ 4xty,2 J 'r'|61,...)6t;l+(l-4x/)1'aJ
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where q is a positive integer and r^s+l. The result in (9.11) is equivalent to a

result of Rainville [20] (his (4)) for q=l. Again, putting m=l, q=l in (9.6), it

reduces to

(9.12) 2   -Aa)nfn%1Mc;x)  = (l-t)-^
ex"

(1-0*.

where a and c are constants and p a positive integer and xf(u) is defined by (9.1).

Putting/» = 2 and c= — 4 in (9.12), we get

CO       ^Zl

(9-13) 2 Z\ /M-4; x)ia)n = (1 -/)" V
-4xi

L(i-0!

The polynomial/„'."¿ai - 4 ; x), in (9.13), has been considered (with a different

notation) by Rainville [21, p. 137] and reduces to the class of polynomials {/„(x)}

considered by Sister Celine Fasenmyer [10] for a=\. It may be remarked that by

taking m=\, q=l and

xp(u) = r,Fs(fli, a2,..., ar; bu b2,..., bs; u),

r^s+l, in (9.5), we get

a+n a+n+p—2

(9.14)   fttï(c;x) = p+rFq+!

fei.bs,

p-V'"'      P-I      '    ctx^-l)]"-1

a a+l a+p-l. />p

P    P P

wherep is a positive integer. (9.14) reduces to Sister Celine's polynomial for/? = 2,

c= -4 and a=l (Rainville [21, p. 290]).

Lastly, putting m = 2, q= 1 and c = z in (9.6), we immediately get

(9.15)
zi = 0  V"2n

= (1-4Í)"1'2
l+(l-4i)1/2 *\

2*xp-1zt

[(l+(l-401,2]i

The polynomial/ifp-^r; x) in (9.15) is a generalization of the pseudo-Laguerre

polynomial considered by Shively [22]. In fact, taking xp(u) in (9.15) to be a general-

ized hypergeometric series and putting/? = 2 and z— — 1 in (9.15), the polynomial

reduces to the pseudo-Laguerre polynomial of Shively and the expression in (9.15)

to the relevant generating relation (Rainville [21, p. 299]).

As is obvious, a number of other interesting special cases can be derived by giving

particular values to the parameters in (9.6).

We shall, however, discuss some of the other applications of the operational

formula (2.4) and derive other operational generating relations of the type (2.4) in

subsequent communications.

My gratitude is due to Professor R. P. Agarwal for his kind guidance during the

preparation of this paper.
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