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The general m^ -order linear recurrence relation can be written as 

m 

^=Z"A-i> forw>2, (1) 
7 = 1 

where the a/s are any complex numbers, with am ̂  0. If suitable initial values i?_(w_2), i?_(^_3), 

..., i?o, Rx are specified, the sequence {Rn} is uniquely determined for all integral n. 

The auxiliary equation of (1) is 
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Let au a2,..., ocm be the m roots, assumed distinct, of (2) and define a . by 
m 

^j=U(
a
j-

a
i)' 

;=1 

Then the fundamental {Un} and primordial {Vn} sequences that satisfy (1) are given by the 

following Binet formulas [1]. For any integer n, we have 

m a
n+m~2 m 

U„=Y^=— ^d Vn=Xa% (
3
) 

y=i
 a
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so that C/_(W_2) ~ ̂ -(/w-3) = • • • = f/_i = U0 = 0 and Ux = 1. Also Vx - ax and 

Vt =alVj_l + --+ai_lV1+iaj, for \<i<m. (4) 

In this paper we answer a question of Jarden, who in his book [2] (p. 88), see also [1], asked 

for the value of U2n-UnVrl for the m^ -order linear recurrence relation. For example, when 

m = 2, where ax = a2 - 1, {U„} and {Vn} are the Fibonacci and Lucas sequences, respectively. In 

this case, we have 

u2„-unv„ = o. 

For the general third- and fourth-order linear recurrence relations we have, respectively, 

U2„-Ujr„=a»3U_„ and U2n-U„V„ =(-!)" a"4{U_nV_n-U_2n}. 

For the general m^ -order linear recurrence relation, we have the following, very appealing 

theorem. 
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Theorem: For any integer n, and m > 2, we have 
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where am is the constant term in the auxiliary equation and the inner summation is taken over all 

partitions of i = lkx + 2k2 + • • • + ikf so that k} is the number of parts of size j . Here, k = kx + k2 + 

"- + ki is the total number of parts in the partition. The coefficient of f/_(7W_2_/)„, inside the 

second summation sign, is taken to be 1 when / = 0. 

In order to prove the above theorem, we use the following lemma. 

Lemma: Using the above notation, we have 
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Proof of Lemma: First, we note that 
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Therefore, we need to evaluate the function, 

/(x) = I ^ * ' . 
i=l

 l 

Using the fact that {Vn} satisfies the recurrence relation (1), with the help of (4) it is not hard to 

see that the generating function g(x) = E^=0 V_nx
n
, for V_n, is given by 
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Letting 

h(x) = l + ̂ ^x+^^x
2
 + '-+^x

m
-

1
- — x

m
, (7) 

from (6) and (7) we have 
, x h'(x) 

g(x) = m--±+x. (8) 
h(x) 

Now, since V0=m, from (8) we have 

f, 'l_m-g(x)_h'(x) 
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Integrating, and using h(0) = 1 to eliminate the constant of integration, we have 

Therefore, 

So, from (5) and (9) we have 

exp|-£^*"UA(*). (9) 

\k 

Using the expression for h(x) given by (7), we can equate the coefficients of x in (10) to complete 

the proof of the lemma. D 

Proof of Theorem: From the Binet formulas (3) for U„ and Vn, we have 
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where the summation is taken over all \<i,j<m, such that i&j. Therefore, to prove the theo-

rem, we need to show that the right-hand side of the theorem is given by the right-hand side of 

(11). First, we require some new notation. The at in (2) are given by 

a, =( - l )
, + 1

Za 1 a 2 ...ai9 

where ai are the roots of (2) and the summation is taken over all possible distinct products of i 

distinct a .'s. Now define at{n) and ct(n) by 

ai(n) = (-l)
M

Ila'lal..:a? and c,(«) = 2 > ^ 2 ... a,", 

so that a^ri) = (-l)
/+1

c/(w). Now, by the lemma, for any integer n, we have 

\k 

T
 (

 *\ k ^ ^ 4 . . . ^ = - ^ ^ for0<i<(m-l), 

1 

^ l ^ ! . . . * , ! ^ .../*< - - - am(n) 

for i = m. 

Using (12), we can rewrite the theorem as 

U2„ -UnVn = {-\r+^a»m § ^ g > C/_(ffl-2-0„- (13) 
/=0
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<=(-l)C"
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we have, from (13) and (14), 

U2„-U„V„ = (-l)
m+1

S(-l)'cm_,(«)C/_(M_2_0n. 

By the Binet formula, 
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which, when inserted into (15), gives 
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So if we let x = -l/ a" in (17), for anyy = 1, 2, ..., w, we have 
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From (18), we easily obtain 
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Now we note that cQ(n) = 1 and c^ri) = SJli a". Therefore, using (19) in (16), we 
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Which agrees with the right-hand side of (11). Hence, the theorem is proved. • 
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