The Fibonacci Quarterly 1995 (33,2): 142-146

ON THE GENERAL LINEAR RECURRENCE RELATION

Ray Melham
School of Mathematical Sciences, University of Technology, Sydney
Broadway N.S.W., 2007, Australia
\section*{Derek Jennings}
Department of Mathematics, University of Southampton, Hampshire, S09 5NH, England
(Submitted August 1993)

The general $m^{\text {dh }}$-order linear recurrence relation can be written as

$$
\begin{equation*}
R_{n}=\sum_{i=1}^{m} a_{i} R_{n-i}, \quad \text { for } m \geq 2 \tag{1}
\end{equation*}
$$

where the a_{i} 's are any complex numbers, with $a_{m} \neq 0$. If suitable initial values $R_{-(m-2)}, R_{-(m-3)}$, \ldots, R_{0}, R_{1} are specified, the sequence $\left\{R_{n}\right\}$ is uniquely determined for all integral n.

The auxiliary equation of (1) is

$$
\begin{equation*}
x^{m}=\sum_{i=1}^{m} a_{i} x^{m-i} . \tag{2}
\end{equation*}
$$

Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ be the m roots, assumed distinct, of (2) and define $\bar{\alpha}_{j}$ by

$$
\bar{\alpha}_{j}=\prod_{\substack{i=1 \\ i \neq j}}^{m}\left(\alpha_{j}-\alpha_{i}\right) .
$$

Then the fundamental $\left\{U_{n}\right\}$ and primordial $\left\{V_{n}\right\}$ sequences that satisfy (1) are given by the following Binet formulas [1]. For any integer n, we have

$$
\begin{equation*}
U_{n}=\sum_{j=1}^{m} \frac{\alpha_{j}^{n+m-2}}{\bar{\alpha}_{j}} \text { and } V_{n}=\sum_{j=1}^{m} \alpha_{j}^{n}, \tag{3}
\end{equation*}
$$

so that $U_{-(m-2)}=U_{-(m-3)}=\cdots=U_{-1}=U_{0}=0$ and $U_{1}=1$. Also $V_{1}=a_{1}$ and

$$
\begin{equation*}
V_{i}=a_{1} V_{i-1}+\cdots+a_{i-1} V_{1}+i a_{i}, \text { for } 1 \leq i \leq m . \tag{4}
\end{equation*}
$$

In this paper we answer a question of Jarden, who in his book [2] (p. 88), see also [1], asked for the value of $U_{2 n}-U_{n} V_{n}$ for the $m^{\text {th }}$-order linear recurrence relation. For example, when $m=2$, where $a_{1}=a_{2}=1,\left\{U_{n}\right\}$ and $\left\{V_{n}\right\}$ are the Fibonacci and Lucas sequences, respectively. In this case, we have

$$
U_{2 n}-U_{n} V_{n}=0 .
$$

For the general third- and fourth-order linear recurrence relations we have, respectively,

$$
U_{2 n}-U_{n} V_{n}=a_{3}^{n} U_{-n} \text { and } U_{2 n}-U_{n} V_{n}=(-1)^{n} a_{4}^{n}\left\{U_{-n} V_{-n}-U_{-2 n}\right\}
$$

For the general $m^{\text {th }}$-order linear recurrence relation, we have the following, very appealing theorem.

Theorem: For any integer n, and $m \geq 2$, we have

$$
U_{2 n}-U_{n} V_{n}=(-1)^{(m+1)(n+1)} a_{m}^{n} \sum_{i=0}^{m-2} \sum_{\pi(i)} \frac{(-1)^{k}}{k_{1}!k_{2}!\ldots k_{i}!1^{k_{1}} 2^{k_{2}} \ldots i^{k_{i}}} V_{-n}^{k_{1}} V_{-2 n}^{k_{2}} \ldots V_{-i n}^{k_{i}} U_{-(m-2-i) n}
$$

where a_{m} is the constant term in the auxiliary equation and the inner summation is taken over all partitions of $i=1 k_{1}+2 k_{2}+\cdots+i k_{i}$ so that k_{j} is the number of parts of size j. Here, $k=k_{1}+k_{2}+$ $\cdots+k_{i}$ is the total number of parts in the partition. The coefficient of $U_{-(m-2-i) n}$, inside the second summation sign, is taken to be 1 when $i=0$.

In order to prove the above theorem, we use the following lemma.
Lemma: Using the above notation, we have

$$
\begin{aligned}
\sum_{\pi(i)} \frac{(-1)^{k}}{k_{1}!k_{2}!\ldots k_{i}!1^{k_{1}} 2^{k_{2}} \ldots i^{k_{i}}} V_{-1}^{k_{1}} V_{-2}^{k_{2}} \ldots V_{-i}^{k_{i}} & =\frac{a_{m-i}}{a_{m}} \quad \text { for } 0 \leq i \leq(m-1) \\
& =-\frac{1}{a_{m}} \quad \text { for } i=m
\end{aligned}
$$

Proof of Lemma: First, we note that

$$
\begin{align*}
& \exp \left\{-\left(\frac{V_{-1}}{1} x+\frac{V_{-2}}{2} x^{2}+\frac{V_{-3}}{3} x^{3}+\cdots\right)\right\} \\
& =\sum_{i=0}^{\infty} x^{i} \sum_{\pi(i)} \frac{(-1)^{k}}{k_{1}!k_{2}!\ldots k_{i}!1^{k_{1}} 2^{k_{2}} \ldots i^{k_{i}}} V_{-1}^{k_{1}} V_{-2}^{k_{2}} \ldots V_{-i}^{k_{i}} \tag{5}
\end{align*}
$$

Therefore, we need to evaluate the function,

$$
f(x)=\sum_{i=1}^{\infty} \frac{V_{-i}}{i} x^{i}
$$

Using the fact that $\left\{V_{n}\right\}$ satisfies the recurrence relation (1), with the help of (4) it is not hard to see that the generating function $g(x)=\sum_{n=0}^{\infty} V_{-n} x^{n}$, for V_{-n}, is given by

$$
\begin{equation*}
g(x)=\frac{m a_{m}+(m-1) a_{m-1} x+(m-2) a_{m-2} x^{2}+\cdots+2 a_{2} x^{m-2}+a_{1} x^{m-1}}{a_{m}+a_{m-1} x+\cdots+a_{1} x^{m-1}-x^{m}} \tag{6}
\end{equation*}
$$

Letting

$$
\begin{equation*}
h(x)=1+\frac{a_{m-1}}{a_{m}} x+\frac{a_{m-2}}{a_{m}} x^{2}+\cdots+\frac{a_{1}}{a_{m}} x^{m-1}-\frac{1}{a_{m}} x^{m} \tag{7}
\end{equation*}
$$

from (6) and (7) we have

$$
\begin{equation*}
g(x)=m-\frac{h^{\prime}(x)}{h(x)} x \tag{8}
\end{equation*}
$$

Now, since $V_{0}=m$, from (8) we have

$$
-\sum_{n=1}^{\infty} V_{-n} x^{n-1}=\frac{m-g(x)}{x}=\frac{h^{\prime}(x)}{h(x)}
$$

Integrating, and using $h(0)=1$ to eliminate the constant of integration, we have

$$
-\sum_{n=1}^{\infty} \frac{V_{-n}}{n} x^{n}=\log h(x)
$$

Therefore,

$$
\begin{equation*}
\exp \left\{-\sum_{n=1}^{\infty} \frac{V_{-n}}{n} x^{n}\right\}=h(x) . \tag{9}
\end{equation*}
$$

So, from (5) and (9) we have

$$
\begin{equation*}
h(x)=\sum_{i=0}^{\infty} x^{i} \sum \frac{(-1)^{k}}{k_{1}!k_{2}!\ldots k_{i}!1^{k_{1}} 2^{k_{2}} \ldots i^{k_{i}}} V_{-1}^{k_{1}} V_{-2}^{k_{2}} \ldots V_{-i}^{k_{i}} . \tag{10}
\end{equation*}
$$

Using the expression for $h(x)$ given by (7), we can equate the coefficients of x in (10) to complete the proof of the lemma.

Proof of Theorem: From the Binet formulas (3) for U_{n} and V_{n}, we have

$$
\begin{align*}
U_{2 n}-U_{n} V_{n}= & \left(\frac{\alpha_{1}^{2 n+m-2}}{\bar{\alpha}_{1}}+\frac{\alpha_{2}^{2 n+m-2}}{\bar{\alpha}_{2}}+\cdots+\frac{\alpha_{m}^{2 n+m-2}}{\bar{\alpha}_{m}}\right) \\
& -\left(\frac{\alpha_{1}^{n+m-2}}{\bar{\alpha}_{1}}+\frac{\alpha_{2}^{n+m-2}}{\bar{\alpha}_{2}}+\cdots+\frac{\alpha_{m}^{n+m-2}}{\bar{\alpha}_{m}}\right)\left(\alpha_{1}^{n}+\alpha_{2}^{n}+\cdots+\alpha_{m}^{n}\right) \tag{11}\\
= & -\sum_{i \neq j} \frac{\alpha_{j}^{n+m-2} \alpha_{i}^{n}}{\bar{\alpha}_{j}},
\end{align*}
$$

where the summation is taken over all $1 \leq i, j \leq m$, such that $i \neq j$. Therefore, to prove the theorem, we need to show that the right-hand side of the theorem is given by the right-hand side of (11). First, we require some new notation. The a_{i} in (2) are given by

$$
a_{i}=(-1)^{i+1} \sum \alpha_{1} \alpha_{2} \ldots \alpha_{i}
$$

where α_{i} are the roots of (2) and the summation is taken over all possible distinct products of i distinct α_{j} 's. Now define $a_{i}(n)$ and $c_{i}(n)$ by

$$
a_{i}(n)=(-1)^{i+1} \sum \alpha_{1}^{n} \alpha_{2}^{n} \ldots \alpha_{i}^{n} \text { and } c_{i}(n)=\sum \alpha_{1}^{n} \alpha_{2}^{n} \ldots \alpha_{i}^{n},
$$

so that $a_{i}(n)=(-1)^{i+1} c_{i}(n)$. Now, by the lemma, for any integer n, we have

$$
\begin{align*}
\sum_{\pi(i)} \frac{(-1)^{k}}{k_{1}!k_{2}!\ldots k_{i}!1^{k_{1}} 2^{k_{2}} \ldots i^{k_{i}}} V_{-n}^{k_{1}} V_{-2 n}^{k_{2}} \ldots V_{-i n}^{k_{i}} & =\frac{a_{m-i}(n)}{a_{m}(n)} \quad \text { for } 0 \leq \mathrm{i} \leq(\mathrm{m}-1), \tag{12}\\
& =-\frac{1}{a_{m}(n)} \quad \text { for } i=m .
\end{align*}
$$

Using (12), we can rewrite the theorem as

$$
\begin{equation*}
U_{2 n}-U_{n} V_{n}=(-1)^{(m+1)(n+1)} a_{m}^{n} \sum_{i=0}^{m-2} \frac{a_{m-i}(n)}{a_{m}(n)} U_{-(m-2-i) n} . \tag{13}
\end{equation*}
$$

Since

$$
\begin{align*}
a_{m}^{n} & =(-1)^{(m+1) n} c_{m}(n), \\
a_{m-i}(n) & =(-1)^{m+i+1} c_{m-i}(n), \tag{14}
\end{align*}
$$

and

$$
a_{m}(n)=(-1)^{m+1} c_{m}(n),
$$

we have, from (13) and (14),

$$
\begin{equation*}
U_{2 n}-U_{n} V_{n}=(-1)^{m+1} \sum_{i=0}^{m-2}(-1)^{i} c_{m-i}(n) U_{-(m-2-i) n} . \tag{15}
\end{equation*}
$$

By the Binet formula,

$$
U_{-(m-2-i) n}=\sum_{j=1}^{m} \frac{\alpha_{j}^{i n-m n+2 n+m-2}}{\bar{\alpha}_{j}},
$$

which, when inserted into (15), gives

$$
\begin{align*}
U_{2 n}-U_{n} V_{n} & =(-1)^{m+1} \sum_{i=0}^{m-2}(-1)^{i} c_{m-i}(n) \sum_{j=1}^{m} \frac{\alpha_{j}^{i n-m n+2 n+m-2}}{\bar{\alpha}_{j}} \tag{16}\\
& =(-1)^{m+1} \sum_{j=1}^{m} \frac{\alpha_{j}^{2 n+m-2}}{\bar{\alpha}_{j}} \sum_{i=0}^{m-2}(-1)^{i} c_{m-i}(n) \alpha_{j}^{(i-m) n} .
\end{align*}
$$

Now we note that

$$
\begin{align*}
\left(x+\frac{1}{\alpha_{1}^{n}}\right)\left(x+\frac{1}{\alpha_{2}^{n}}\right) \cdots\left(x+\frac{1}{\alpha_{m}^{n}}\right) & =\sum_{i=0}^{m} \frac{c_{i}(n)}{c_{m}(n)} x^{i} \tag{17}\\
& =\sum_{i=0}^{m} \frac{c_{m-i}(n)}{c_{m}(n)} x^{m-i}
\end{align*}
$$

So if we let $x=-1 / \alpha_{j}^{n}$ in (17), for any $j=1,2, \ldots, m$, we have

$$
\begin{equation*}
\sum_{i=0}^{m}(-1)^{i} c_{m-i}(n) \alpha_{j}^{(i-m) n}=0 \tag{18}
\end{equation*}
$$

From (18), we easily obtain

$$
\begin{equation*}
(-1)^{m+1} \sum_{i=0}^{m-2}(-1)^{i} c_{m-i}(n) \alpha_{j}^{(i-m) n}=-c_{1}(n) \alpha_{j}^{-n}+c_{0}(n) . \tag{19}
\end{equation*}
$$

Now we note that $c_{0}(n)=1$ and $c_{1}(n)=\sum_{i=1}^{m} \alpha_{i}^{n}$. Therefore, using (19) in (16), we have

$$
U_{2 n}-U_{n} V_{n}=\sum_{j=1}^{m} \frac{\alpha_{j}^{2 n+m-2}}{\bar{\alpha}_{j}}\left\{-\sum_{i=1}^{m} \alpha_{i}^{n} \alpha_{j}^{-n}+1\right\}=-\sum_{j=1}^{m} \sum_{i=1}^{m} \frac{\alpha_{j}^{n+m-2} \alpha_{i}^{n}}{\bar{\alpha}_{j}}+\sum_{j=1}^{m} \frac{\alpha_{j}^{2 n+m-2}}{\bar{\alpha}_{j}}=-\sum_{i \neq j} \frac{\alpha_{j}^{n+m-2} \alpha_{i}^{n}}{\bar{\alpha}_{j}} .
$$

Which agrees with the right-hand side of (11). Hence, the theorem is proved.

REFERENCES

1. A. G. Shannon. "Some Properties of a Fundamental Sequence of Arbitrary Order." The Fibonacci Quarterly 12.4 (1974):327-35.
2. Dov Jarden. Recurring Sequences: A Collection of Papers. 2nd ed. Jerusalem: Riveon Lematika, 1969.

AMS Classification Numbers: 11B37, 11B39

```
**&%
```


SEVENTH INTERNATIONAL CONFERENCE ON FIBONACCI NUMBERS AND THEIR APPLICATIONS

July 14-July 19, 1996
INSTITUT FÜR MATHEMATIK
TECHNISCHE UNIVERSITÄT GRAZ
STEYRERGASSE 30
A-8010 GRAZ, AUSTRIA

LOCAL COMMITTEE
Robert Tichy, Chairman
Helmut Prodinger, Co-chairman
Peter Grabner
Peter Kirschenhofer

INTERNATIONAL COMMITTEE

A. F. Horadam (Australia), Co-chair M. Johnson (U.S.A.)
A. N. Philippou (Cyprus), Co-chair P. Kiss (Hungary)
G. E. Bergum (U.S.A.)
P. Filipponi (Italy)
H. Harborth (Germany)
Y. Horibe (Japan)
G. M. Phillips (Scotland)
J. Turner (New Zealand)
M. E. Waddill (U.S.A.)

LOCAL INFORMATION

For information on local housing, food, tours, etc., please contact:

> PROFESSOR DR. ROBERT F. TICHY
> INSTITUT FUR MATHEMATIK TECHNISCHE UNIVERSITÄT GRAZ
> STEYRERGASSE 30
> A-8010 GRAZ, AUSTRIA

Call for Papers

The SEVENTH INTERNATIONAL CONFERENCE ON FIBONACCI NUMBERS AND THEIR APPLICATIONS will take place at Technische Universität Graz from July 14 to July 19, 1996. This conference will be sponsored jointly by the Fibonacci Association and Technische Universirär Graz.

Papers on all branches of mathematics and science related to the Fibonacci numbers as well as recurrences and their generalizations are welcome. Abstracts and manuscripts should be sent in duplicate following the guidelines for submission of arricles found on the inside front cover of any recent issue of The Fibonacci Quarterly to:

PROFESSOR GERALD E. BERGUM	PROFESSOR F. T. HOWARD
THE FIBONACCI QUARTERLY	DEPARTMENT OF MATH. \& COMP. SCI.
COMPUTER SCIENCE DEPARTMENT	or
BOX 2201	
SOUTH	WAKE FOREST UNIVERSITY
BROOKINGS, SD 57007-1596	WINSTON-SALEM, NC 27109

