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1. Introduction

In this paper we obtain recurrence relations for a large class of polynomial sequences. In fact, we
get this for any family of generalized Appell polynomials [2]. Our main tool to reach our goal is the so
called Riordan group [5,12,16,17].

This work is a natural consequence of our previous papers [8-10], and then it can be also considered
as a consequence of the well-known Banach'’s Fixed Point Theorem. We have also to say that some
papers related to this one have recently appeared in the literature [4,18] but our approach is different
from that in those papers because, our main result herein is the discovering of a general recurrence
relation for sequences of polynomials associated, naturally, to Riordan matrices. In particular we get a
characterization of Riordan arrays by rows.

The Riordan arrays are usually described by the generating function of their columns or, equivalently,
by the induced action on any power series. In fact a Riordan array can be defined as an infinite matrix
where the k-column is just the kth term of a geometric progression in KK[[x]] with rate a power series
of order one. To get a proper Riordan array, eventually an element of the Riordan group, [16], we also
impose that the first term in the progression is a power series of order zero.

In[10, Section 3], the authors studied polynomial families associated to some particular Riordan ar-
rays which appeared in an iterative process to calculate the reciprocal of a quadratic polynomial. There,
we interpreted some products of Riordan matrices as changes of variables in the associated families of
polynomials. This interpretation will be exploited herein. Earlier in [9] the authors approached Pascal
triangle by a dynamical point of view using the Banach Fixed Point Theorem. This approach is suitable
to construct any Riordan array. From this point of view it seems that our T(f|g) notation for a Riordan
array is adequate, wheref = >, 5 o fux", 8 = Y. > 0 8nX" withgo # 0.The notation T(f|g) represents

the Riordan array of first term é and rate g. So the Pascal triangle P is just T(1|1 — x). The action on a

power series s is given by T(f|g) (s(x)) = £ ¢(_X_) The mixture of the role of the parameters on the
g \g®)

induced action allowed us to get the following algorithm of construction for T(f|g) which is essential
to get the results in this paper:

Algorithm 1. Construction of T(f|g) f = X p>0fux", & = Xn>08nx" With go # 0, T(flg) = (du))
withn,j>0,L = ¥, dux" and dno = d,

fo
fi | doo doq do2 dos dog
fa | dio din diz di3 dig
fi | doo da1 day da3 dag

fot1 | dno  dp1 dn2  dp3 dpg

with d,j = 01ifj > n and the following rules for n > j:

Ifj >0
&1 ) g dn_1j-1
dnj = —dn_1j — “dn_pj - — —"dOJ 4 =W
8o 80 8o 80
andifj =0
&1 53 & fi
dno = ——dn—10 — —dn_20- - — —doo + —.
8o 8o go £o

Note that dgo = g—‘;. Then, in the 0-column are just the coefficients of g, ie.dpo = dp.



1424 A. Luzén, M.A. Morén / Linear Algebra and its Applications 433 (2010) 1422-1446

The main recurrence relation obtained in this paper is
J:5) g fi
)pn_loo — P2 (®) - = Zpo(0) + ey
£o £o

Palx) = (" —& .

which is closely related to the algorithm. The coefficients of the polynomials (p,(x)) are, in fact, the
entries in the rows of the Riordan matrix T(f|g).

Since our T(f|g) notation for Riordan arrays is not the more usual one, it is convenient to translate the
above recurrence to the notation (d(x), h(x)) with h(0) = 0 and h’(0) s 0. Another slightly different

notation is used in [5,17]. Since the rule of conversionis (d(x), h(x)) = T (%‘ %) then the coefficients

(fn) and (g,) in (1) are defined by % =Y n>o0fnX"and % = Y n>08nX". At the beginning of Section 3,
for the reader convenience, we display some useful formulas relating our notation with the classical
one.

The matrix notation used above in the algorithm will appear often along this work so it deserves
some explanation: really the matrix T(f|g) is what appears to the right of the vertical line. The addi-
tional column to the left of the line, whose elements are just the coefficients of the series f, is needed for
the construction of the 0-column of the matrix T(f|g). Observe that if we consider the whole matrix, ig-
noring the line, we get the Riordan matrix T (fg|g). This explanation is to avoid repetitions along the text.

The paper is organized into four sections. In Section 2 we take the Pascal triangle as our first
motivation. This example is given here to explain and to motivate the interpretation of Riordan ma-
trices by rows. In fact, the known recurrence for combinatorial numbers is the key to pass from the
columns interpretation to the rows interpretation and viceversa. In this sense our Algorithm 1 is a huge

generalization of the rule (Z + 1) = (Z) + (Z . 1). Later, we choose some classical sequences of

polynomials: Fibonacci, Pell and Morgan-Voyce polynomials to point out how the structure of Riordan
matrix is intrinsically in the known recurrence relations for these families. So we are going to associate
to any of these classical families a Riordan matrix which determines completely the sequence of
polynomials. Using the product in the Riordan group, i. e. the matrix product, we easily recover some
known relationships between them.

In Section 3, we get our main recurrence relation (1) as a direct consequence of Algorithm 1. The
theoretical framework so constructed extends strongly and explains easily the examples in Section 2
and some relationships between these families. We also recover the generating function of a family of
polynomials by means of the action of T(f|g) on a power series. Later on, we obtain the usual umbral
composition of polynomial families simply as a translation of the matrix product in the Riordan group.
At the end of this section we add a table with some classical families of polynomials and their associated
Riordan arrays in the classical and our notation.

In Section 4, we obtain some general recurrence relations for any family of generalized Appell
polynomials, as a consequence of our main recurrence (1), and then of Algorithm 1. In this way we get
into the so called generalized Umbral Calculus, see [13,14]. We use the Hadamard product of series to
pass from the Riordan framework to the more general framework of generalized Appell polynomials
because the sequences of Riordan type are those generalized Appell sequences related to the geometric
series 1lTx which is the neutral element for the Hadamard product. We also relate in this section the
Riordan group with the so called delta-operators introduced by Rota et al. [15].

In this paper [ always represents a field of characteristic zero and N is the set of natural numbers
including 0.

2. Some classical examples as motivation
The best known description of Pascal triangle is by rows. With the next first simple classical example
we point out how to pass from the column-description to the row-description. To do this for any Riordan

array is our main aim.

Example 2 (Pascal’s triangle). The starting point of the construction of Riordan arrays is the Pascal trian-
gle. From this point of view, Pascal triangle (by columns) are the terms of the geometric progression, in
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1 x K
T—x' (=2’ T3’ """
X

o ) Of course it is not the way to introduce Pascal triangle, or Tartaglia triangle, for the first
time to students, because in particular it requires some understanding of the abstraction of infinity and
order both on the number of columns and on the elements in any column. On the contrary, the non-null
elements in any row of Pascal triangle form a finite set of data. Usually Pascal triangle is introduced
by rows as the coefficients of the sequence of polynomials p,(x) = (1 + x)". The Newton formula

K[[x]], of first term 11? and rate 1XTx So Pascal triangle P is, by columns, P = (

14+x"= ZZ:O (Z) x¥ allows us to say that the nth row of Pascal triangle is, by increasing order of

power of x, (3) , (’;) , <g) e, (Z).Using algebra, (1 4+ x)™*1 = (x + 1)(1 4+ x)", or combinatorics,

n+1>

. n n
counting subsets, we see that (k

= (k) + (k _ 1). This means that the Pascal triangle P =
(Pnk)nken follows the rule: p,o = 1 for every n € N, because (g) = 1and ppt+1k = Pnk + Pnk—1

. . - . n n
for 1 <k < n. Using for example the combinatorial interpretation of ( ) we see at once that ( ) =0

k k

if kK > n. What is the same, the Pascal triangle (ppi)nken is totally determined by the following
recurrence relation: If we consider p, (x) = Y_}_, pn,kxk thenpo(x) = 1and pp1(x) = (x + 1)pa(x),
Vn > 0. It is obvious because the above relations means that p, (x) = (1 + x)".

Example 3 (The Fibonacci polynomials, The Pell polynomials, The Morgan-Voyce polynomials). The Fi-
bonacci polynomials are the polynomials defined by, Fo(x) = 1, F;(x) = x and F,(x) = xF,—1(x) +
Fy—2(x) for n>2. If we consider the sequences (fy)nen, (8n)nen given by go =1, g1 =0, g =
—1, g, =0, Vn>3and fy = 1, f, = 0Vn>1, we can unify the recurrence relation with the initial
conditions because if we write

Fo(x) = ( )Fn_ﬂx) B W — = TR+
8o 8o

8o

X—81

for n>0 we obtain both: the recurrence relation and the initial conditions. Note that the above
recurrence for Fibonacci polynomials fits the main recurrence relation (1).

If we consider the Riordan matrix, T(f|g) forf = 1andg = 1 — x%, T(1]1 — x?) = (dnk) then the
polynomials associated to T(1|1 — x?) are just the Fibonacci polynomials. Using Algorithm 1, the rule
of construction is: dyx = dp—2k + dn—1k—1, fork > 0,dpo = dy—20 forn>2,dpp = 1and dyp = 0.
The few first rows are:

1
0|1
00 1
o0(1 0 1
0|0 2 0 1
o(1 0 3 0 1

Consequently the first associated polynomials (look at the rows of the matrix) are Fy(x) = 1,
Fi(x) = x,F2(x) = 1+ %2, F3(x) = 2x + x3, F4(x) = 1 4 3x2 + x*, ... which are the Fibonacci poly-
nomials. Using the induced action of T(1|1 — x*) we get the generating function of this sequence

ZFn(t)x”:T<1|1—x2)<]1 ):1 !

— —x2 —xt
150 xt X xt

The Pell polynomials are related to the Fibonacci polynomials. Consider Py(x) = 1 and P; (x) = 2x

with the polynomial recurrence P, (x) = 2xP;_1(x) + Py_2(x).So0 X;Ogl = 2x, _g—‘iz = 1theng(x) = 1
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1|11 1

— %xz and f (x) = % Hence the involved Riordan matrix is T (i‘ 3~ §x2> with the rule of construc-

tion: dpx = dp—2k + 2dn—1k—1, k > 0 and with generating function

Zaor=1(31- 1) ()=
X =T| = |z — =X = .
" 2012 2 1—xt 1—x2 — 2xt

n=0

We note that:

(ran - ([3) = 1(2f2-b¢).

So, following Proposition 14 in [10], we get that P,,(x) = F,(2x) which is a known relation between
Pell and Fibonacci polynomials.

Another related families of polynomials that we can treat using these techniques are the
Morgan-Voyce families of polynomials. Consider now the Riordan matrices T(1|(1 — x)?) and
T(1 — x|(1 — x)?). These triangles have the same rule of construction dnk = 2dn—1k — dn—2k
+ dy—1k—1 but different initial conditions. In fact they are:

1 1
011 -1 1|1
0|2 1 0 1 1
03 4 1 0 1 3 1
0|4 10 6 1 0 1 6 5 1
where
Bo(x) =1 bo(x) =1
Bi(x) =24+x bi(x) =1+4+x
By(x) = 3 + 4x + x* by(x) = 1+ 3x + x?
B3(x) = 4 + 10x + 6x% + x° b3(x) =1+ 6x 4+ 5x> +x3
In general
Bn(x) = (x + 2)By—1(x) — Bp—2(%) bn(x) = (x + 2)bp—1(x) — bp—2(x)
with generating functions:
> oK =110 -0 () ]
o n{tx X 1 —xt 1—Q24+t)x+x2
5 bu(Ox" =10 = x1(1 = %) () L
=" * T o) T e ox+ 2

On the other hand it is known that the sequences (B, (X))nen and (b, (x))nen are related by means of
the equalities:

By (x) = (x + 1)Bp—1(x) + bp—1(x),
bn(x) = xBy—1(X) + bp—1(%).

Or equivalently
Bu(x) — By—1(x) = by (%), (2)
by (x) — bp—1(x) = xBp—1(x). (3)

These equalities can be interpreted by means of the product of adequate Riordan arrays. The first of
them, (2), is

T(1 —x|DTA|(1 —x)?) =T = x|(1 — x)?).
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For the equality (3) we consider the product of matrices
T(1 = xDTA = x/(1 =0?) =T((1 = 0|1 = 0.

3. Polynomial sequences associated to Riordan matrices and its recurrence relations

In this section we are going to obtain the basic main result in this paper as a consequence of our
algorithm in [9] and stated again in Section 1 as Algorithm 1. We use [9,10] for notation and basic
results. Since our notation is not the usual one, for the convenience of the reader we present some
relations between the classical and our notation for Riordan arrays.

Usually a Riordan array, D, is represented, up the name of the indeterminate, by D = (d(x), h(x))
or D = R(d(x), h(x)), where d(x) is a power series and the power series h(x) is such that h(0) =
0, h’(0) # 0. If in addition d(0) = 0 then the Riordan array D is called proper. In our notation D =
T(f |g) with g(0) # 0, represents the Riordan array such that the generating function of the j-column

1+1 , beginning at j = 0. Equivalently the action induced in KK[[x]] is:

. _f <X) : _f® ( X )
(flg)(s) = =s| — ] which represents the power series ——s | ——
g \g gx) \gx)

while, in the usual notation, see [17]:
(d(x), h(x))(s(x)) = d(x)s(h(x));

equivalently the generating function of the j column is the series d(x) ¥ (x).
The basic formula relating them is

xd _(f® x\ _ = (d: )
h h) - (g(x)'g) ~ 1018 =0

We are going to recall here some basic relations using both terminologies.
The representation of the product and the inverse (for a proper Riordan array) are, in both notations:

(d1(x), h1(x))(d2(x), h2(x)) = (d1 (X)d2(h1 (X)), ha2(h1(x))),

T(hlgD)T(f2lg2) =T (f]fz (x) 218 <X>> .
81 81

The expression fif> (gi]) represents the power series f; (x) - f> (ﬁ) and analogously for g1 g, (ﬁ)

(d(x), h(x) = T(

(d(x), h(x) ™" = ( E(X)) (hoh)(x) = (hoh)(x) =x,

1
d(h(x))’

Tl(f|g)z<r(f|g))1=r<1_'1_), k=% kok=Fkok=x
fk) | g(k) g

or mixing both notations:

71 =
7le) (f(h) ‘ g(h))
ifT(flg) = (A0, h(x)).

One of the main equalities is
T(flg) = TFINT(1]g)
or

fx  x X
(g(X) g(X)) 7. )(g(X) g(X))
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or

d h
(d(x), h(x)) = (" ® ) ((") h(x >>
h(x)

3.1. The main theorem

Definition 4. Consider an infinite lower triangular matrix A = (anj)njen. The family of polynomials
associated to A is the sequence of polynomials (p, (x))nen, given by

n
pa(®) =Y ap¥, withn e N
j=0

Note that the coefficients of the polynomials are given by the entries in the rows of A in increasing
order of the columns till the main diagonal. Note also that the degree of p,, (x) is less than or equal to n.
The family p, (x) becomes a polynomial sequences, in the usual sense, when the matrix A is invertible,
that is, when all the elements in the main diagonal are non-null.

Our main result can be given in the following terms:

Theorem 5. Let D = (dpj)njen be an infinite lower triangular matrix. D is a Riordan matrix, or an arith-
metical triangle in the sense of [9], if and only if there exist two sequences (f,) and (g,) in KK with gy # 0
such that the family of polynomials associated to D satisfies the recurrence relation:

X—gi g fi
pr(x) = ( )pn 1(x) — —pn 2(0) -+ = Zpo(x) + - V¥n>0.
£o £o 8o
Moreover, in this case, D = T(f|g) wheref = Y > ofuX"and g = 3,50 gnX".

Proof. If D is a Riordan array we can identify this with an arithmetical triangle D = T(f|g) such that
go # 0. Following Algorithm 1 we obtain that the family of polynomials associated to T(f|g) satisfies:

n n
pn(®) = > dnjx =dno + Y dpj¥
=0 j=1

-l n n —1 n X
=—|fh- ngdn—k,o) +> ( (dn—l,j—l - ngdn—kj)) X
&o k=1 j=1 \80 k=1
1
= — Zdn 1j— 1xl ngdn kO_Zngdn ki )
£o j=1k=1
1 ) 1 n n—k )
= — | fa —xpn—1(x) — Z Z gkdn—k,jxl) = — (n — Xpn—1(x) — ng Z dn—k,jxl)
&0 j=0k=1 &0 k=1 j=0
1 n 1 n
=— |fa —xpn—1(x) — ngpn—k(X)) =— (fn + (81 — X)Pp—1(x) — ngpn—k(X))
&o k=1 &o k=2
=<x_gl)pn 160 — —pn z(x)-~-——po()+f—”
£o

On the other hand, we suppose that

Palx) = (" —& ) Pro1 ) = Zpua0) - — Fpoo) +
8o 8o 8o go
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for two sequences (f;) and (g,). We consider D = (dp k) such that p,(x) = J’7=0 danf. Sopo(x) = fg%

then dgp = g.

X—g fi g1 fi  dop
p1(x) = ( >P0(X)+=—d0,o++x
8o £o &o go £o
then
&1 f doo
dig=——doo+—, di1=—
8o 80 80

X — g ) f
p2(¥) = < )m (*) — =po(x) + —
8o 8o
d d
IO Y I (_gldm N w) o Buo
8o go go £o 8o £o
o)
81 ) &1 di,0 di
dyo = ——dijg— —dop, dp1=——di1+—, dyp=—
8o 8o 8o 8o 8o
in general
X—g 25} g fi
pn(x) = () Pro1(®) = Zppa(®) -+ — S po(x) + -
8o 8o 8o 8o
then
g 2 & fi
dno = —=dn—10 — —dn—20- - — —doo + —
0 &0 8o 0
& ) g dn_10
g = —Zdn11 — —dn31---— —do1 + —
0 0] 8o 8o
g1 £ g dn—1j-1
dnJ = _*dnfu - *dn72j T ldOJ + L
0 8o 8o
and
g1 dn—1,n—2 dp—1n—1
dono1 = ——dn_1n-1 + u' don = n=in—?
£o £o £o

then using our algorithm the matrix D is just D = T(f|g) where f(x) =3 ,.ofnx" and
g =Y, 08nx". U

Corollary 6. If g(x) = go + g1x + g2x* + - - - + gux™ with g, # 0 be a polynomial of degree m, the
recurrence relation of Theorem 5 is eventually finite. It is,

X—g 25} g fi
pn(x) = () Pro1(X) — pp—a(®) - — ppm(x) + - n=m
go 8o 8o 8o

and

k
X—8& 8i fe
pr(x) = () P—1(x) — Y Zpr—i(x) + = 0<k<m—1.
£o i— 80 £o

Remark 7. Following [9] the arithmetical triangle T(f|g) above is an element of the Riordan group
when it is invertible for the product of matrices. It is obviously equivalent to the fact that fy # 0in the
sequence (f,) above.
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Suppose that we have two Riordan matrices T(f|g), T(I|m) with f = >, 0 fuX", € = Y10 &nX"
I=>s0lhx"andm = Y, . o mpx" with gy, mg # 0.Consider the corresponding polynomial families
(Pn(%))nen and (qn(x))nen associated to T(f|g) and T(I|m) respectively, as in Theorem 5. Using the
matrix representation of T(f|g) and T(I|m), [9], and the product of matrices, we can define an operation
ff on these sequences of polynomials as follows:

We say that

Pr () nent(@n(X))nen = (rm(X))nen
if (ry (%)) nen is the family of polynomials associated to the Riordan matrix

T¢lTAIm) =T (ﬂ (;) o (2))

see [9].
Suppose T(f1g) = (Pninken, TUM) = (@ni)nker and T (f1(X)|gm (¥)) = (rag)nken. Conse-

quently p, (x) = Zzzo Pn,ka- qn(x) = ZZ:O qn,kxk and r; (x) = Zzzo rn,kxk-
So, by the product of matrices, the entries in the n-row of (r,,x), which are just the coefficients of
rp(x) in increasing order of the power of x, are given by:

n n n
(Z Dnk4k,0, Z Pnkqk1s - - - an,kaJ - Pnnqnn, 0, .. )
k=0 k=1

k=j

= Pn0(q00,0,...,0,...) +Pn1(q1,0,41,1,0,...,0,..) + - + Pun(@no. Gn1, - - -, s 0, . . )

Consequently

() = Y pnkqi(x)

k=0

which corresponds to replace in the expression of p,(x) = >_}_, pn,kx" the power x¥ by the element
gk (x) in the sequence of polynomials (g, (x))nen. This is in the spirit of the Blissard symbolic’s method,
see [1] for an exposition on this topic. The product (p,(X))nent(qn(*))nen = (rm(x))nen is usually
called the umbral composition of the sequences of polynomials (p,(x)) and (g, (x)). The formula for
the umbral composition is given by

Pn () nent(@n (X)) nen = (r(X))nen, where nj = an,k‘]k,j
k=j

As a summary of the above construction we have:
Theorem 8. Suppose four sequences of elements of IS, (fy)nen, (€n)nen, (n)nen, (Mn)nen, With g, mg #

0. Consider the sequences of polynomials (pn(X))nen (qn(X))nen satisfying the following recurrences
relations

x—g g & fi
pn(x) = ( 1>pn1(><) = o) — Dpo(x) +
8o &0 8o
with po(x) = .,
X —m my my I,
a0 = () 4100 = 2200+ — hgo + -
mg mg mg mg

with qo(x) = TL—OO Then the umbral composition (pp(X))nent(qn(X))nen = (rm(X))nen satisfies the fol-
lowing recurrence relation

() = ("a—o"”) Fat () — Z—irn_zoo - Z—Zm(x) +

Bn

o
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where (ap)nen, (Bn)nen are sequences such that fl (g) =Y n>0PBnx", gm <§> = Y n>0anx", with
f = Zn)Ofnxn’g = Zn;Ognxn I= Zn>01nxn andm = Zn;Omnxn-

Of special interest is when we restrict ourselves to the so called proper Riordan arrays, see [17].
As noted in Remark 7 this is the case when fy # 0 or, equivalently, T(f|g) is in the Riordan group.
Moreover, in this case, the assignment T(f|g) — (pn(X))nen is injective, obviously, and since the
product of matrices converts to the umbral composition of the corresponding associated polynomial
sequences, we have the following alternative description of the Riordan group.

Theorem 9. Let [K be a field of characteristic zero. Consider R = {(pn(x))nen} Where (pn(X))nen is a
polynomial sequence with coefficients in K satisfying that there are two sequences (fy)nen, (8n)nen Of
elements of I, depending on (p,,(x))nen, With fo, 8o # 0 and such that

X—g 2] g fi

m®=(>m4®—mﬂwm—"m®+"

£o 8o £o

with po(x)

Given (pn(X))nen, (Gn(x))nen € R Define (pn(X))nent(qn(x))nen = (rn(X))nen where rn(x) =

Y ko PnkGk(x) with pp(x) = >k, pn_kx". Then (R, 1) is a group isomorphic to the Riordan group.
Moreover

= h
=5h

S puten = I

n>0 g(x) —xt

iff =Y usofux" and g = >, 5 08:x" and (f;) and (g,) are the sequences generating the polynomial
sequence (pp(x)) in R.

Proof. Only a proof of the final part is needed. As we know, from Theorem 5, T(f|g) = (Pnk)nken iS a
proper Riordan array where p, (x) = >_}_, DX, ﬁ = Y >0 t"x". We consider, symbolically, ﬁ
as a power series on x with parametric coefficients a, = t". From this point of view, [9],

DPo,o 1
P10 P11 t
1 P20 D21 P22 t* n
T0le) (1 —xt> I . : | =2 pa(Ox"
Pno Pn1 Pn2 - Pan - t" k=0
1 fx 1 fx)
r6le) () =t =
1—xt gx)1— ty g(x) — xt

Remark 10. Note that >}_, pn(t)x’< is just the bivariate generating function of the Riordan array
T(f|g) = (Pnk)nken in the sense of [17].

3.2. Some relationships between polynomials sequences of Riordan type. Some classical examples

Now we are going to describe some relations between polynomial sequences associated to different
Riordan arrays. From now on we are going to use the following definition:

Definition 11. Let (p,(x))en be a sequence of polynomials in K[[x]], pn(x) = >}, pn,kxk. We say
that (p, (x))nen is a polynomial sequence of Riordan type if the matrix (p, ) is an element of the Riordan
group.
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Using the basic equality T(f|g) = T(f|1)T(1|g) we can get some formulas.

Proposition 12. Let T(f|g) an element of the Riordan group and suppose (p,(x)) the corresponding as-
sociated family of polynomials. Let h(x) = hg 4+ hix + hox? + - - - + h;,x™ be a m degree polynomial,
hm # 0. Let (qn(x)) be the associated family of polynomials of T(h|1)T(f|g) then

qo(x) = hopo(x)
q1(x) = hipo(x) + hop1 (%)

qm(X) = hppp—m(x) + - - - + hopm (x)

qn(x) = hmpp—m(x) + -+ + hopa(x) n>m
Remark 13. Note that to multiply by the left by the Toepliz matrix T(h|1) above corresponds even-
tually to make some fixed elementary operations by rows on the matrix T(f|g). These operations are
completely determined by the coefficients of the polynomial h. For example if h(x) = a 4+ bx then
Go(x) = apo(x) and gn(x) = bpy—1(x) + apn(x).

As a direct application of Proposition 12 we will obtain the known relationships between Chebysev

polynomials of the first and second kind.

Example 14 (The Chebyshev polynomials of the first and the second kind). Consider the Chebyshev
polynomials of the second kind:

Up(x) =1

Ui(x) = 2x

Up(x) = 4x* — 1

Us(x) = 8x> — 4x

Ua(x) = 16x* — 12x* +1

Up(x) = 2xUp—1(x) — Up—2(x) forn>2 (4)

Let the sequences (I)nen, (My)nen given by lp = % andl, = 0forn>1and mg = % my = % and
m, = 0 otherwise. In this case (4) can be converted to

Up(x) = 3
0
Un(x) = (m) Un—1(x) = 2Un—2(x) - - - — [2Up(x) + anno forn>1

mo

(5)

IfU = (unk)nken Where Up(x) = >}, un,kx" then using our algorithm, or equivalently Theorem
5,weobtainthatU = T (%‘ % + %xz) is a Riordan matrix:

1

2

0 1

0 0 2

0| —1 0 4

0 0 —4 0 8

0 1 0 =12 0 16

So the associated polynomials of this arithmetical triangle are the Chebyshev polynomials of the
second kind. Consequently

Zun(t)XHZT(%‘%+%X2>( 1 ) 1

= 2 .
130 1—xt 1+ x4 — 2xt
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The first few Chebyshev polynomials of the first kind are To(x) = 1, T; (x) = x, To(x) = 2x*> — 1,
T3(x) = 4x> — 3x, T4(x) = 8x* — 8x2 + 1 - - - In general
Ta(x) = 2xTp—1(x) — Tp—2(x) forn=>2.

We first produce a small perturbation in this classical sequence. Consider a new sequence (TX))nen
where To(x) = % and T,(x) = T,(x) for every n> 1. For this new sequence we have the following
recurrence relation

F . 1
o(x) = 5
Ty (x) = 2xTo(x)
7 = ~ 1
T2(0 = 240100 = Tol) — 5
To(x) = 2xTp_1(x) — Tp_2(x) forn>3 6)

to unify the above equalities we consider the sequences (fy)nen, (8n)nen given by fo = %,fz = —%

and f, = 0 otherwise, gy = % & = % and g, = 0 otherwise. We note that the equalities in (6) can be
converted to

To(x) =
T g(;(_gl T O7F & T fn (7)
T, (x) = ( = )Tn_1(x) — ‘%Tn_z(x) cee— g—oTo(x) + o forn>1

Let T = (ta) be the matrix given by To(x) = Y=o fn,kxk. One can verifies that (7) converts to
tyx = 0ifk > n and the following rules for n > k:

~ &1~ 82~ &n ~ t1j-1 ...
thj = ——th—1j — —th—2j " — ltoj + e ifj>1
8o 8o &o &0
andifj =0
. g1, 8- 8n- fi
tho=——th—10— —th—20"" — ito,o + =
8o 8o 8o 80

Note that foo = fg% because the empty sum evaluates to zero.

Using our algorithm in [9], we obtain that T is a Riordan matrix. In fact we get T =
T (% — %xz‘ % + %xz) in our notation, because f(x) = % — %xz is the generating function of the
sequence (f,) and g(x) = % + %xz is the generating function of the sequence (g,). So

O O OrI= O B=

But now more can be said because

ZiﬂMEﬂ(l_;11+hﬁ< 1> 11—

n30 4 4 |12 2 1—tx 214+x2 —2tx
Since
1 ~
D Tx" = -+ ) Ta(0x"

n=0 n=0
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we get the generating function

Z T.(OF" = 1—tx

2
30 1+ x —2tx

of the classical Chebyshev polynomials of the first kind.
Using the involved Riordan matrices we can find the known relation between T, (x) and U, (x). Since

1 1,1 1 1 1 111 1
T<f—fx2 7+fx2)=T<f—fx2 1>T<,’,+,X2)
4 4 212 2

2 2 2 2
Consequently
~ 1 1 ~
Th(x) = _EUn72 (x) + Eun(x) or 2T,(x) = Uy(x) — Up—2(x)

and then
2T, (x) = Up(x) — Up—2(x), n>=3

As we noted in Section 4 of [8], if we delete the first row and the first column in the Riordan matrix
T(f|g) we obtain the new Riordan matrix T (é‘ g). On the other hand to add suitably a new column
to the left of T(f|g), one place shifted up, and complete the new first row only with zeros we have the
Riordan matrix T(fg|g). So deleting or adding, in the above sense, any amount of rows and columns to

T(f|g) we obtain the intrinsically related family of Riordan matrices
g) .

f f f
L T@f18). T(Eflg). T(ef|2). T(E|g), T ( g7\ 5lg).T( 5
g g g
We can easily obtain a recurrence to get the associated polynomials to T (gf—n g) in terms of that
of T(f|g). We have an analogous conclusion on T(fg"|g) n > 0. Anyway, once we know the polynomial
associated to T(f|g) we can calculate that of T(fg"|g) forn € Z.

Proposition 15. Let f = >, - o fux", 8 = Y n>08nX" be two power series such that fo # 0, go # 0.
Suppose that (p,(x))nen is the associated polynomial sequence of the Riordan array T(f|g), then
(a) If (qn(x))nen is the associated sequence to T(fg|g) we obtain

qn(X) = xpp—1(x) +fn ifn>1

and go(x) = fo.
(b) If (ry(x))nen is the associated polynomial sequence to T (é ‘ g) then

m—1(x) = M forn>1.

Proof. (a) T(fg|g) = T(g|1)T(f|g). Using the umbral composition we have
qn(x) = gnpo(X) + gn—1P1(X) + - - - + ZoPn(X).
Using now our Theorem 5 we obtain

qn(x) =gnpo(X) + gn—1p1(x) + - - -

+ 8o ((X_gl> Pn—1(x) — g—zpn—z(X) s — gipo(x) + f”) .
8o 8o 8o 8o

Consequently

qn(x) = xpp—1(X) + fa-
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(b) Now T(g|1)T (£|g) = T(lg). S0
Pn(x) = gnTo(x) + gn—111(x) + - - - + orn(x)
using again Theorem 5 for the sequences r, (x) we obtain

Pn(¥) =gnro(X) + gn—111(X) 4 - --
+80 <<X_gl> Tm—1(x) — glrn_z(x) e gi"g(x) n dn> |
8o 2 @

&o
where the d, is the n-coefficient of the series é. Consequently p,(x) = xrp—1(x) + dj,. Note that
pn(0) = dn, s0
x) — pn(0
oG = PO PO e g
X

Corollary 16. Suppose g = Y, o gnX" With go # 0. Let (pn(X))nen be the polynomial sequence associ-
ated to T(1|g) and (g, (x))nen that associated to T(g|g). Then:

Gn(x) = xpn—1(x) forn>1 and qo(x) =1.

Example 17. Asanapplication of Proposition 15 and as we noted in Section 2, the relationships between
both kind of Morgan-Voyce polynomial families are

Bn(x) — Bn—1(x) = bp(x) and bn(x) — bp—1(X) = xBr—1(x).
That in terms of Riordan arrays means
T(1 =X DT =) =T = x|(1 = x)?),
T(1 =X DT —x/(1 = 0% =T((1 = 0*|(1 = %?)
because (T(1|(1 — x)?)) gives rise to (Bn(x)) and T(1 — x|(1 — x)?) gives rise to (by(X)).

In the following expressions we consider (p,(x)) as the family of polynomials associated to T(f|g),
and we denote by (g, (x)) the family of polynomials associated to each of the matrix products. Moreover
a, b are constant series with b # 0:

T(a|DT(flg) = T(aflg), thengn(x) = apa(x),

1
rabrln =7(r (3)|be (). thenano = m,
T(flg)T(@1) = T(aflg). then ga(x) = apy(x),

1 X
TEIOT(1E) =T(lbe), then g, = 3 py (B) .

The above results can be summarized and extended in the following way:

Proposition 18. Let T(f|g) and T(ljm) be two elements of the Riordan group. Suppose that (p,(x)) and
(qn(x)) are the corresponding associated families of polynomials. If

T(llm) = T(ylee + )T (f|g)T(cla + bx)
where o, v, a,c # 0. Then

0= (S0 (-2) (Y]

k=0
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Proof. Using Theorem 5 we have thatif (s, (x)) is the family of polynomials associated to T(y |« + Bx)
then

So(x) = Y and s;(x) = <X_'3> Sn—1x)y Yn=>1
o o

consequently

sn(x):Z(x_'B> neN

o

Proposition 14in[10] says that if (r,,(x)) is the family of polynomials associated to T (f|g) T (c|a + bx)

then
c x—Db
mm(X) = —pn < )
a a

Since (g, (x)) = (sp(x))(rn(x)) we obtain that

= (TE (L))o ()
Hence
n n—k
w22 (O (L) () o

Example 19. As we noted in Section 2 the relation between the Pell and the Fibonacci polynomials

is Pa(x) = Fo(2x). Recall that T(%‘ DTAN =) T(1l3) =T (%] 1 - 1) and T(%‘ 1-12)

gives rise to the Pell polynomials and T(1|1 — x?) gives rise to the Fibonacci polynomials.

Example 20. The Fermat polynomials are the polynomials given by Fy(x) = 1, F1(x) = 3x and
Fn(X) = 3xFn—1(x) — 2F,—2(x) for n > 2. Using our Theorem 5 this means that Fermat polynomials

are the polynomials associated to the Riordan matrix T (%‘ % + %xz). For this case, gg = % g1 =

0, &= % g =0 Vn>3and fy = % fn =0 Vn>1. The construction rule of this triangle is:
dnk = —2dp—2x + 3dn—1k—1 for k > 0.The few first Fermat polynomials are 7p(x) = 1, 7y (x) = 3x,
Fo(x) = =2 4 9x%, F3(x) = —12x + 27x3, F4(x) = 4 — 54x> + 81x*, ... Since

TG‘ %(1 +2x2)> = T(l k) T(%‘ %(1 +x2)>T(§ ‘2*3/5>

and using Proposition 18 we obtain the following relation to the Chebysev polynomials of the second
kind:

n 3x
Fn(X) (\/5) Un (2\/§>
Recently, it has been introduced a special family of polynomials in [3,7] related to the so called spray
pyrolysis techniques. Now we are going to find a relation of these polynomials with the Chebyshev
polynomials of the second kind and then also with the Fermat polynomials. This new sequences of poly-
nomials is given by By (x) = 1, B1 (x) = x, B2 (x) = 2 + x? and B, (x) = xBy_1(x) — Ba—z(x) forn > 3.
Using our Theorem 5, we find that B, (x) polynomials are the polynomials associated to the Riordan
matrix T(1 + 3x%|1 + x?). For this case, gg =1, g1 =0, &2 =1, g,=0, Vn>3 and fo = 1.f; =
0,f = 3 fu, = 0 Vn > 3. And the rule of construction of this triangle is: dyx = —dp—2x + dn—1k—1,
with generating function

1 > 1 4 3x2

_ 2 2 _
ZBn(t)x"_T<1+3x |1+x)<1_xt

n=0

T 1—xt+x2
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Table 1
Polynomial families, their associated Riordan arrays in both notation, and their generating functions.
Polynomial family (d(x), h(x)) T(flg) X pn(Ox"
Pascal (11? ﬁ) T(11 —%) ot
Fibonacci (Flj 1,sz) T(1[1—x%) =
1 2x 1|1 _ & 1
Pell (17)(2. 17)‘2) T (E 2= 7) 1—x2—2tx
Morgan-Voyce (1) ((1%)2 ﬁ) T(11(1 — x)?) 71+x271(2+t)x
Morgan-Voyce (2) (a]fx) ﬁ) T(1 —x|(1 = %?) 1+x2]:(§+r)x
. 1 2 1)1 2 1
Chebyshev 2° kind (W H%) T (i 2+ XT) 1P —2tx
. 1—x2 2 1 2|1 2 1—x? 1%
* Chebyshev 1° kind (2(]7_*_’;2) H—%) T (g =%|5F %) 2(1+x2x—2tx) +3
1 3x 101, 22 1
Fermat <1+2x2' W) T (§ 3+ T) T2 =3

*See Example 14.
Since
111
T(143314+x*) =T (1+3x1 T(f‘71+x2>722
( 1+2)=T( NT(5 50 +2)) 12

and using Proposition 12 and Proposition 18 we obtain the following relation to the Chebysev polyno-
mials of the second kind:

X X
Bp(x) = Uy <5) + 3Up—2 <5) forn> 2.
On the other hand we can relate these polynomials and Fermat polynomials:
111 3
2 2\ _ 2 i 2 —
T(l + 331 + x ) _T(l + 3x |1)T(1|ﬁ) T(3' S (14 2x ))T<3ﬂ>
and using again Proposition 12 and 18 we obtain

Bh(x) = ) forn>2.

4. Some applications to the generalized umbral calculus: the associated polynomials and its
recurrence relations.

There are many other types of polynomial sequences in the literature that can be constructed
by means of Riordan arrays. We are going to characterize by means of recurrences relations all the
polynomial sequences called generalized Appell polynomials in Boas-Buck [2, pp. 17-18]. We will follow
their definitions there.

We first introduce some concepts. Suppose we have any polynomial sequence (pn(x))nen With
pa(x) =X 00 pn,kxk and let h(x) = "5 o hnX" any power series, we call the Hadamard h-weighted

sequence generated by (pp(x)) to the sequence pﬁ(x) = (ppxh)(x) where x means the Hadamard
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product of series. Recall thatif f = >_,,5 o fux" and g = Y, o gnX", then the Hadamard product fxg
is given by fxg = 3> 0 fngnX".

Note that pg is a polynomial for every n € N and h € K[[x]]. In fact pﬁ *x) =20 pn,khkxk.

Note also that the original definition of generalized Appell polynomials defined by Boas-Buck in
[2] can be rewritten in terms of Riordan matrices in the following way:

Propeosition 21. A sequence of polynomials (s,(x)) is a family of generalized Appell polynomials if and

only if there are three series f,g,h € K[[X]], f = X n>0fnX", 8 = X ns08:X" and h(x) = >, 5 o hnX"
with fo, 80 # 0, and h, # 0 for all n such that

T(FIRhE) = Y su(0)".

n=0

Moreover in this case, s,(x) = p’,} (x) in the above sense where (p,(x)) is the associated polynomial
sequence of T(f|g). Consequently

f®,
n = nkh
¥ 506 = X Guan o =10 (e %),

n=0 n=0 g()

Proof. If T(f|g)(h(tx)) = Y > o Sn(t)x" then obviously (sn(x)) is a generalized Appell sequence be-

cause Y, Sn(HX" = g((’;; h ( g(x)) Suppose now that (s,(x)) is a generalized Appell sequence, then
there are three series A B, ® where A=Y ,-¢AnX", Ao #0, B=),>1Bnx", By #£0 and & =
Zn >0 @nx" with @, # 0, Vn € Nsuchthat )", - ¢ sp()x" = A(x)®(tB(x)). If we take & = h,g(x) =

and f(x) = X;(%) we are done. [

B(x)

L

Remark 22. Note that if h(x) = ;= the family of ( i (x)) is exactly the associated polynomials

(pn(x)) of T(f|g), because ﬂ is the neutral element in the Hadamard product.

Example 23 (The Sheffer polynomials). Following the previous proposition we have that (S,(x)) is a
Sheffer sequence if and only if there is a Riordan matrix T(f|g) such that

T(flg)(e™) = ) Sa(t)x".
n=0
The usual way to introduce Sheffer sequences is by means of the corresponding generating function
3 Sa(®x" = Ax)eH®,
n=0

where A = >, 5 0 Anx™, H = Y_, - 1 HpX" with Ag # 0, H; # 0. Note that for this case the correspond-
ing Riordan matrix is

T XA(x)| x
H) |Hx) )

The general term of a Sheffer sequence, S, (x) is given by

Sn(x) = pn(x)xe”,
where (p,(x)) are the associated polynomials to T(f|g). Consequently

L Pk k
Sh(x) = Z l—;x
o k!

if pn(x) = Z;Z=0 Pn,kxk-
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WARNING. Note that in many places [13-15] they call a Sheffer sequence to the sequence (n!S, (X)) nen
where (S, (X))nen is our Sheffer sequence.

In the following example we can note that applying a fixed T(f|1) to different series h gives rise to
some classical families of polynomials.

Example 24 (The Brenke polynomials). Following [2], (B, (x)) is in the class of Brenke polynomials if
T(fI1)(h(tx) = ) Ba(DX".
n=0
Some particular cases are:

T(fll)(l x) > TR,

n=0

where (T¥) are the reversed Taylor polynomial of f.

T(fI1)(e™) = Y An(Dx",

n=0

where (A, (x)) are the Appell polynomials of f.

Using analogous arguments as in the previous section for polynomials of Riordan type, we can get
some relationships between some classical Sheffer sequences once we know, easily, some relation
between their corresponding Riordan matrices.

Using our main theorem in Section 3 we can obtain the following recurrence relations for the
generalized Appell polynomials, which is the main result in this section.

Theorem 25. Let (s,(x))nen be a sequence of polynomials with s,(x) = Y_}_, sn,kxk . Then (sp(X))nen
is a family of generalized Appell polynomials if and only if there are three sequences (f,), (gn), (hy) € K
with fo, g0 # 0 and h, # 0Vn € N such that

h
an Vne N with so(x) = O—fO

£o

1 ~ g1
sn(X)=—(xsn_1(X)*h(X)) - g—sn_l(X) - = ng o(x) +

where ﬁ(x) paa hh" xK. Moreover the coefficients of this family of polynomlals satisfy the following
recurrence:

Ifk>1
&1 &n hy,
Snk = ——Sn—1k — -+ — —Sok T 75n 1k—1-
80 80 hi—1
Ifk=0
&1 &n hafn hofo
Spo = ——Sp—1,0 — -+ — —So0 T+ S00 = —-
8o 8o go £o

Proof. If (s,(x)) is a family of generalized Appell polynomials then there are three sequence (f;,), (gn),
(hn) of elements in [ with fo, 8o # 0and h, # 0VYn € N, suchthatiff = Y ,5 9 fuX", & = X150 8"
and h = Y, ¢ hpx" then

T(f1Qh(tx) = Y sp(Dx"

n=0

since sp(x) = pﬁ (x) = pn(x)xh(x), the family of polynomials (p,(x)) associated to T(f|g) obeys the
recurrence relation of Theorem 5: Using the distributivity of Hadamard product we get

mwwm=(‘gﬁ%w»m%ﬁﬁﬁwmw~—&m®w®+ﬁww
go 8o 8o go
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fnhO

X 81 82 g
=pl(x) = —pn1()%h(x) — Zpl_ () — Z2pt_,(x0) - — Zpix) +
£go 8o 8o 8o

since
Xpn—1(X)xh(X) = pp_10MX + Pr_1,1h2%* + -+ - + Pn_1n—1hnX"
then

hy hy
XPr—1 ()*h() =Pr-tohop x + P nh1—x +- +pn71,n71hn71h7nx
n—1
:xpnf] (x)*h(x)

so we get the result.
On the other hand if there are three sequences (fy), (gn), (hy) € Kwithfy, go # 0andh, # 0Vn €
N such that

hafn

1 " g g
5n(0) = — (X1 () *h(x) — Zsp 1 (x) — - — = eN
8o 8o 8o 8o
h
with sg(x) = ﬂ,
80

where h(x) = Y32 7l-x*. Let

_n\x
pr(®) = sy (x)xh D7 (x)
where h=1* (x) = Shso ,:—nx”. Then

52 (0% () = - (k501 GOxhG0) D () = £ s wh D™ ()
8o go

h
= B 0wV ) + 0% )
8o 8o

1 A n
Pa(0) = — (50—t (xR xh D = Elp ) — - —po<x> + f—
go 8o

since

A I, h
xsp—1(X)xh(x) =Sn—10 L e

ho hy Ty
then
¥51-1 (R *h D™ (0) = x5,_1 () *h D™ (1) = xpp_1 (%)
consequently
1 g1 fi
Pa(0) = — APt (X)) — S Pt (1) — - — S po(x) + —"
£go £go 8o

so (pp(x)) obeys Theorem 5 and then (p,(x)) is the associated polynomials to T(f|g). Hence (s, (x)) is
a family of generalized Appell polynomials.
The second part of the result is an easy consequence of our Algorithm 1 in the Introduction. [

Remark 26. Note that if k > 1, some terms in the recurrence are null, in fact s;, = 0if | < k. Conse-
quently:
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81 En—k hy
8o k—1

Sn—1,k—1-

A consequence that we can obtain from the recurrence relation for the generalized Appell se-
quences is the following relation between the Hadamard h-weighted and h’-weighted sequences for a
polynomials sequence of Riordan type. For notational convenience we represent now by D(«) to the
derivative of any series «. The result obtained below when we consider the classical Appell sequences,
is just what Appell took as the definition for these classical sequences.

Corollary 27. Let T(f|g) be any element of the Riordan group withf = >, o fuX", 8 = > > 0 &nx", and
with associated sequence (p,(x)). Suppose that h € K[[x]] is Hadamard invertible. Then the D(h) is
Hadamard invertible and

e =3 &p@l_)®.
k=0

Proof. We know that

1 ~ g g hof;
phx) = — (ol Oxh(0) — Zpt_ (0 — - = ) + .
8o &0 8o 8o
Applying the derivative in both sides we obtain
1 A 1 g
DY) (x) = —Dxph_; )*h(x) — > =D(ph_) ().
go k=1 20
Consequently
n
Dxpl_; ()*h(x) = Y &DPI_) ().
k=0
It is easy to prove that
m(x) — m(0 I(x) — 1(0
D(mx)*l(x)) = %*’D(l(@) = ’D(m(X))*(()xi()

for any series [, m € [K[[x]]. Using the first equality above we get

ph_ D)) = > &DPl_) (%)
k=0

but
(P—1 () ¥h())*D(A) (X) = pr—1 (X)x (h(x) % (D(R) (x))

k

and since h(x) = Yy h%x we obtain that

h(x)*D(h) (x) = D(h)(x)

and so we have the announced equality. [

In some cases the above formulas allow us to compute easily some generalized Appell sequences
in terms of the associated sequences of Riordan type.

Example 28 (Some easy computations related to the geometric series). As an easy application of the above
result we have: let (p,(x)) be a polynomial sequence of Riordan type. Then

(i) pA ™ (%) = xp,(X) + Pa(®) = (xpa(x)) Yn>0.
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(ii) If a # O then

X t) — 0
pﬁ—log(l—x) (X) — apn(O) + / M Yn>0.
0

The previous results convert to the following formulas in the important class of Sheffer sequences.

Example 29 (The recurrence relation for the Sheffer polynomials. Some classical examples). Since for Shef-

fer polynomials h(x) = e* =3 ,5¢ ’,‘1—': and fl(x) =D n>1 % = —log(1 — x), the recurrence relation
is: i
1 &1 fn
Sn(®) = — (XSp—1()*(—log(1 —x))) — =—Sp—1(x) — -+ — *50( )+=— VneN
8o £o 8o 8o
with Sp(x) = fo
8o
and the recurrence relations for the coefficients are
Ifk>1
g1 g 1
Snk = ——Sn—1k — "+ — —Sok + ~Sn—1k—1-
o 2o k
Ifk=0
&1 fi fo
Sno=——"Spn—10— """ — *500 + =, Spo = —.
£o £o £o 8o

For its derivatives. Since

1
(XSn—1 () *(— log(1 — x)))" = Sn—l(x)*l e Sn—1(%).
Then
/ &n / < /
Sp(x) = . L 1(x) — Py Sp_q1(x) — - —g—oso(x) S0 Sp-1(x) = ;gksn_k(X).

Pidduck and Mittag-Leffler polynomials. Consider the sequence (7, (x)) satisfying

n_ X X tx
> Pultx —T( 10g<+))(e>

n>0 (1—x)log (1)

in matricial form:

1

1 0 0 0 O ¢ 1

1 2 0 0 0 2 2t +1

1 2 4 0 0 7| 202 42t + 1
1§ 480 S REUREEES B8

Ifwe take Pn (%) = n!Py(x), then P, (x) are the usual Pidduck polynomials: Py(x) = 1,P;(x) = 2x +
1, Py(x) = 4x* + 4x + 2, P3(x) = 8x> + 12x> 4 16x + 6, .. . On the other hand we get the Mittag-
Leffler polynomials, in the following way. If (M}, (x)) is glven by the formula:

n_ X tx
ZMn(t)X = T(]og<1+x> 10g< ))(e )

n=0
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then, if we take now Mp(x) = My (x), then M, (x) are the usual Mittag-Leffler polynomials: Mo (x) =
1, My (x) = 2x, My (x) = 4x%, M5(x) = 8x> + 4x, . . .. Both families of polynomials are related because:

log (X1+x)) = T(1 1x 1) d (log (Xl”)

Pn(x) = Zn: My (x) or equivalently P,(x) = Zn: (Z) (n — k)M (x).

k=0 k=0

. P
(1 —x)log (H")

So

The following two particular examples are Sheffer polynomials which can be easily described with a
different representation as generalized Appell polynomial. We choose, in particular, Laguerre sequence
because it is very close to the Pascal triangle.

The Laguerre polynomials. We consider

T(=1lx = 1)(e™) = T(A[1 = 0T(=1] = D) = T(A1 =) (™) = }_ La(O",
k=0

where L,(x) are the Laguerre polynomials. Note that T(1|1 — x) is the Pascal triangle. From the
definition of the polynomials we obtain easily the well-known general term:

o = pune = 3 (D)t 3 0 = S0t (1)

k=0 k>0

Our recurrence relation for Laguerre polynomials is:
Ln(x) = xLp—1 (x)*(—log(1 — X)) + Ln—1(x)

and the recurrence relation% for the coefficients are
Ifk>1, Lok = Ln—1k — 3Ln—1k—1and Lyo = Ln—1,0, Lop = 1.
Using Corollary 27 we have:

e
Ly(x) = Ly_;(x) — Ly—1(x) consequently L, (x) =— ) L(x).

r3ls)e-1(
212 ey = _
212 e’
It Ha(x) = n!Hy(x), we obtam Hy(x) are the usual Hermlte polynomlals Ho(x) = 1, Hi(x) = 2x,
Hy(x) = 4x2 — 2, Hs(x) = 8x> — 12x, Ha(x) = 16x* — 48x% + 12,---. Since YnsoHa (X" =

T (?‘ ) (eZt"), the recurrence for the (Hy(x)) is: Hy(x) = xHy—1 (x)*h(x) + f, where

The Hermite polynomials. We consider

> Hp(0X" _T<L 1>(et")=T<e%

150 2e¥

1) (eZtX) — eZtX—Xz.

R 0, if nisodd;
h(x) = Z x = —2log(1—x) and f, =1 (1}

=in O if nis even

and the recurrence relations for the coefficientsare: If k > 1, Hy = %Hn_Lk_] andHpo = fp, Hop = 1.

Using Corollary 27 we obtain H),(x) = 2Hn,_1(x) or equivalently, the known relation ITI,/,,(x) =
2nHy,_1(x). We can also obtain the general term for the Hermite polynomials:

m m—jo2j m m—jo2j+1
(=)™ 29 . (—1)™29
Haym(x) =) X, Hanp () =Y

2j+1
Zm—))!2)! Zm—)i@+



1444 A. Luzén, M.A. Morén / Linear Algebra and its Applications 433 (2010) 1422-1446
From here the known equality H,(—x) = (—1)"H,(x) is obvious.

Now we are going to translate the operations in the Riordan group to the set of Hadamard h-weighted
families of polynomials. Suppose that (p, (x)) is the associated sequences of polynomials to the element

of the Riordan group T(f|g). If pn(x) = Y}_o PuixX®, T(FI2) = (Pni)nken. Let h(x) = Y- o hax" be
such that h, = 0 Vn € N. So, h admits a reciprocal for the Hadamard product, we represent it by

hD% Infact V% (x) = Y20 hlnxn'

Consider the set Ry, = {(p’,?,(x))neN / (Pn(X))nen € R}, we can prove:

Proposition 30. The function
Hy : R —> Rhn

Pnnen > (PRE))nen
is bijective if h is a Hadamard unit in [K[[x]]. Consequently the umbral composition § defined in R is
transformed into an operation fiy, converting so (Ry, fiy) into a group and Hy converts into a group
isomorphism. Moreover if (; (%)) nen, (6n(X))nen € Ry Withsp(x) = Y p_, snykxk, th(x) = Yk tn,kx"
€ R, (m(X)nen = ($n(®))nen i (tn(X))nen with ra(x) = Yj_g raix* then

n

1
Tnj = Z an,ktlcj
k=j k

Proof. The first part is obvious, because if the function
Gh(—n* : Rh — R
(Sn(X)nen > (Sn(x)*h(_n*)nel\l
is the inverse, for the composition of H.
Now given (sp(X))nen, (ta(x))nen € Rn we define (sp(x))nenh(tn(X))nen = (r(x))nen wWhere
In(X) = Hy(pn(X)fiqn (%)) where s, (x) = pli(x), ta (x) = q(x) forevery n € N.1f p (x) = Sp_g pix®

and g (x) = Y}_o qnix® then if (pa(x)H(gn(x)) = (U (x)) With us(x) = Y}_o tunex® then uyj =
ZZ:}‘ Pnkqkj- Consequently rp; = upjh; then

n n

DPnkhiqrhj Snktij
mp=) — ——=) == 0
k=j hk k=j hk

Another important kind of polynomial sequences in the literature are the sequences of binomial
type [15] or the closely related sequences, of convolution polynomials, see [6]. In fact (s;(X))nen is a
convolution polynomial family if and only if (n!s,(x))nen is a sequence of binomial type.

As one can deduce from [6] a polynomial sequence (s,(x))nen forms a convolution family if and
only if there is a formal power series b(x) = Y~ 1 byx" with by # 0such that e®® = Y _ s, ()x™.
So the convolution condition

n
sn(t+1) =D snk(O)sk(r)
k=0
come directly from the fact that
etb(x) erb(x) — e(t+r)b(x)_

So, symbolically, the Cauchy product

(Z sn(t)x”) (Z sn(r)x”) =) sp(t+ )"

n=0 n=0 n=0

is just the convolution condition.
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Now suppose again a power series g = Y, - o g,X" with gg # 0. Then
x
T(glg)(e™) = > sp(tx" =ex.
n=0

Consequently we have:

Theorem 31. A polynomial sequence (s, (x))nen is a convolution sequence if and only if there is a sequence
(gn)nen in KK with gy # 0 such that

8n—1
8o

sn(x) = l(xs,H (X)x(—log(1 —x))) — gflan *x) == s1(x) forn>2
8o 8o

and sp(x) = 1,51 (x) = g%'

Proof. (s;(x))nen isaconvolution familyifand onlyifthereisaseries ", - o g,x" withgp # Osuchthat
T(glg)(e™) = Y ns 0 Sn(D)X™. S0 (57(X))nen is the e*-Hadamard weighted sequence generated by the
Riordan sequence (g, (X))nen associated, as in Theorem 5, to the T(g|g). Consequently qo (x) = g—g =1
X—8 &n—1

£o

qn(x) = ( ) qn—1(x) — gfzqnfz(X) s — q1(x) — &CIO(X) + &n
8o 8o 8o

— &1 82 8n—1
In—2(®) - — =

8o 8o

X X
so CI1(X)=£: and qn(X)=< )qn_l(X)— q1(x) forn>2.

The result follows directly multiplying Hadamard by e*. [

The polynomial sequences of binomial types are closely related to the so called delta-operator,
see [15]. In [12,17,11] it was introduced the so called A-sequence associated to a Riordan array. In
our notation the A-sequence associated to the Riordan array T(f|g) is just the unique power series

A=Y ,-00anx" withag # O such thatA (g) = é. As a consequence of the results in [8] we get that A

is the A-sequence of T(g|g) if and only if T(A|A) = T~'(g|g) where the inverse is taken in the Riordan
group. So A is the A-sequence of T(g|g) if and only if g is the A-sequence of T(A|A). Let us denote by D
to the derivative operator on polynomials. Using Theorem 1 and Corollary 3 in [15] we have

Theorem 32. Suppose that (s, (x))nen is the convolution sequences associated to the Riordan array T(g|g).
Consider the corresponding sequence (r,(X))nen Of binomial type, i.e. ry(x) = n!s,(x). Then the delta-
operator Q having (r,(x))nen as its basic sequences is just ﬁ (D) where A is the A-sequence of T(g|g). On

the opposite, if we have the delta-operator gz‘—x)(l)) and (r,(x))nen is the basis sequence then (%)%N

is the convolution sequence associated to the Riordan array T(A|A) where A is the A-sequence of T(g|g).

We would like to say that in [8] it is described a recurrence process, related to Banach Fixed Point
Theorem and to the Lagrange inversion formula, to get % using only the series g.

Now we are going to give a characterization of a generalized Appell sequence using linear transfor-
mations in the [K-linear space K[[x]].

Usually a Riordan matrix is defined by means of the natural linear action on [K[[x]], in fact, a matrix
A = (apk) is a Riordan matrix T(f|g) if and only if the action of A on any power series « is given by

T(flg)(a) = éa (g) In these terms we have

Proposition 33. A matrix s = (sp k) has as associated sequence of polynomials a generalized Appell se-
quence if and only if there are three power series f = Y 5 0 fuX", 8 = Y50 8nX™, h = Y55 o hax", with
fo,80 # 0 and h, # 0, ¥ n € N such that the natural linear action induced by s is given by s(«) =

g((—’g(h*a) (g)for any o € K[[x]].
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Remark 34. From the above proposition we could develop the exponential Riordan arrays or more
generally the generalized Riordan matrices, see [18].
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