The Fibonacci Quarterly 1992 (30,1): 2-8
A MATRIX METHOD TO SOLVE LINEAR RECURRENCES
WITH CONSTANT COEFFICIENTS*

Bolian Liu

South China Normal University, Guangzhou, P.R. of China
(Submitted Apri1 1989)
In this paper we provide a matrix method to solve linear recurrences with constant coefficients.

Consider the linear recurrence relation with constant coefficients

$$
\left\{\begin{array}{l}
u_{n+k}=\alpha_{1} u_{n+k-1}+\alpha_{2} u_{n+k-2}+\cdots+\alpha_{k} u_{n}+b_{n} \tag{1}\\
u_{0}=c_{0}, u_{1}=c_{1}, \ldots, u_{k-1}=c_{k-1}
\end{array}\right.
$$

where α_{i} and c_{i} are constants $(i=0,1,2, \ldots, k)$ and where $\left\langle b_{n}\right\rangle_{n \in N}$ is a given sequence.

In order to solve this recurrence relation generally, we first find the general solution $\left\langle\tilde{u}_{m}\right\rangle_{m \in N}$ of the corresponding homogeneous relation

$$
\left\{\begin{array}{l}
u_{n+k}=\alpha_{1} u_{n+k-1}+\alpha_{2} u_{n+k-2}+\cdots+\alpha_{k} u_{n} \tag{2}\\
u_{0}=c_{0}, u_{1}=c_{1}, \ldots, u_{k-1}=c_{k-1}
\end{array}\right.
$$

and then find a particular solution $\left\langle u_{m}^{\prime}\right\rangle_{m \in N}$ of (1) satisfying the initial conditions. Then $\left\langle\tilde{u}_{m}+u_{m}^{\prime}\right\rangle_{m \in N}$ is a solution of (1).

The general method (see [1]) for solving recurrence (2) requires, as a first step, solving the corresponding characteristic equation

$$
\begin{equation*}
\lambda^{k}-\alpha_{1} \lambda^{k-1}-\alpha_{2} \lambda^{k-2}-\cdots-\alpha_{k}=0 \tag{3}
\end{equation*}
$$

Generally, when $k \geq 3$, it is rather difficult to find the roots λ_{i} of (3).
Now we construct a matrix A such that (3) is the characteristic equation of A, and then obtain the general solution of (1) from A^{m}.

Let A be the $k \times k$ companion matrix of the polynomial of (3):

$$
A=\left[\begin{array}{llllll}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
\alpha_{k} & \alpha_{k-1} & \alpha_{k-2} & & \alpha_{2} & \alpha_{1}
\end{array}\right]
$$

Then the characteristic equation of A is (3) and, by the Hamilton-Cayley theorem,

$$
\begin{equation*}
A^{k}-\alpha_{1} A^{k-1}-\alpha_{2} A^{k-2}-\cdots-\alpha_{k} I=0 \tag{4}
\end{equation*}
$$

Consider the following $k \times 1$ matrices:

$$
C=\left(c_{0}, c_{1}, \ldots, c_{k-1}\right)^{t}, B_{j}=\left(0,0, \ldots, 0, b_{j}\right)^{t}, j=0,1, \ldots
$$

Let

$$
\begin{equation*}
A^{m} C+A^{m-1} B_{0}+A^{m-2} B_{1}+\cdots+A^{k-1} B_{m-k}=\left(a^{(m)}, \ldots\right)^{t} \tag{5}
\end{equation*}
$$

We will prove that $\left\langle\alpha^{(m)}\right\rangle_{m \in N}$ satisfies (1). By equation (4),
*This paper was written while the author was a visiting scholar at the University of Wisconsin.

Hence,

$$
A^{m} C=\sum_{i=1}^{k} \alpha_{i} A^{m-i} C, A^{m-j-1} B_{j}=\sum_{i=1}^{k} \alpha_{i} A^{m-j-1-i_{B}}, j=0,1,2, \ldots
$$

$$
\begin{align*}
& \left(\alpha^{(n+k)}, \ldots\right)^{t}=A^{n+k} C+A^{n+k-1} B_{0}+A^{n+k-2} B_{1}+\cdots+A^{k} B_{n-1}+A^{k-1} B_{n} \tag{6}\\
& =\sum_{i=1}^{k} \alpha_{i} A^{n+k-i} C+\sum_{i=1}^{k} \alpha_{i} A^{n+k-1-i_{B}} B_{0}+\cdots+\sum_{i=1}^{k} \alpha_{i} A^{k-i_{1}} B_{n-1}+A^{k-1} B_{n} \\
& =\alpha_{1}\left(A^{n+k-1} C+\sum_{i=1}^{n} A^{n+k-1-i_{B}}{ }_{i-1}\right)+\alpha_{2}\left(A^{n+k-2} C+\sum_{i=1}^{n-1} A^{n+k-2-i} B_{i-1}\right) \\
& \quad+\sum_{i=2}^{k} \alpha_{i} A^{k-i_{B}} B_{n-1}+\alpha_{3}\left(A^{n+k-3} C+\sum_{i=1}^{n-2} A^{n+k-3-i_{B}} B_{i-1}\right) \\
& \quad+\sum_{i=3}^{k} \alpha_{i} A^{k+1-i_{B}} B_{n-2}+\cdots+\alpha_{k}\left(A^{n} C+\sum_{i=1}^{n-k+1} A^{n-i_{B}} B_{i-1}\right) \\
& \quad+\alpha_{k} A^{k-2} B_{n-k+1}+A^{k-1} B_{n} .
\end{align*}
$$

Since

$$
\begin{aligned}
& A^{i}=\left[\begin{array}{ccccccc}
0 & \ldots & 0 & 1 & 0 & \ldots & 0 \\
& \vdots & & & & \vdots &
\end{array}\right], i=0,1,2, \ldots, k-1, \\
& A^{i} B_{j}=(0, \ldots)^{t} \text {, when } 0 \leq i \leq k-2 \text {, } \\
& A^{k-1} B_{n}=\left(b_{n}, \ldots\right)^{t} .
\end{aligned}
$$

and

Then, from (6), we have:

$$
\begin{aligned}
\left(\alpha^{(n+k)}, \ldots\right)^{t}= & \alpha_{1}\left(a^{(n+k-1)}, \ldots\right)^{t} \\
+ & \alpha_{2}\left(a^{(n+k-2)}, \ldots\right)^{t}+(0, \ldots)^{t} \\
+ & \alpha_{3}\left(a^{(n+k-3)}, \ldots\right)^{t}+(0, \ldots)^{t} \\
& \vdots \\
+ & \alpha_{k}\left(\alpha^{(n)}, \ldots\right)^{t}+(0, \ldots)^{t}+\left(b_{n}, \ldots\right)^{t}
\end{aligned}
$$

This is

$$
a^{(n+k)}=\alpha_{1} a^{(n+k-1)}+\alpha_{2} a^{(n+k-2)}+\cdots+\alpha_{k} \alpha^{(n)}+b_{n}
$$

and (1.1) is satisfied.
By (5),

$$
\begin{aligned}
& \left(a^{(0)}, \ldots\right)^{t}=A^{0} C=\left(c_{0}, \ldots\right)^{t} \\
& \left(a^{(1)}, \ldots\right)^{t}=A C=\left(c_{1}, \ldots\right)^{t} \\
& \vdots \\
& \left(a^{(k-1)}, \ldots\right)^{t}=A^{k-1} C=\left(c_{k-1}, \ldots\right)^{t}
\end{aligned}
$$

that is, $a^{(i)}=c_{i}, i=0,1,2, \ldots, k-1$, and (1.2) also holds. Thus,
(7) $\left\langle\mathcal{u}_{m}\right\rangle_{m \in N}=\left\langle a^{(m)}\right\rangle_{m \in N}$
is a solution of (1). Now we find a combinatorial expression for $a^{(m)}$. From formula (5),

$$
\begin{align*}
a^{(m)}=c_{0} \alpha_{11}^{(m)}+c_{1} a_{12}^{(m)}+c_{2} \alpha_{13}^{(m)} & +\cdots+c_{k-1} \alpha_{1 k}^{(m)}+b_{0} \alpha_{1 k}^{(m-1)}+b_{1} \alpha_{1 k}^{(m-2)} \tag{8}\\
& +\cdots+b_{m-k} \alpha_{1 k}^{(k-1)}
\end{align*}
$$

We consider the associated directed graph D of A with weights $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ as drawn in Figure 1 .

Figure 1
The Associated Digraph D of A
(Arcs with no assigned weight have weight 1.)
The definition of D is given as follows. If $A=\left[\alpha_{i j}\right]$, then D is the digraph in which there is an arc (i, j) with weight $\alpha_{i j}$ from i to j if and only if $\alpha_{i j}$ $\neq 0(i, j=1, \ldots, n)$. The weight of a walk in D is defined to be the product of the weights of all of the arcs on the walk. $A_{i j}^{(m)}$ is the sum of weights of all walks with length m from i to j (see [2]). We now have
Lemma 1: $\alpha_{1 j}^{(m)}=a_{j j}^{(m+1-j)}$.
Proof: Consider the sum of weights of all walks with length m from 1 to j $(j=1,2,3, \ldots, n)$. For $1 \leq m \leq k-1$,

$$
\alpha_{1 j}^{(m)}= \begin{cases}1 & \text { if } m=j-1 \\ 0 & \text { otherwise } .\end{cases}
$$

Clearly,

$$
a_{j j}^{(m+1-j)}= \begin{cases}1 & \text { if } m=j-1 \\ 0 & \text { if } j \leq m \leq k-1\end{cases}
$$

Now let $m>k-1$. The walks of length m from 1 to j must be of the form

$$
1 \rightarrow 2 \rightarrow \ldots \rightarrow j \rightarrow \ldots \rightarrow k \rightarrow \ldots \rightarrow j
$$

Eliminating the path from 1 to j, we see that the preceding walks are in one-to-one correspondence with the walks of length $m-j+1$ from j to j. Since the weight of the path $1 \rightarrow 2 \rightarrow 3 \rightarrow \cdots \rightarrow j$ is 1 , we have

$$
\alpha_{1 j}^{(m)}=a_{j j}^{(m+1-j)}
$$

Lemma 2: $a_{j j}^{(m)}=\sum_{i=1}^{j} \alpha_{k-i+1} f^{(m-k+i-1)} \quad(j=1,2, \ldots, k-1, k)$,
where

$$
f^{(t)}=0(t<0), \quad f^{(0)}=1
$$

and

$$
f^{(m)}=\sum_{\substack{s_{1}+2 s_{2}+\ldots+k s_{k}=m \\ s_{i} \geq 0 \\(i=1,2, \ldots, k)}}\binom{s_{1}+s_{2}+\cdots+s_{k}}{s_{1}, s_{2}, \ldots, s_{k}} \alpha_{1}^{s_{1}} \alpha_{2}^{s_{2}} \ldots \alpha_{k}^{s_{k}}
$$

Proof: From the digraph D, it is not difficult to see that there are k classes of circuits from vertex k to k in D as given in the following table.

NAME	CIRCUIT	LENGTH	WEIGHT
C_{1}	$k \rightarrow k$	1	α_{1}
C_{2}	$k \rightarrow(k-1) \rightarrow k$	2	α_{2}
C_{3}	$k \rightarrow(k-2) \rightarrow(k-1) \rightarrow k$	3	α_{3}
\vdots	\vdots	\vdots	\vdots
C_{k}	$k \rightarrow 1 \rightarrow 2 \rightarrow \cdots \rightarrow k$	k	α_{k}

Hence, any walk with length m from k to k must consist of $s_{1} C_{1}{ }^{\prime} s, s_{2} C_{2}^{\prime} s, \ldots$, $s_{k} C_{k}^{\prime}$ s.

The walks with length m from j to $j, 1 \leq j \leq k-1$, have one of the j following forms:

NAME	CIRCUIT
Form (1)	
Form (2)	$j \rightarrow \ldots \rightarrow k \rightarrow \ldots \rightarrow k \rightarrow 2 \rightarrow 3 \rightarrow \ldots \rightarrow j$
Form (3)	$j \rightarrow \ldots \rightarrow k \rightarrow \ldots \rightarrow k \rightarrow 3 \rightarrow 4 \rightarrow \ldots \rightarrow j$
Form (j)	$j \rightarrow \ldots \rightarrow k \rightarrow \cdots \rightarrow k \rightarrow j$

Clearly, the front path and the back path in form (i), where $i=1,2, \ldots, j$, together give a circuit C_{k-i+1}. Namely, there must be a circuit of length $k-i+1$. Thus, for any fixed $i(1 \leq i \leq j)$,

For convenience, let

$$
\left.\begin{array}{rl}
f^{(m)} & =f^{(m)}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right) \\
& =\sum_{\substack{s_{1}+2 s_{2}+\ldots, k+k s_{k}=m \\
s_{t} \geq 0}}\left(\begin{array}{l}
s_{1}+s_{2}+\ldots+s_{k} \\
s_{1},
\end{array} s_{2}, \ldots, s_{k}\right.
\end{array}\right) \alpha_{1}^{s_{1}} \alpha_{2}^{s_{2}} \ldots \alpha_{k}^{s_{k}}
$$

Hence,

$$
a_{j j}^{(m)}=\sum_{i=1}^{j} \alpha_{k-i+1} f^{(m-k+i-1)}, 1 \leq j \leq k
$$

Lemma 3: For $f^{(m)}$, we have the following recurrence:

$$
f^{(m)}=a_{k k}^{(m)}=\sum_{i=1}^{k} \alpha_{k-i+1} f^{(m-k+i-1)}
$$

Proof: According to the preceding analysis,

$$
a_{k k}^{(m)}=\sum_{\substack{s_{1}+2 s_{2}+\cdots+k s_{k}=m \\
s \geqslant 0}}\left(\begin{array}{l}
s_{1}+s_{2}+\ldots+s_{k} \\
s_{1}, \\
s_{2}, \ldots, s_{k}
\end{array}\right) \alpha_{1}^{s_{2}} \alpha_{2}^{s_{2}} \ldots \alpha_{k}^{s_{k}}=f^{(m)} .
$$

By Lemma 2,

Thus,

$$
\alpha_{k k}^{(m)}=\sum_{i=1}^{k} \alpha_{k-i+1} f^{(m-k+i-1)}
$$

$$
f^{(m)}=a_{k k}^{(m)}=\sum_{i=1}^{k} \alpha_{k-i+1} f^{(m-k+i-1)}
$$

Theorem: The solution of the recurrence relation (1) is

$$
\begin{align*}
& u_{m}=\sum_{j=1}^{k} c_{j-1} \sum_{i=1}^{j} \alpha_{k-i+1} f^{(m-k-j+i)}+\sum_{j=1}^{m-k+1} b_{j-1} f^{(m+1-k-j)} \tag{9}\\
& u_{m}=\sum_{j=1}^{k} c_{j-1} \sum_{i=1}^{j} \alpha_{k-i+1} \sum_{\substack{s_{1}+2 s_{2}+\ldots+k s_{k}=m-k+i-j \\
s_{t} \geq 0 \\
(t=1, \ldots, k)}}\binom{s_{1}+s_{2}+\ldots+s_{k}}{s_{1}, s_{2}, \ldots, s_{k}} \alpha_{1}^{s_{1}} \alpha_{2}^{s_{2}} \ldots \alpha_{k}^{s_{k}} \\
& +\sum_{j=1}^{m-k+1} b_{j-1} \sum_{s_{1}+2 s_{2}+\ldots+k s_{k}=m-k-j+1}^{s_{t} \geq 0(t=1, \ldots, k)} \boldsymbol{(\begin{array} { c }
{ s _ { 1 } + s _ { 2 } + \cdots + s _ { k } } \\
{ s _ { 1 } , s _ { 2 } , \ldots , s _ { k } }
\end{array}) \alpha _ { 1 } ^ { s _ { 1 } } \alpha _ { 2 } ^ { s _ { 2 } } \ldots \alpha _ { k } ^ { s _ { k } } .}
\end{align*}
$$

Proof: By (7) and (8),

$$
\begin{aligned}
u_{m}=a^{(m)} & =\sum_{j=1}^{k} e_{j-1} a_{1 j}^{(m)}+\sum_{j=1}^{m-k+1} b_{j-1} a_{1 k}^{(m-j)} \\
& =\sum_{j=1}^{k} c_{j-1} \alpha_{j j}^{(m+1-j)}+\sum_{j=1}^{m-k+1} b_{j-1} a_{k k}^{(m-k+1-j)} \quad(\text { Lemma 1) } \\
& =\sum_{j=1}^{k} e_{j-1} \sum_{i=1}^{j} a_{k-i+1} f^{(m-j-k+i)}+\sum_{j=1}^{m-k+1} b_{j-1} f^{(m-k+1-j)} \text { (Lemmas 2 }
\end{aligned}
$$

Corollary 1:

$$
u_{m}=\alpha_{k-1} f^{(m-k+1)}+\sum_{j=1}^{k-1} c_{j-1} \sum_{i=1}^{j} \alpha_{k-i+1} f^{(m-k-j+i)}+\sum_{j=1}^{m-k+1} b_{j-1} f^{(m+1-k-j)} .
$$

Proof: This formula follows by using Lemma 3 and (9).
Corollary 2: The homogeneous recurrence (1) with constant coefficient has the solution

$$
u_{m}=\alpha_{k-1} f^{(m-k+1)}+\sum_{j=1}^{k-1} c_{j-1} \sum_{i=1}^{j} \alpha_{k-i+1} f^{(m-k-j+i)} .
$$

Corollary 3: The recurrence relation

$$
\left\{\begin{array}{l}
u_{n+k}=\alpha u_{n+r}+\beta u_{n}+b_{n} \tag{10}\\
u_{0}=c_{0}, u_{1}=c_{1}, \ldots, u_{k-1}=c_{k-1} \quad(1 \leq l \leq k-1)
\end{array}\right.
$$

has the solution

$$
u_{m}=\sum_{j=0}^{r-1} e_{j} \beta f^{(m-k-j)}+\sum_{j=r}^{k-1} c_{j} f^{(m-j)}+\sum_{j=1}^{m-k+1} b_{j-1} f^{(m+1-k-j)}
$$

where

$$
f^{(m)}=\sum_{\substack{k x+(k-r) y=m \\ x, y \geq 0}}\binom{x+y}{y} \beta^{x} \alpha^{y} \quad(m \geq 0) .
$$

Proof: Let $\alpha_{k}=\beta, \alpha_{k-r}=\alpha_{1}$, and $\alpha_{i}=0$, otherwise, in (1). By (9),

$$
\begin{aligned}
& u_{m}=\sum_{j=1}^{r} c_{j-1} \beta f^{(m-k-j+1)}+\sum_{j=r+1}^{k} c_{j-1}\left(\beta f^{(m-k-j+1)}+\alpha f^{(m-k-j+r+1)}\right) \\
& +\sum_{j=1}^{m-k+1} b_{j-1} f^{(m+1-k-j)} \\
& =\sum_{j=0}^{r} c_{j-1} \beta f^{(m-k-j+1)}+\sum_{j=r+1}^{k} c_{j-1} f^{(m-j+1)}+\sum_{j=1}^{m-k+1} b_{j-1} f^{(m+1-k-j)} \quad \text { (Lemma 3) } \\
& =\sum_{j=0}^{r-1} e_{j} \beta f^{(m-k-j)}+\sum_{j=r^{k}}^{k-1} e_{j} f^{(m-j)}+\sum_{j=1}^{m-k+1} b_{j-1} f^{(m+1-k-j)}
\end{aligned}
$$

where

$$
f^{(m)}=\sum_{\substack{k x+(k-r) y=m \\ x, y \geq 0}}\binom{x+y}{y} \beta^{x} \alpha^{y}
$$

When $b_{n}=0$ in (10), Corollary 3 coincides with a result in [3]. When $b_{n}=0$, $\alpha=\beta=1, Z=1, k=2$, and $c_{0}=c_{1}=1$,

$$
\begin{aligned}
u_{m}=c_{0} f^{(m-2)}+c_{1} f^{(m-1)} & =f^{(m-2)}+f^{(m-1)} \\
& =f^{(m)}=\sum_{\substack{2 x+y=m \\
x, y \geq 0}}\binom{x+y}{y}=\sum_{k=0}^{[m / 2]}\binom{m-k}{k},
\end{aligned}
$$

which js the combinatorial expression of the Fibonacci series.
Example 1: $F_{n+5}=2 F_{n+4}+3 F_{n}+(2 n-1)$

$$
F_{0}=1, F_{1}=0, F_{2}=1, F_{3}=2, F_{4}=3
$$

Solution: $\quad k=5, Z=4, \alpha=2, \beta=3, b_{n}=2 n-1$

$$
c_{0}=1, c_{1}=0, c_{2}=1, c_{3}=2, c_{4}=3
$$

By Formula (10), one easily finds

$$
\begin{aligned}
& F_{n}=3 \sum_{x=0}^{[(n-5) / 5]}\binom{n-4 x-5}{x} 3^{x} 2^{n-5 x-5}+3 \sum_{x=0}^{[(n-7) / 5]}\binom{n-4 x-7}{x} 3^{x} 2^{n-5 x-7} \\
& +6 \sum_{x=0}^{[(n-8) / 5]}\binom{n-4 x-8}{x} 3^{x} 2^{n-5 x-8}+3 \sum_{x=0}^{[(n-4) / 5]}\binom{n-4 x-4}{x} 3^{x} 2^{n-5 x-4} \\
& +\sum_{j=1}^{n-4}(2 j-3) \sum_{x=0}^{[(n-4-j) / 5]}\binom{n-4 x-4-j}{x} 3^{x} 2^{n-5 x-4-j} .
\end{aligned}
$$

Acknowledgments

I would like to thank Professor R. A. Brualdi, who has given me great help during my visiting the Department of Mathematics at the University of Wisconsin-Madison. I also appreciate the helpful comments of the referee, and am indebted to Professor G. E. Bergum for some useful suggestions.

References

1. R. A. Brualdi. Introductory Combinatorics. New York: Elsevier-North Holland, 1977.
2. F. Harary. Grapy Theory. Reading, Mass.: Addison-Wesley, 1969.
3. Tu Kuizhang. "A Formula for General Solutions of Homogeneous Trinomial Recurrences." Chinese Annals of Math. 2.4 (1981):431-36.
4. Marie-Louis Lavertu \& Claude Levesque. "On Bernstein's Combinatorial Identities." Fibonacei Quarterly 23.4 (1985):347-55.
5. Claude Levesque. "On m-th Order Linear Recurrences." Fibonacci Quarterly 23.4 (1985): 290-93.
