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1. INTRODUCTION 

A second-order line-sequence Is Inhomogeneous if its recurrence relation includes a nonzero 

constant k, such as the following: 

^ = ^2
+
Vl

 + 1
» (

L 1
) 

where A = 1 is the inhomogeneous term. 

A line-sequence generated by (1.1), according to the convention adopted in (2.1) of [3], is 

represented by 

^ 0 ,« I : . . .W_ 2 , I /_ 1 , [%I/ 1 ] , I / 2 , I^ , . . . , (1.2) 

where un is the n^ element counting from u0 in both directions, and the pair w0, M1 is referred 

to as a generating pair. The algebraic properties of these sequences have been investigated by 

Bicknel! and Bergum [1], and the general solution of an arbitrary order inhomogeneous sequence 

has been obtained by Liu [6]. In this article we investigate some basic linear properties of these 

line-sequences. We shall first treat the simple case of line-sequences generated by (1.1) in some 

detail Later on we shall extend the treatment to more general cases. 

Some samples of the inhomogeneous line-sequences given by (1.1) are: 

A),- i : -4,-4, l , -2,[0,- l] ,0,0, l ,2, . . . ; (1.3) 

/ . ^ o : . . . - ^ 1,-2,0,[-l, 0],0,1,2,4,.... (1.4) 

For reasons to be explained later, we say that these constitute an inhomogeneous Fibonacci pair. 

Also, for convenience, the terms of the line-sequences will be represented by 

4 : . . . /_3, Z-2> £-i> h? h> h> h>--> C
1
-

5
) 

where I0 = -1 is the origin, I{ = 0, and so on. 

We shall call the change of a sequential relation from the homogeneous case to the corre-

sponding inhomogeneous case an inhomogeneous transformation, and those relations that remain 

unchanged in form (inhomogeneously) covariant. As it turns out, many well-known sequential 

relations are found to be inhomogeneous covariant. 

2. THE INHOMOGENEOUS WARMONIC CASE 

We define the following inhomogeneous operations in relation to (1.1) and (1.2). 

Definition 1: Addition is defined to be addition of corresponding numbers in the line-sequences, 

together with the inhomogeneous constant 1. Thus, 

/,,, = / , , , , ,+/ ,v . , (2.1) 

where i = z' + z" +1 and j = j
f
 + j " +1. We refer to this operation as inhomogeneous addition. 
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Definition 2: Multiplication by a scalar h is defined in the sense of repeated addition. Thus, 

IUJ=hIVJ» (2.2) 

where A is a scalar, i - hi
f
 + h - 1 and j = hj

f
 +h-l. We refer to this operation as inhomogeneous 

multiplication. 

Definition 3: The inner product of two line-sequences is defined as follows: 

(/,,, /,,,,) = (i + I F +1) + U + W +1). (2-3) 

Two line-sequences are said to be orthogonal if and only if their inner product is zero, normal 

if and only if one's self inner product is one. The length of a line-sequence is defined as the 

(positive) square root of its inner product with itself 

Definition 4: Two line-sequences are said to be congruent if and only if they constitute the same 

set of numbers; equal if and only if they are congruent and have the same set of generating 

numbers. We refer to this as the uniqueness of generating numbers. 

It is clear that the set / of line-sequences spans a vector space [2] referred to as an inhomoge-

neous-harmonic (IH-)space, where the first predicate signifies the type of operations and the 

second the recurrence relation. Furthermore, it can be verified easily that the line-sequences (1.3) 

and (1.4) form an orthonormal pair that serves as the basis set for this space. An arbitrary line-

sequence in this space can then be resolved into its inhomogeneous basis components as follows: 

/,,,=(|- + l)/0.-i+(/ + l)/-i.o- (2-4) 

Applying (1.5), this equation can also be expressed in terms of 7„'s: 

//>J, = (/ + 1 ) / / . I I / O +C/ + 1)/ / O ) / | . (2.5) 

Following are some examples illustrating the inhomogeneous operations. 

Example 1: Let Iatb be the identity element of addition. Then, for an arbitrary line-sequence /,- ., 

we must have Ia,b+IUJ = IUJ. By (2.1), we have Ia,b+IUj = Ia+i+iMj+i. Comparing the right-

hand sides of these equations, we obtain a = b - - 1 . Hence, the additive identity is a sequence of 

-l 's: 

/_!,_!:...-!,-!, [-1,-1],-1,-1, . . . . (2.6) 

Example 2: By (2.1), we have 

/ i J+/__2,_7_2 = /_,,_!; (2.7) 

hence, I^^-j-i
ls

 the inverse element of IUj. 

Example 3: Letting h = -1 in (2.2), we find that 

- / , , , = I+2.-J-2, (2-8) 

which is the negative element equation. Together with (2.7), we see that the inverse element is 

just the negative element. In particular, 

- / . w = / - w , (2.9) 
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which confirms once more that I_ls_i Is Indeed the Identity element of addition. Combining (2.7) 

and (2.8), we have 

/ , , , - / , , , = /_,,_„ (2.10) 

which is the equation of elimination. 

Applying (2.8) to (2.1), we obtain 

Iuj=Iv%r-Ix«,n (2.11) 

where i = V - i" -1 and j = f - j " - 1 . This Is the subtraction formula. 

Example 4: Letting h = 0 In (2.2), we obtain 

%j= I-i,-i- (2-12) 

This Is the equation of zero (scalar) multiplication. 

Applying (2.2) and (2.1) successively, we have ^o,-i
 +
 7̂ -i,o ~ ^/-i,-i

+
 ^-IJ-I

 =
 ^f-ij-i- Thus, 

UQ _I + jI-\ o = ̂ -i,-i if
 a n

^ only If i = j = 0. This confirms the linear Independence of the two 

basis vectors. 

Example 5: Applying (2.2), we have 

(a + b)Iu j = I(a+b)i+(a+b)~l, (a+b)j+(a+b)-l • 

Applying (2.2) and (2.1) successively, we have 

a
^i,j^^i,j ~ %ai+a-l,aj+a-l

 +
 hi+b-l,bj+b-l 

~ *(a+b)i+(a+b)-l, (a+b)j+(a+b)-V 

Comparing these results, we have 

(a + b)IIJ=aIUJ+bIiJ. (2.13) 

This Is the right distributive property of scalar multiplication. 

Again applying (2.1) and (2.2) successively, on the one hand, we have 

— *h(i'+i"+l)+h-\, h(j'+j"+l)+h-l. 

On the other hand, we have 

M^j, +hli„J-H = Ihi'+h-lhj'+h-l
+
*hi"+h-l,hf"+h-l 

~ *h(i'+i"+l)+h-l,h(j'+j"+l)+h-V 

Comparing these results, we find that 

H!v.y+It»j») = Mv,r+Mi%r. (2.14) 

This is the left distributive property of scalar multiplication. 

Example 6: Let A and B denote the pair of Golden ratios, so ,4 + 5 = 1 and AB = - 1 . 

Parallel to the homogeneous case (see [4], (2.1) and (2.2)), applying (2.2), we obtain 

A),-i + ^-i,o
 =

 A> , - i
+
 -̂1,4-1

 =
 h,A-\ (2.15) 
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and 

V l +
 BI

-\,0 = h,-l
 + 7

-l, 5-1 = k,B-V (
2
«

16
) 

Subtracting (2.16) from (2.15), then applying (2.4) and (2.12), we find 

Ll0 = (/cu-i ~ IO,B-I) I U - B\ (2.17) 

which is the inhomogeneous version of Binet's formula. 

This result indicates that the right-hand sides of (2.15) and (2.16) constitute the inhomoge-

neous Golden pair. 

In terms of matrix representation, let 

lh-1 
['-1,0. 

, G' = 
h,B-\ 

/o,A-l_ 
, M = 

"1 B~ 
1 Aj 

then it can be shown that 

MF' = G' and M'
l
G' = F'. (2.18) 

Thus, these matrix relations are inhomogeneously covariant to their homogeneous counterparts 

(see [4], (4.8) and (4.9)). 

The sum of the inhomogeneous Golden pair then gives the inhomogeneous Lucas line-

sequence 

^o = U i + W (
2
-

19
) 

which generates the inhomogeneous Lucas line-sequence 

Z-. . .-5,2,-2,1,0,2,3,6, . . . , (2.20) 

where we adopt V to represent inhomogeneous Lucas numbers, and where L^ = 1, L[ = 0 is the 

pair of generating numbers. 

Note that (2.19) is another example of inhomogeneous covariance to its homogeneous 

counterpart (see [4], (3.1)). Note also that the line-sequence (2.20) is congruent to the one gen-

erated by the first Fibonacci basis vector Fx 0 with an inhomogeneous term k = l. The second 

Fibonacci basis vector F0l with an inhomogeneous term k = 1 generates the inhomogeneous line-

sequence congruent to the two inhomogeneous basis vectors (1.3) and (1.4). For this reason, we 

are justified to refer to (1.3) and (1.4) as the inhomogeneous Fibonacci pair, as we have done 

above. 

Furthermore, applying (2.4) to (2.19), we obtain the expression of the inhomogeneous Lucas 

line-sequence in terms of the inhomogeneous basis components, 

/ i i 0 = 2 / 0 f - 1 +/ . I f o. (2-21) 

This is another example of inhomogeneous covariance relating to the homogeneous relation be-

tween Lucas and Fibonacci line-sequences: F2l = 2Fl0+F0l. 

3. THE TRANSLATIONAL PROPERTIES 

The translation operation on the inhomogeneous line-sequence is defined in the same way as 

that on the homogeneous line-sequence (see [3], (3.2)) with the following appropriate modifica-

tions. 
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Definition 5: The translation operator Tiy i= integer, acting on a line-sequence shifts all of its 

elements i places to the right if / > 0, forming a new but congruent line-sequence 

We say that translation Is a congruent operation, because it preserves congruency of the line-

sequence. In particular, for the additive identity, we have 

?/_!,_! = /_!._!. (3.2) 

Namely, the additive Identity Is translationally Invariant. 

Since translation preserves congruence, translation must be distributive over addition of line-

sequences: 

A V%,uY
 +

 1-U'Q,u{) ~ A*u0,ux
 +

 V 4, u{ • (3.3) 

This Is the left distributive property of translation. Using (3.1) and (2.1), we have 

*i \*uQ, MJ ' •*• U'Q,u{) ~~ *• u{ +M/+1,ui+l +«/+ 1 +1 • W • ̂  j 

Since translation preserves congruency, translation after repeated addition is the same as 

repeated addition after translation. Hence, multiplication and translation commute: 

KTJ^^m^). (3.5) 

Definition 6: Obviously, Tt is uniquely defined; thus, two translations are said to be equal If and 

only if both effect the same shift of the elements in a line-sequence. 

Definition 7; Addition of two translations on a line-sequence Is defined to be the sum of the two 

translated line-sequences, 

(Z + T^^TII^+Tjl^. (3.6) 

Namely, addition of translations Is distributive over line-sequences. This is the right distributive 

property of translation. Obviously, addition of the translation operations is commutative, 

i; + TJ = TJ + i;. (3.7) 

Applying (3.1) and (2.1) to (3.6), we obtain 

(Tt + Tj)Iu^Ui = IUi+Uj+hUMUj+l+v (3.8) 

Therefore, the sum of two translations does not preserve the congruence of the line-sequence it 

operates on. 

Definition 8: By the product notation, %°TJy we mean successive applications of the respective 

translation on a line-sequence, the result of which is such that all the elements shift i+j places. 

Hence, this is equivalent to the application of a single operation on that line-sequence. That is, 

Obviously, the translations commute with respect to the order of application, 

T^TJ^TJOT^ (3.10) 

Applying (3.9) and (3.1), we have 

1997] 115 



ON SOME BASIC LINEAR PROPERTIES OF THE SECOND-ORDER INHOMOGENEOUS LINE-SEQUENCE 

(T°Tf)L u =IU u . (3.11) 
v i j / UQ,U{ ui+J,ui+J+l \ J 

Letting / = j and adopting the exponential convention for repeated translation, it follows 

from (3.9) that T? = T2i. In general, we have 

l? = Tni. (3.12) 

We illustrate the foregoing results with the following examples. 

Example 7: Putting i = j in (3.8), we obtain (3̂  + 3 ? ) ^ = I2Ui+i,2ui+l+i- Letting h = 2 in (3.5), 

we find that 2TtI = l2Ui+\,2ui+l+\- Comparing these results, we have 

^ + ^ = 2^. (3.13) 

Hence, we conclude that the scalar multiplication of a translation is equivalent to the repeated 

addition of that translation. 

Example 8: Putting y = i + l in (3.8) and applying (1.1), we get (? + ^+1)/^ f l l l =
 J
ui+2,ui+y

 T h i s 

induces the recurrence formula of translation: Tt + Tj+l = Ti+2. 

Let i = 0 and I = T0, the identity of translation, then we have 

I+T-T
2
 = O, (3.14) 

So the pleasant equation of translation (see [5], (2.16)) is inhomogeneously covariant. 

Example 9: From (2.5), we have Iu ^u = (u0 + l)Ij_ } + (wx +1)1 j j .Applying translation on both 

sides and using (3.1), (3.5), and (2.1), we obtain 

% o , « i ~ ^(«0+i)/i_1^tt,+i)//+«0+w1u^ ( 3 . 1 5 ) 

Thus, by Definition 4, the uniqueness of generating numbers, we arrive at the following formula 

relating uf to the corresponding pair of J/s: 

H=(ttb + l)/ /.1 + (iil + l)//+iic, + w1 + l. (3.16) 

Putting uQ = L^ = 1 and ut = Z/ = 0 in (3.16), we obtain the expression of the inhomogeneous 

Lucas numbers L\ in terms of the inhomogeneous Fibonacci numbers: 

Z, '=2/M+/,+2. (3.17) 

Applying (1.1), this becomes 

11 = 1^+1^ + 1, (3.18) 

which is the inhomogeneous version of the relation between the Lucas numbers and the Fibonacci 

numbers: 1^ = Ft_x +Fi+l. 

From (3.15), we find that 

?A,0 ~ ^2/M+/,+2f 2/,+//+I +2 • (3.19) 

Substitute (3.17) into (3.19) to obtain 

which is none other than the translation formula for the inhomogeneous Lucas line-sequence. 
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Example 10: Applying (1.1) and (1.2) and using (3.1), we obtain (T_x + T{)IUQ = I_2l +1 0 2 • 

Applying (2.1) and (2.4) to the right-hand side and using (2.12), we obtain (T^ + T^I^ = 

5I_1?(h which translates into {Tt_x + Ti+l)I^0 = 53J7_lf0. 

Applying (2.20) and (1.5) to both sides, respectively, we find that 

AU + A
f
+i = 5//, (3.21) 

which is another relation covariant to its homogeneous counterpart Z ^ + Lj+l = 5Ff, 

Example 11: From (3.1), and putting u,=u
f
Q and uj+l=u}9 we have Tt{TJu u) = 7iIu.u. = 

Iu,tU, \ w
r
here, by (3.16), we have 

uj = (iî  + l)ii_! + {u{ +T)It + ttj + w{ +1 and aj = uj = (% + l ) / ^ + (ux +1)/,- + u0 + ux +1. 

On the other hand, applying (3.9) and (3.1), we obtain WjIu^Ui) = Ti+jIu^Ui = Iu^u_^ 

where, by (3.16), we have 

By Definition 4, uj - ui+j. Since u0 is an independent parameter, the coefficients of uQ must 

be equal in the two expressions. This leads to the following relation: Ij-.\Ij-\ +IJII+IJ_I+IJ + 

•̂_! + It + 2 = Ii+J_i + 1. Putting i = j , we obtain the relation 

{Ii_i + lf+(Ii+lf=j2i_i + K (322) 

which is the inhomogeneous version of the relation .F£x + F^ =F2j_1. Likewise, we obtain the 

relation 

(A'+l)(/, + 1) = I2i + 1, (3.23) 

which is the inhomogeneous version of the relation LiFi = i^-. 

Example 12: Starting from / ^ ^ = (A-B)IItJi+i l{A-B) and applying (2.13) and (2.2), we 

obtain the translational form of the inhomogeneous version of Binet's formula: 

hhIi+l ~ j ^ _ g VAIf+A-l, AIi+l+A-l ~ ^BIj+B-l,BIi+l+B-l) • (3.24) 

Similarly, applying (2.5) to (2.19), we obtain Ih0 = AIj j + ̂ /0,/1 +2Ij Io. Applying translation 

on both sides and using (3.20) and (2.2), we get 

/zV.A'+i
 =

^AIi+A-l,.4Ii+l+A-l
+
^BIi+B-l,BIi+l+B-l

+
^li_l,Ii' (3.25) 

This is the translational form of Binet's formula for the inhomogeneous Lucas numbers. 

4. THE INHOMOGENEOUS ANHARMONIC CASE 

An anharmonic recurrence relation with an inhomogeneous constant term can be expressed in 

general as follows: 

where b and c, called the anharmonic parameters, are nonzero constants not both equal to one, 

and k is the inhomogeneous constant term. An anharmonic line-sequence is represented by 
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J
uQ,ux ' .»

 W
-2>

 U
-h [ % " l l ,

 W
2> *h,~-' (

4
-

2
) 

The corresponding terms in the line-sequence are represented by 

Jn\... J-3, »/_2? J-i, Jo, J\, J2-> J39 • --> (4-3) 

where J0 is the origin. 

It is easy to see from (4.1) that anharmonic addition of anharmonic line-sequences is incom-

patible with the translational invariance of the additive identity. Therefore, we shall try harmonic 

operations as defined below. 

Definition 9: Addition is inhomogeneous, that is, addition of corresponding terms in the line-

sequences, together with the inhomogeneous constant k. Thus, 

Jj j = JVj, + Ji>'j», (4.4) 

where i = i' +i" + k and j = f + j " + k. 

Definition 10: Multiplication by a scalar h is defined in the sense of repeated addition. That is, 

J,,j=hJrj., (4.5) 

where h is a scalar, i -hV + (h- l)k, and j = hj' + (h- l)k. 

Definition 11: The inner product of two line-sequences is defined as follows: 

{JtJ, J,. tJ.) = (i + *)(/' + k) + (j + k)(j' + k). (4.6) 

Two line-sequences are said to be orthogonal if and only if their inner product is zero, normal 

if and only if one's self inner product is one. The length of a line-sequence is defined as the (posi-

tive) square root of its inner product with itself 

Furthermore, let Ju M denote the additive identity, then, for an arbitrary line-sequence JitJ, 

we have JUQ^ +JtJ = JtJ. However, by (4.4), we have J^ +JfJ = JUo+i+k,U]+J+k. Therefore, 

uQ = ux - -k. So we find the additive identity 

J^_k:...-k,-k,[-k,-k],-k,-k,.... (4.7) 

On the other hand, the line-sequence of the additive identity must be translationally invariant, 

namely, u0 = ul=u2. By (4.4), u2 = cu0+bul + k, so we must have u0 - -kI{c + b-X). 

Comparing these results, we arrive at the condition between the anharmonic parameters: 

c + b = 2. (4.8) 

Then it is obvious that the set J of anharmonic line-sequences together with the inhomogeneous 

operations defined above constitute a vector space referred to as an inhomogeneous-anharmonic 

(IA-)space. 

Let Ju u and Ju M denote the pair of basis vectors. The orthogonality requirement leads to 

the following combinations of basis pair choices, differing in parity: J\-k,-k
 o r

 J-i-k,-k
 a n

^ J-k,i-k 

or J_k_x_k. 

We choose the following combination consistent with previous works, with both the anhar-

monic parameters and the inhomogeneous constant specified: 
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4 - * f - * ( c , ^ (4.9) 

J . M _ , ( c 7 5 ; ^ ) : . . . , ^ - ^ i - ^ J - ^ l - ^ ] ? f t - ^ c + ft
2
-^. (4.10) 

If c = h = k = 1, this pair reduces to the harmonic basis pair (1.3) and (1.4) above. If k = 0, it 

reduces to the homogeneous basis pair (see [3], (4.2) and (4.3)). An arbitrary line-sequence in 

this space can be resolved into its basis components according to the formula: 

JUi = (i + k)Jx_K_k + (J + k)J_ktl_k. (4.11) 

Note that putting h = -l in (4.5) gives 

-Jtj = J-i-2k.-j-2k. (4.12) 

This is the negative element equation, which reduces to (2.8) if k = 1. 

Putting h = 0 in (4.5) gives 

0J,j = J-t,-k- (4-13) 

This is the zero multiplication equation, which reduces to (2.12) if k - 1. 

Note that 

-/_*,-* = ./-*,_*, (4.14) 

which confirms that J.k^k is indeed the additive identity. 

5, THE HOMOGENEOUS ANHAMMONIC CASE 

It is also possible to combine line-sequences generated by (4.1), but with different inhomoge-

neous constant terms. To avoid confusion, we represent the set of line-sequences under these 

types of operations by Htj(c,b; k). We define the following operations. 

Definition 12: Addition of two line-sequences is defined as addition of corresponding terms in 

the line-sequences: 

HUJ(c9b; k) = HVJ,{cM *0 + #/».,"M; *"), (5.1) 

where i = i
f
 + /", j = j

f
 + j " , and k = k' + k

,f
. We refer to this as homogeneous addition. 

The additive identity is, of course, H0>0(c,b; 0), namely, a sequence of zeros, and the inverse 

element of HUj{c,b\ k) is H_u_j(c,b;-k). 

Definition 13: Multiplication by a scalar h is defined as 

HiJ(cMk) = hHi,J,(cMk>), (5.2) 

where h is scalar, / = hi\ j - hf9 and k = hk
f
. We refer to this as homogeneous multiplication. 

Definition 14: The inner product of two line-sequences is defined as follows: 

{HUJ, Hrjl) = (i + k)(i' + k>) + (J + k)(j> + k'). (5.3) 
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Two line-sequences are said to be orthogonal if and only if their inner product is zero, normal 

if and only if one's self inner product is one. The length of a line-sequence is defined as the 

(positive) square root of its inner product with itself. 

Thus, it is clear that the set H of line-sequences spans a vector space, referred to as a homo-

geneous-anharmonic {HA-)space. Obviously, the set of basis of this three-dimensional space is 

given by: 

Hl>0(c,b;0):...,^f-,--,[l,Olc,cb,...; (5.4) 
c c 

HQA(cAO):...,^^MllAc + b\...; (5.5) 
c c 

^ 0 ( c , 6 ; l ) : . . . , ^ , ^ , [ 0 , 0 ] , 1,6 + 1,.... (5.6) 
c c 

An arbitrary if line-sequence can then be decomposed into its basis components as follows: 

HUJ(c,b; k) = iHl0(c,b; 0) + jHOA(c,h; 0) + kH^(cfr 1). (5.7) 

Since the operations employed in [1] are basically compatible with the homogeneous opera-

tions, many results arrived therein can be derived directly in terms of H line-sequences, but not 

directly in terms of I line-sequences, which undergo inhomogeneous operations. Following are 

some examples. 

Example 13: From (5.1), we have 

#0>0(1,1; 1) = Hu{\, 1; 0) + # _ w a 1; 1), (5.8) 

which corresponds to (1.4) in [1]; 

# u ( l , l ; 1) = # u ( l , l ; 0) + ff0)0(l,l; 1), (5.9) 

which corresponds to (1.14) in [1]; 

Hxl{\\ 1) = H2A(l,l; 0) + ̂ 050(l,l; 1), (5.10) 

which corresponds to (1.22) in [1]; and so forth. 

Example 14: Substituting c-b = 1 into (5.7), we obtain 

HUj{\91; *) = Ml0(l,X 0) + /H^iO,X 0) + *ff0.oa 1; 1), (5-11) 

which corresponds to (2.2) in [1], or to (1.13) in [1] if k = 1. 

Substituting (5.8) into (5.11) and using (5.2) and the distributive property of multiplication, 

we obtain 

HtJ{\X k) = mh0(l,l; 0) + j ^ 1 ( l , l ; 0) + kHu(l,l; 0) + if_,?_,(!,!; *) , (5.12) 

which corresponds to (2.3) in [1], or to (1.6) in [1] if k = 1. 

Using (5.1) and (5.2), we have 

#0>0(1,1; *) = Hl2(l, 1; *)-H l 0(l , 1; 0)-2#0>1(1,1; 0). 
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Substituting into (5.11), we obtain 

HUJ{\ 1; *) = (/ - k)Hl0(l, 1; 0) + (j-2k)Hu{\ 1; 0) + Mfu(l? 1; 1), (5.13) 

which corresponds to (2.6) in [1]. It reduces to (1.33) in [1] if k = 1. And so forth. 

Following is a table of some equivalence and correspondence (-^) relations. 

TABLE 1. Some Equivalence and Correspondence Relations 

No. 

1 

2 

3 

4 

5 

6 

7 

8 

Relations 

JiJ(c,b;0) = GiJ 

JiJ(l,l;l) = IiJ 

Hu(l,\;0)^Fn 

#u( l , l ; l )->c; 

Ha^l,l;l)-*cn{a,b) 

References 

[3],(1.3) 

[3],(4.1) 

(1.1) 

[1], p. 193 

[1], (12) 

[1], (1-3) 

[1], (1-4) 

[1], (1-5) 
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