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This paper is, in a sense, dual to the Fibonacci Association paper by J. R. Howell [4]. On the
other hand, interest in the reciprocal Fibonacci-like polynomials is caused by the very effective
propositions 7 and 4 of [3].

It is also the intention of this paper to draw the attention of the Fibonacci Association audi-
ence to the vast area of applications of its activities in the domain of computational techniques
allowing one to perform quantitative comparisons among various data organizations in the frame-
work defined by the authors of [3].

Let W,(x) be a polynomial in the variable x; x e(c,d) cR and deg(W,(x)) = N. We define
the reciprocal polynomial of W, (x) as follows.

Definition 1: W (x) = xNWn(l). 1)
X
The purpose of this paper is to describe the reciprocal polynomials of Fibonacci-like polyno-

mials that are defined by the recursion formula [4]
&2 (¥) = axg,., (%) + 58, (%), @
where a and b are real constants.
It is easy to verify that the reciprocal Fibonacci-like polynomials satisfy
Z,2(¥) = ag,,,(x) +bx°g,(x), n>2. (3)
Indeed, if deg g,(x) =m, then
degg, (x)=n-3+m, forn>2. 'C))
From (2),

n+m-— 1 n+m— 1 n+m— 1
X" 1gn+2(;):ax * 2gn+l(;)+bx " lgn(;)

Hence, (3) follows by (1) and (4). If degg,(x) = deg g,(x), then the recursion formula (3) is true
for n>2, and if deg g,(x) = deg g;(x) +1, then (3) holds for each natural number 7.

Theorem 1: Suppose that the sequence {g,(x)} satisfies (3) for every natural number n. Then
the following summation formula holds:
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_ &)+ bx’g,(x) + (a - Dgi(x) - §(x)
a+bx? -1

jZ:E,»(x) , 5)

for each natural number p.

Proof: For p=1, formula (5) is trivial. Let (5) hold for p = k, then

ktl z,, Bl Do) -7 B
;gf(x) _ Zen(x)+bx gk;i)[;:;ga_l )& (x) - 85(%) e
_ B (0 + 58, () + (@ = DF () — By () + Ay () + DX F 1 (6) — Ba ()
a+bx* -1
_ B () + 00’1 (%) + (@ - DE() — By(¥)

a+bx? =1
and the result follows by induction onp. O
The inverse of Theorem 1 is also true.

Proof: If the summation formula (5) holds for some sequence of polynomials (for each natu-
ral number p), then the identity

B9 = 2.2, L8,

may be transformed easily into equation (3). 0

For the remainder of this paper, we consider the sequence of Fibonacci-like polynomials
{w,(x)}5., defined by recurrence (2), with initial values

wi(x)=1, wy(x)=ax. (6)
If a =0 and b =0, then w,(x) can be written in the explicit form [4]:
(=12} :
. o
W= 2 (77 e ™
j=0

The reciprocal polynomials of w,(x) are defined by recurrence (3) with the following initial con-

ditions:
=1 wx)=a. ®)

We take w,(x) and W, to mean the same thing.
By a simple transformation of formula (7), we obtain the explicit form of w,(x). From (7),

p=12)y 5 _ p-1=2j
T
J=0

Since degw,(x) =n—1, we have

Kp=D/21y 5 _ ] o
w@= 2 (P ! J)xzfa”“l‘szf. ©)
j=

Thus, W,(x) isa polynomial of degree 2[(p —1)/2] with only even powers of x.
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Theorem 2: Ww,(x) = %, (10)

=

where

2 2 ]2 2
Ay = AN 4B B(x)= Ao 4bx”

2 2
Proof: 1t is easy to verify that
AX(x) = ad(x)+bx*> and B*(x)=aB(x)+bx’.
Multiplying both sides of the above identities by 4772 and B?™?, respectively, we see that the

sequences , 4, A% A3, .. and ,B, B B3, .. satisfy (3). From these two facts, it follows that the
recursion formula (3) holds also for the sequence A— B, 4> —B% 43— B%, ... Since

W,,2(¥)(4 - B) = aw,,,(x)(4 - B) + bx*w,(x)(4 - B),
the result follows from the identities
W(xA-B)=A-B and W,(x)(4-B)=4*-B> 0O

Theorem 3: Let Q:(bzz (1)) and let the sequence {g,} be defined by the recursion formula (3).
Then, for every natural number p,

8p+2 Epni|_ (?3 gz) p-1 11
(gp-H gp) & & or. an
The proof of this theorem may be realized by a simple induction argument [5]. Theorem 3
provides standard means of obtaining identities for the sequence of reciprocal Fibonacci-like poly-
nomials [5].
For example, computing the determinants in identity (11) leads to

BpiaBp ~Bpn = (D) T(BE - B). (12)
Now if we consider {#,} with initial conditions (8), then from identities (11) and (12) we get:
Wp+2 Wp+1 _{a 1 p.
(Wp+1 Wp {1 0 Q > (13)
W W, — Wiy = —(=b)Px?P. (14)

Multiplying both sides of (13) on the left by (}, ,,gz) yields

( Wp+2 Wp+l JZ Qp+l- (15)

2 2
bx*'w,,, bx'w,

Let p and g denote natural numbers. Using (15) with Q7*?, 07 and (7, one has

( Wpige1 YWpiq J_ ( Yo Yp J( Yoni Yq
2o 2 = he2epr 2o 2o 2 |
bW, bx'w,,, bx*w, bx'w, |\ bx'w, bx*'w,

If we compare the entries on both sides of the above identity, we obtain
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- T 2o o
W orgit = Wy Wo oy + bW, W, . (16)

Identity (16) is a special case of identity (7) in [5].
We shall now describe some of the divisibility properties of {w,}. If @ =0, then

Wn(x) — 1- (;1) b(n-—l)/an—l;

if 5=0, then

w(x)=a"".
In these cases, the investigation of divisibility properties of {w,(x)} is easy. Suppose that a and b
are nonzero numbers.

Theorem 4: Let W(x) be a polynomial that divides both W, and W, for a fixed p>1. Then
W(x) divides w,_;.

Proof: Suppose that W, = W(x)S(x) and w,,; = W(x)T(x), where S(x) and T(x) are certain
polynomials. From (3), we have

5, (1) = T - aS ().

Thus, W(x)[xzwp_l. From the fact that x” does not divide W, for any natural number » [see (9)],
we conclude that x* and W, are relatively prime. Finally, since W(x) does not divide x%, then
W(x)|w,y. O

Theorem 5: For natural numbers p and ¢, W, |w,,,.

Proof: Let p be an arbitrary natural number. The fact that w,|w), is trivial. If w,|w,, fora
certain k, then using formula (16) and the fact that p(k +1) =(pk - 1)+ p+1, we obtain the fol-
lowing identity:

Westy = W Wy +BX°W W,
Since W, divides the right-hand side of the above identity, we have W, |W ;). This completes
the proof of Theorem 5. [

We now consider some natural corollaries of Theorems 4 and 5.

Corollary 1: Let W(x) be a polynomial that divides both W, and w,,; for a fixed p>1. Then
W(x) is a constant.

Proof: Corollary 1 follows from Theorem 4 by induction. O

Corollary 2: If n, p, g, and r are natural numbers (p > 1) such that g =np+r and if w,|w,, then
w,|,.
Proof: From p>1,np-1>0, g=(mp—1)+r+1 and formula (16), we have

N 2
W, =W, W, +bxw,, W,

Since W, |w, and W, |W,,,, we have
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—_— 2 —
W, |X°W,,_W,.

The greatest common divisor of W, and #,,, is a constant (Corollary 1), so the greatest com-

mon divisor of W, and #,,_, is a constant. Thus, Wp|x2W,. Now, reasoning as in the proof of

Theorem 4 completes the proof of Corollary 2. O

Corollary 2 implies our final theorem which is analogous to Theorem 10 in [4].

Theorem 6: If p and g are natural numbers and w,|w,, then p|q.

THE MAIN REMARK
If we put a=1and b=~1in (2) and (6), we obtain
wi(x)=1, wy(x)=x, and w,,5(x) = xw,,,(x) = w,(x). (17)

These are the well-known Ichebycheff polynomials. Then the reciprocal Tchebycheff polyno-
mials do satisfy

171()6) = l’ WZ(x) = 1: and Wn+2(x) = xZWn(x) ~"Vn(x)'

From [3], it is known that these polynomials are associated with stacks.

Specifically, orthogonal Tchebycheff polynomials are used to calculate the numbers H, , , of
histories of length » starting at level £ and ending at level /, while the reciprocal Tchebycheff poly-
nomials of degree A are used to derive generating functions for histories of height <4. In this
context, the Tchebycheff polynomials are distinguished among the family of Fibonacci-like poly-
nomials defined by (2) and (6), as only for that case (i.e., for a =1 and b = —1) the Fibonacci-like
polynomials associate with standard organizations [3]. This can be seen easily after consulting
Theorem 4.1 of [3]. For other admissible values of a and b, the Fibonacci-like polynomials also
provide us with an orthogonal polynomial system with respect to the corresponding positive-
definite moment functional [3].

The resulting dynamical data organizations are then monstandard ones. (A paper on non-
standard data organizations and Fibonacci-like polynomials is now in preparation.)

FINAL REMARKS

The following two attempts now seem to be natural. First, one may use the number-theoretic
properties of Tchebycheff and reciprocal Tchebycheff polynomials developed in [4] and this paper
to investigate further stacks in the framework created in [3]. Second, one may look for other data
structure organizations relaxing the positive-definiteness of the moment functional. This might be
valuable if we knew how to convey contiguous quantum-mechanics-like descriptions of dynamic
data structures, which is one of several considerations in [2].
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