The Fibonacci Quarterly 1997 (35,1): 32-34

ON A RECURRENCE RELATION IN TWO VARIABLES

Pentti Haukkanen
Department of Mathematical Sciences, University of Tampere P.O. Box 607, FIN-33101 Tampere, Finland
mapehau@uta.fi

1. INTRODUCTION

Gupta [3] considers the array $\{c(n, k)\}$, which is defined by the recurrence relation

$$
\begin{equation*}
c(n+1, k)=c(n, k)+c(n, k-1) \tag{1}
\end{equation*}
$$

with initial values $c(n, 0)=a(n), c(1, k)=b(k), n, k \geq 1$, where $\{a(n)\}$ and $\{b(k)\}$ are given sequences of numbers. In particular, if $a(n) \equiv 1$ and $b(1)=1, b(k)=0$ for $k \geq 2$, then $\{c(n, k)\}$ is the classical binomial array. The array $\{c(n, k)\}$ also has applications, for example, in the theory of partitions of integers ([1], [2]). The main object of Gupta [3] is to handle $\{c(n, k)\}$ with the aid of generating functions. Wilf $[7, \S \S 1.5$ and 1.6$]$ handles $\{c(n, k)\}$ and an analog of $\{c(n, k)\}$, namely, the array of the Stirling numbers of the second kind, with the aid of generating functions.

In this paper we consider a further analog of the array $\{c(n, k)\}$, namely, the array $\{L(n, k)\}$ defined by the recurrence relation

$$
\begin{equation*}
L(n, k)=L(n-1, k-1)-L(n, k-1) \tag{2}
\end{equation*}
$$

with initial values $L(n, 0)=a(n), L(0, k)=b(k), L(0,0)=a(0)=b(0), n, k \geq 1$, where $\{a(n)\}$ and $\{b(k)\}$ are given sequences of numbers. We derive an expression for the numbers $L(n, k)$ in terms of the initial values using the method of generating functions. We motivate the study of the array $\{L(n, k)\}$ by providing a concrete example of this kind of array from the theory of stack filters.

2. AN EXPRESSION FOR THE NUMBERS $L(n, k)$

Let $L_{k}(x)$ denote the generating function of the sequence $\{L(n, k)\}_{n=0}^{\infty}$, that is,

$$
\begin{equation*}
L_{k}(x)=\sum_{n=0}^{\infty} L(n, k) x^{n} . \tag{3}
\end{equation*}
$$

The promised expression for the numbers $L(n, k)$ comes out as follows: We use the recurrence relation (2) to obtain a recurrence relation for the generating function $L_{k}(x)$. This recurrence relation yields an expression for the generating function $L_{k}(x)$, which gives an expression for the numbers $L(n, k)$.

Theorem 1: Let $\{L(n, k)\}$ be the array given in (2). Then

$$
\begin{equation*}
L(n, k)=\sum_{j=0}^{k}\binom{k}{j}(-1)^{k-j} a(n-j)+\sum_{j=n}^{k-1}\binom{j}{n}(-1)^{j-n}[b(k-j)-b(k-j-1)] . \tag{4}
\end{equation*}
$$

Proof: If $k=0$, then (4) holds. Let $k \geq 1$. Then, by (3) and (4),

$$
\begin{aligned}
L_{k}(x) & =L(0, k)+\sum_{n=1}^{\infty}[L(n-1, k-1)-L(n, k-1)] x^{n} \\
& =L(0, k)+\left[x L_{k-1}(x)-\left(L_{k-1}(x)-L(0, k-1)\right)\right]
\end{aligned}
$$

or

$$
L_{k}(x)=(x-1) L_{k-1}(x)+b(k)+b(k-1) .
$$

Let $d(k)=b(k)+b(k-1)$. Proceeding by induction on k, we obtain

$$
\begin{equation*}
L_{k}(x)=(x-1)^{k} L_{0}(x)+\sum_{j=0}^{k-1}(x-1)^{j} d(k-j) . \tag{5}
\end{equation*}
$$

Here

$$
\begin{align*}
(x-1)^{k} L_{0}(x) & =\left(\sum_{n=0}^{\infty}\binom{k}{n}(-1)^{k-n} x^{n}\right)\left(\sum_{n=0}^{\infty} a(n) x^{n}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{j=0}^{n}\binom{k}{j}(-1)^{k-j} a(n-j)\right) x^{n} \tag{6}
\end{align*}
$$

and

$$
\begin{align*}
\sum_{j=0}^{k-1}(x-1)^{j} d(k-j) & =\sum_{j=0}^{k-1} \sum_{n=0}^{j}\binom{j}{n} x^{n}(-1)^{n-j} d(k-j) \\
& =\sum_{n=0}^{k-1}\left(\sum_{j=n}^{k-1}\binom{j}{n}(-1)^{j-n} d(k-j)\right) x^{n} . \tag{7}
\end{align*}
$$

Now, combining (3), (5), (6), and (7), we obtain (4).
Remark: We considered above the generating function of the array $\{L(n, k)\}$ with respect to the variable n. We could also consider generating functions with respect to the variable k and with respect to both the variables n and k. These considerations, however, would be more laborious and are not presented here (cf. [3], [7]).

3. AN EXAMPLE FROM THE THEORY OF STACK FILTERS

Consider a stack filter (for definition, see [4], [6]) with continuous i.i.d. inputs having distribution function $\Phi(\cdot)$ and with window size N. The γ-order moment about the origin of the output can be written as

$$
\alpha^{\gamma}=E\left\{Y_{\text {out }}^{\gamma}\right\}=\sum_{k=0}^{N-1} A_{k} M(\Phi, \gamma, N, k),
$$

where

$$
\begin{equation*}
M(\Phi, \gamma, N, k)=\int_{-\infty}^{\infty} x^{\gamma} \frac{d}{d x}\left((1-\Phi(x))^{k} \Phi(x)^{N-k}\right) d x, k=0,1, \ldots, N-1, \tag{8}
\end{equation*}
$$

and where the coefficients $A_{k}, k=0,1, \ldots, N-1$, have a certain natural interpretation (see [4], [5]). By using the output moments about the origin, we easily obtain output central moments, denoted by $\mu^{\gamma}=E\left\{\left(Y_{\text {out }}-E\left\{Y_{\text {out }}\right)^{\gamma}\right\}\right.$, for example, the second-order central output moment equals

$$
\begin{equation*}
\mu^{2}=\sum_{k=0}^{N-1} A_{k} M(\Phi, 2, N, k)-\left(\sum_{k=0}^{N-1} A_{k} M(\Phi, 1, N, k)\right)^{2} . \tag{9}
\end{equation*}
$$

The second-order central output moment is quite often used as a measure of the noise attenuation capability of a filter. It quantifies the spread of the input samples with respect to their mean value. Equation (9) gives an expression for the second-order central output moment. In this expression, the numbers $M(\Phi, \gamma, N, k)$ play a crucial role.

Kuosmanen [4] and Kuosmanen \& Astola [5] studied the properties of the numbers $M(\Phi, \gamma$, N, k) under certain conditions on $\Phi(\cdot)$. They showed, among other things, that the numbers $M(\Phi, \gamma, N, k)$ satisfy the recurrence relation

$$
M(\Phi, \gamma, N, k)=M(\Phi, \gamma, N-1, k-1)-M(\Phi, \gamma, N, k-1), 1 \leq k \leq N,
$$

with initial values

$$
M(\Phi, \gamma, N, 0)=\int_{-\infty}^{\infty} x^{\gamma} \frac{d}{d x}\left(\Phi(x)^{N}\right) d x, \quad N \geq 0 .
$$

This means that the numbers $M(\Phi, \gamma, N, k)$ satisfy recurrence relation (2). As $M(\Phi, \gamma, N, k)=0$ if $N=0$, that is, as $b(k) \equiv 0$ in (2), application of Theorem 1 gives

$$
\begin{equation*}
M(\Phi, \gamma, N, k)=\sum_{j=0}^{k}\binom{k}{j}(-1)^{k-j} M(\Phi, \gamma, N-j, 0) . \tag{10}
\end{equation*}
$$

Note that Kuosmanen [4] and Kuosmanen \& Astola [5] derived (10) directly from (8) using the binomial theorem.

REFERENCES

1. H. Gupta. "The Combinatorial Recurrence." Indian J. Pure Appl. Math. 4 (1973):529-32.
2. C. C. Cadogan. "On Partly Ordered Partitions of a Positive Integer." The Fibonacci Quarterly 9.3 (1971):329-36.
3. L. Carlitz. "A Generating Function for partly Ordered Partitions." The Fibonacci Quarterly 10.2 (1972):157-62.
4. P. Kuosmanen. "Statistical Analysis and Optimization of Stack Filters." Acta Polytechnica Scandinavica, Electrical Engineering Series No. 77, Helsinki, 1994.
5. P. Kuosmanen \& J. Astola. "Optimal Stack Filters under Rank Selection and Structural Constraints." Signal Processing 41 (1995):309-38.
6. P. Wendt, E. Coyle, \& N. Gallagher. "Stack Filters." IEEE Trams. on Acoustics, Speech, and Signal Processing 34 (1986):898-911.
7. H. S. Wilf. Generatingfunctionology. Boston: Academic Press, 1990.

AMS Classification Numbers: 05A15, 11B37, 94A15

