Fibonacci Quarterly 1967 (5,5): 461-465
A SHIT FORRULA FOR RECURRENCE RELATIONS OF ORDER m
GARY G. FORD
Student, University of Santa Clara, Santa Clara, California

It is well known that if F_{i} is the ${ }_{i}$ th Fibonacci number, then

$$
F_{n+k+1}=F_{n+1} F_{k+1}+F_{n} F_{k}
$$

for all integers n, k. A generalization of this identity to recurrence relations of any order m is given here.

Let m be a positive integer and let $p_{1}, p_{2}, \ldots, p_{m}\left(p_{m} \neq 0\right)$ be m elements of a field F. Furthermore, let $\left\{y_{i}\right\}$ and $\left\{U_{i}\right\}$ be two sequences in F obeying the recurrence relation whose auxiliary polynomial is

$$
P(x)=x^{m}-\sum_{j=0}^{m-1} p_{m-j} x^{j}
$$

and let $\left\{\mathrm{U}_{\mathrm{i}}\right\}$ have the initial values

$$
\mathrm{U}_{0}=\mathrm{U}_{1}=\cdots=\mathrm{U}_{\mathrm{m}-2}=0
$$

and

$$
U_{m-1}=1
$$

Then,
(1)

$$
y_{n+k}=\sum_{j=0}^{m-1} \sum_{m-i}^{j=0} U_{k+i-j-1-1} y_{n+j}
$$

for all integers n and k

The proof of (1) is by induction on k Let n be fixed. For $0 \leq k<m$ it is clear that
(2) $\sum_{i=0}^{j} p_{m-i} U_{k+i-j-1}= \begin{cases}0 & \text { if } j<k \\ p_{m}^{U}=1 & \text { if } j=k \\ \sum_{i=0}^{m-1} p_{m-i} U_{k+i-j-1}=U_{k+m-j-1}=0 & \text { if } k<j<m .\end{cases}$

From (2) it immediately follows that (1) holds for $k=0,1, \cdots, m-1$. From here, applications of the recurrence relation (corresponding to $P(x)$) for $\left\{y_{i}\right\}$ and $\left\{U_{i}\right\}$, in both the forward and backward directions, easily prove that if (1) holds for $k=h, h+1, \cdots, h+m-1$, then (1) holds for $k=h-1, h, \cdots$, $h+m$. By application of finite induction, it follows that (1) holds for all integers n, k.

Let $P(x)=\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{m}\right)$ in an extension G of F and suppose that G is of characteristic zero. Further suppose that the r_{j} are pairwise distinct. Define D_{k} as the determinant produced by the process of substituting the vector $\left(r_{1,}^{k}, r_{2}^{k}, \ldots, r_{m}^{k}\right)$ for the $m^{\text {th }}$ row $\left(r_{1}^{m-1}, r_{2}^{m-1}, \ldots\right.$, , r_{m}^{m-1}) in the Vandermonde determinant of $r_{1}, r_{2}, \cdots, r_{m}$. It is proven in [1] that for every integer k ;

$$
\begin{equation*}
\mathrm{U}_{\mathrm{k}}=\frac{\mathrm{D}_{\mathrm{k}}}{\mathrm{D}_{\mathrm{m}-1}} \tag{3}
\end{equation*}
$$

The case for repetitions among the r_{j} is handled in the following way: Start with the form for U_{k} in (3) and, pretending that the r_{j} are real, apply L'Hospital's Rule successively as $r_{I} \rightarrow r_{J}$ for all repetitions $r_{I}=r_{J}$ among the r_{j} 。

A combination of (1) and (3) now comes with ease. Still taking the r_{j} to be pairwise distinct, define E_{k} as the determinant produced by the process of replacing the element r_{h}^{k} of the $m^{\text {th }}$ row of D_{k} by

$$
\sum_{j=0}^{m-1} \sum_{i=0}^{j} p_{m} y_{j} r_{h}^{k+i-j-1}
$$

and this for $h=1,2, \cdots, m$. Then combination of (1) with (3) yields: For every integer k,

$$
\begin{equation*}
\mathrm{y}_{\mathrm{k}}=\frac{\mathrm{E}_{\mathrm{k}}}{\mathrm{D}_{\mathrm{m}-1}} \tag{4}
\end{equation*}
$$

The case for repeated roots is handled as with (3). In [2] identities akin to (4) are developed.

REFERENCES

1. Arkin, Joseph, "Recurring Series," to appear in the Fibonacci Quarterly.
2. Styles, C. C., "On Evaluating Certain Coefficients," The Fibonacci Quarterly, Vol. 4, No. 2, April, 1966.

This work was supported by the Undergraduate Research Project at the University of Santa Clara through the National Science Foundation Grants GE-8186 (1965) and GY-273 (1966).

The Fibonacci Association invites Educational Institutions to apply for academic Membership in the Association. The minimum subscription fee is $\$ 25$ annually. (Academic Members will receive two copies of each issue and will have their names listed in the Journal.)

