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1. PRELIMINARIES

For a, b, p, and g arbitrary integers, in the notation of Horadam [2] write

W,=W,a,b, p,q) (1.1)
so that

W,=a, W=b, W, = pW,_,—qW,_, for n>2. (1.2)

In particular, we write

U,=W,(0,1 ,
{ n n( b ’p,q) (13)
V. =W.Q2,p, .9).
The Binet forms for U, and V), are
U,=(a"-p"IJA, (1.4)
V.=a"+p", (1.5)
where
A=p*-4q, (1.6)
and
a=(p+JA)/2 and B=(p-A)/2 1.7

are the roots, assumed distinct, of the equation x* — px +¢ = 0. Observe that (1.7) yields the two
identities

a+f=p and aoffi=q. (1.8)
As done in [3], throughout this note it is assumed that
A>0, (1.9)
so that @, B, and VA are real and @ # #. We also assume that
g#0 (1.10)

to warrant that (1.2) is a second-order recurrence relation. Finally, observe that the particular
case p =0 yields

(1.11)

n

- 0 ] (n even), and V= 2(-q)"*  (neven),
()" (nodd), 0 (n odd).

Throughout our discussion, the special sequences (1.11) will not be considered, that is, we

shall assume that
p=0. (1.12)
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2. MOTIVATION OF THIS NOTE

Some months ago, I had the opportunity of reviewing (for the American Mathematical
Society) an article [3] in which the author establishes several summation formulas for U, and V,
by using the Binet forms (1.4) and (1.5) and the geometric series formula (g.s.f).

As usual, I began my review by checking the results numerically. Without intention, I chose
the values p=4 and g =3 which satisfy (1.9), (1.10), and (1.12) and, to my great surprise,
noticed that the formulas in [3] do not work for these values of p and g because certain denomina-
tors vanish. On the other hand, I ascertained that they work perfectly for many other values of
these parameters.

The aim of this note is to bring to the attention of the reader a fact that seems to have passed
unnoticed in spite of its simplicity: if ¢ = p—1, then either @ or § [see (1.7)] equals 1, whereas if
g =—(p+1), then either @ or § equals —1. Consequently, for obtaining summation formulas for
U, and V,, the g.s.f. must be used properly to avoid getting meaningless expressions.

The example given in Section 4 will clarify our statement.

3. BINET FORMS FOR U, AND V, IN THE SPECIAL CASES
g=p-1ANDg=—(p+1)

The Binet forms for U, and V, in the cases ¢ = p—1 and ¢ = —(p +1) obviously play a crucial
role throughout our discussion.

3.1 Thecaseq=p—1

If
g=p-1 3.1
then the expression (1.6) becomes
A=p*-4p+4 (3.2)
whence, to fulfill (1.9), we must impose the condition
p#2. (3.3)
Remark 1: Conditions (3.1), (1.12), and (3.3) imply that
g+ =l (3.9
Since we assumed that /A is positive [see (1 9)1,-(3.2) also implies that
-2, ifp>2,
VA= {5— », ifl; <2, 3-5)

whence [see (1.7)]

={p—l:q(andﬁzl), if p>2, G.6)

1(and B =9), ifp<2.

From (1.4), (1.5), (3.6), (3.5), and (3.1), it can be seen readily that the Binet forms for U,
and V), are
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"1

_4
U, = = [ef. (3.4)] (3.7)
and
V,=q"+1. (-8)

Remark 2: By virtue of condition (1.10), the Binet forms (3.7) and (3.8) also have meaning for
negative values of n.
3.2 The Case g =—(p+1)
If
g=—(p+1), 3.9)
then expression (1.6) becomes
A=p2+4p+4 (3.10)
whence, to fulfill (1.9), we must impose the condition
p#E-2 .11

which, due to (3.9) and (1.12), implies (3.4) as well.
Since we assumed that /A is positive, (3.10) also implies that

+2, ifp>-2,

VA =1{F P (.12)
—(p+2), ifp<-2,

whence [see (1.7)]

1=- dpg=-1 ifp>-2
_¥w q(@and p=-1), ifp>-2, o)

" |-1(and = —9), ifp<-2

From (1.4), (1.5), (3.13), (3.12), and (3.9), it can be seen readily that the Binet forms for U,
and V), are

U, =(-1y" ‘11—‘(71 [cf. (3.4)], (.14)
and
V,=(1"(g"+1). (3.15)
Observe that Remark 2 also applies to the Binet forms (3.14) and (3.15).

4. SUMMATION FORMULAS THAT DO NOT HAVE GENERAL VALIDITY

Here we clarify the malfunctioning of the summation formulas in [3] by means of the follow-
ing example. By using (1.5) and the g.s.f. {without realizing that, if q = p—1, then a (or f)=1,
and if g=—(p+1), then a (or §)=-1 [see (3.6) and (3.13), respectively]}, after some simple
manipulation involving the use of (1.8), one gets

Vo) Ve = Votneryir
q-V,+1

n m V
> Vprer =2 o (m=0). 4.1)
k=0
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Remark 3: The right-hand side of (4.1) may involve the use of the extension

V., =V,lq", “4.2)

which can be obtained immediately from (1.8).

Warning: Formula (4.1) works for all values of p and g except for those values for which either
(3.1) (m arbitrary) or (3.9) (m even) holds. In fact, in these cases, from (3.8) [or (3.15)] we have
q"-V,+1=0. More precisely, it can be proved that the right-hand side of (4.1) assumes the
indeterminate form 0/0. Analogous summation formulas yield the same indeterminate form.

If (3.1) holds, the correct closed-form expression for the left-hand side of (4.1) is

2 Vemer = 2.(@™" +1)  [from (3.8)]
k=0 k=0 (4 3)
+1+q" g -1 +1+q" Vorn =2 (m#=0) |
7 q" -1 1 V,—2

If (3.9) holds and m is even, from (3.15), the correct closed-form expression for the left-hand
side of (4.1) is readily found to be

d v, -2
D Vimr = () (1) + () ~E2= (m#0, even) (4.4)
k=0 m

Observe that, if (3.9) holds and m is odd, the expression
iV | + D Ve IV (even),
km+r — ,
k=0 (—q) (Vm(n+l) - 2) /Vm (n Odd),

obtainable from (3.15), is nothing but a compact form for expression (4.1) which, in this case,
works as well,

(4.5)

5. SUMMATION FORMULAS FORU, AND V, WHENg¢=p-1

We conclude this note by giving a brief account of the various kinds of summation formulas
for U, and ¥, that are valid when (3.1) and (3.4) hold. Since their proofs are straightforward,
they are omitted for brevity. We confine ourselves to mentioning that the proofs of (5.4)-(5.5)
and (5.6)-(5.7) involve the use of the identities—see (3.1) and (3.4) of [1]—

W 2 _ hel n ‘
Y= by =Dy and Y (i’) y =m(y+)",
=0

i=0 (y - 1)2
respectively.

- q"U,n n+1

2Uene =00 g1 =0 G
n n qTVVI _ 2n

Uy = — 21—

l;(k) km+r q- 1 > (52)
: n V —_ rysn h
k—o(k) mtr =94 Vm +2 > (53)
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z": kU, = r PUnnaay =04+ Doy +Up n(n+1) (m

[(g-DU,P 2q-y 70 54

3 W = an(,,m[(q(n;g sy "("2+ D (m=0), (5.5)
i () vt = fl(q'"*’V,;’"%""), (5.6)
lék(Z)er =n(g™Vyt+2"1). (5.7)

It is obvious that summations (5.1)-(5.7) can be expressed simply in terms of powers of g.
Doing so, we sometimes obtain more compact expressions. For example, we get

sz;cmw mr 4 ["(q _1) 1]+1 + n(n+1) ( m= O) (557)
(" - 2
Finally, we give the following example pertaining to alternate sign summations:
; ifn=0,
Zk( )( 1) Vkm+r Vm+r: ifn=1, (5.8)

n(-1"qg™ [(g- DU, T, ifn>1

The interested reader is urged to work out analogous summation formulas for the case in
which g = —(p+1) and m is even.
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