AN OBSERVATION ON SUMMATION FORMULAS FOR GENERALIZED SEQUENCES

Piero Filipponi

Fondazione Ugo Bordoni, Via B. Castiglione 59, I-00142 Rome, Italy e-mail: filippo@fub.it (Submitted July 1995)

1. PRELIMINARIES

For a, b, p, and q arbitrary integers, in the notation of Horadam [2] write

$$
\begin{equation*}
W_{n}=W_{n}(a, b ; p, q) \tag{1.1}
\end{equation*}
$$

so that

$$
\begin{equation*}
W_{0}=a, W_{1}=b, W_{n}=p W_{n-1}-q W_{n-2} \text { for } n \geq 2 . \tag{1.2}
\end{equation*}
$$

In particular, we write

$$
\left\{\begin{array}{l}
U_{n}=W_{n}(0,1 ; p, q) \tag{1.3}\\
V_{n}=W_{n}(2, p ; p, q)
\end{array}\right.
$$

The Binet forms for U_{n} and V_{n} are

$$
\begin{gather*}
U_{n}=\left(\alpha^{n}-\beta^{n}\right) / \sqrt{\Delta}, \tag{1.4}\\
V_{n}=\alpha^{n}+\beta^{n}, \tag{1.5}
\end{gather*}
$$

where

$$
\begin{equation*}
\Delta \stackrel{i}{=} p^{2}-4 q, \tag{1.6}
\end{equation*}
$$

and

$$
\alpha=(p+\sqrt{\Delta}) / 2 \text { and } \beta=(p-\sqrt{\Delta}) / 2
$$

are the roots, assumed distinct, of the equation $x^{2}-p x+q=0$. Observe that (1.7) yields the two identities

$$
\begin{equation*}
\alpha+\beta=p \quad \text { and } \alpha \beta=q . \tag{1.8}
\end{equation*}
$$

As done in [3], throughout this note it is assumed that

$$
\begin{equation*}
\Delta>0, \tag{1.9}
\end{equation*}
$$

so that α, β, and $\sqrt{\Delta}$ are real and $\alpha \neq \beta$. We also assume that

$$
\begin{equation*}
q \neq 0 \tag{1.10}
\end{equation*}
$$

to warrant that (1.2) is a second-order recurrence relation. Finally, observe that the particular case $p=0$ yields

$$
U_{n}=\left\{\begin{array}{ll}
0 & (n \text { even }), \tag{1.11}\\
(-q)^{(n-1) / 2} & (n \text { odd }),
\end{array} \quad \text { and } \quad V_{n}= \begin{cases}2(-q)^{n / 2} & (n \text { even }), \\
0 & (n \text { odd })\end{cases}\right.
$$

Throughout our discussion, the special sequences (1.11) will not be considered, that is, we shall assume that

$$
\begin{equation*}
p \neq 0 . \tag{1.12}
\end{equation*}
$$

2. MOTIVATION OF THIS NOTE

Some months ago, I had the opportunity of reviewing (for the American Mathematical Society) an article [3] in which the author establishes several summation formulas for U_{n} and V_{n} by using the Binet forms (1.4) and (1.5) and the geometric series formula (g.s.f.).

As usual, I began my review by checking the results numerically. Without intention, I chose the values $p=4$ and $q=3$ which satisfy (1.9), (1.10), and (1.12) and, to my great surprise, noticed that the formulas in [3] do not work for these values of p and q because certain denominators vanish. On the other hand, I ascertained that they work perfectly for many other values of these parameters.

The aim of this note is to bring to the attention of the reader a fact that seems to have passed unnoticed in spite of its simplicity: if $q=p-1$, then either α or β [see (1.7)] equals 1 , whereas if $q=-(p+1)$, then either α or β equals -1 . Consequently, for obtaining summation formulas for U_{n} and V_{n}, the g.s.f. must be used properly to avoid getting meaningless expressions.

The example given in Section 4 will clarify our statement.

3. BINET FORMS FOR U_{n} AND V_{n} IN THE SPECIAL CASES
 $q=p-1$ AND $q=-(p+1)$

The Binet forms for U_{n} and V_{n} in the cases $q=p-1$ and $q=-(p+1)$ obviously play a crucial role throughout our discussion.
3.1 The case $q=p-1$

If

$$
\begin{equation*}
q=p-1 \tag{3.1}
\end{equation*}
$$

then the expression (1.6) becomes

$$
\begin{equation*}
\Delta=p^{2}-4 p+4 \tag{3.2}
\end{equation*}
$$

whence, to fulfill (1.9), we must impose the condition

$$
\begin{equation*}
p \neq 2 \tag{3.3}
\end{equation*}
$$

Remark 1: Conditions (3.1), (1.12), and (3.3) imply that

$$
\begin{equation*}
q \neq \pm 1 . \tag{3.4}
\end{equation*}
$$

Since we assumed that $\sqrt{\Delta}$ is positive [see (1.9)], (3.2) also implies that

$$
\sqrt{\Delta}= \begin{cases}p-2, & \text { if } p>2 \tag{3.5}\\ 2-p, & \text { if } p<2\end{cases}
$$

whence [see (1.7)]

$$
\alpha= \begin{cases}p-1=q(\text { and } \beta=1), & \text { if } p>2, \tag{3.6}\\ 1(\text { and } \beta=q), & \text { if } p<2\end{cases}
$$

From (1.4), (1.5), (3.6), (3.5), and (3.1), it can be seen readily that the Binet forms for U_{n} and V_{n} are

$$
\begin{equation*}
U_{n}=\frac{q^{n}-1}{q-1} \quad[\text { cf. (3.4) }] \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{n}=q^{n}+1 \tag{3.8}
\end{equation*}
$$

Remark 2: By virtue of condition (1.10), the Binet forms (3.7) and (3.8) also have meaning for negative values of n.

3.2 The Case $q=-(p+1)$

If

$$
\begin{equation*}
q=-(p+1) \tag{3.9}
\end{equation*}
$$

then expression (1.6) becomes

$$
\begin{equation*}
\Delta=p^{2}+4 p+4 \tag{3.10}
\end{equation*}
$$

whence, to fulfill (1.9), we must impose the condition

$$
\begin{equation*}
p \neq-2 \tag{3.11}
\end{equation*}
$$

which, due to (3.9) and (1.12), implies (3.4) as well.
Since we assumed that $\sqrt{\Delta}$ is positive, (3.10) also implies that

$$
\sqrt{\Delta}= \begin{cases}p+2, & \text { if } p>-2 \tag{3.12}\\ -(p+2), & \text { if } p<-2\end{cases}
$$

whence [see (1.7)]

$$
\alpha= \begin{cases}p+1=-q(\text { and } \beta=-1), & \text { if } p>-2, \tag{3.13}\\ -1(\text { and } \beta=-q), & \text { if } p<-2\end{cases}
$$

From (1.4), (1.5), (3.13), (3.12), and (3.9), it can be seen readily that the Binet forms for U_{n} and V_{n} are

$$
\begin{equation*}
U_{n}=(-1)^{n} \frac{q^{n}-1}{1-q} \quad[\text { cf. (3.4) }] \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{n}=(-1)^{n}\left(q^{n}+1\right) \tag{3.15}
\end{equation*}
$$

Observe that Remark 2 also applies to the Binet forms (3.14) and (3.15).

4. SUMMATION FORMULAS THAT DO NOT HAVE GENERAL VALIDITY

Here we clarify the malfunctioning of the summation formulas in [3] by means of the following example. By using (1.5) and the g.s.f. \{without realizing that, if $q=p-1$, then $\alpha($ or $\beta)=1$, and if $q=-(p+1)$, then $\alpha($ or $\beta)=-1$ [see (3.6) and (3.13), respectively]\}, after some simple manipulation involving the use of (1.8), one gets

$$
\begin{equation*}
\sum_{k=0}^{n} V_{k m+r}=\frac{q^{m}\left(V_{m n+r}-V_{r-m}\right)+V_{r}-V_{m(n+1)+r}}{q^{m}-V_{m}+1} \quad(m \neq 0) \tag{4.1}
\end{equation*}
$$

Remark 3: The right-hand side of (4.1) may involve the use of the extension

$$
\begin{equation*}
V_{-m}=V_{m} / q^{m}, \tag{4.2}
\end{equation*}
$$

which can be obtained immediately from (1.8).
Warning: Formula (4.1) works for all values of p and q except for those values for which either (3.1) (m arbitrary) or (3.9) (m even) holds. In fact, in these cases, from (3.8) [or (3.15)] we have $q^{m}-V_{m}+1=0$. More precisely, it can be proved that the right-hand side of (4.1) assumes the indeterminate form $0 / 0$. Analogous summation formulas yield the same indeterminate form.

If (3.1) holds, the correct closed-form expression for the left-hand side of (4.1) is

$$
\begin{align*}
\sum_{k=0}^{n} V_{k m+r} & =\sum_{k=0}^{n}\left(q^{k m+r}+1\right) \quad[\text { from (3.8)] } \\
& =n+1+q^{r} \frac{q^{m(n+1)}-1}{q^{m}-1}=n+1+q^{r} \frac{V_{m(n+1)}-2}{V_{m}-2} \quad(m \neq 0) . \tag{4.3}
\end{align*}
$$

If (3.9) holds and m is even, from (3.15), the correct closed-form expression for the left-hand side of (4.1) is readily found to be

$$
\begin{equation*}
\sum_{k=0}^{n} V_{k m+r}=(-1)^{r}(n+1)+(-q)^{r} \frac{V_{m(n+1)}-2}{V_{m}-2} \quad(m \neq 0, \text { even }) . \tag{4.4}
\end{equation*}
$$

Observe that, if (3.9) holds and m is odd, the expression

$$
\sum_{k=0}^{n} V_{k m+r}= \begin{cases}(-1)^{r}+(-q)^{r} V_{m(n+1)} / V_{m} & (n \text { even }), \tag{4.5}\\ (-q)^{r}\left(V_{m(n+1)}-2\right) / V_{m} & (n \text { odd }),\end{cases}
$$

obtainable from (3.15), is nothing but a compact form for expression (4.1) which, in this case, works as well.

5. SUMMATION FORMULAS FOR $\boldsymbol{U}_{\boldsymbol{n}}$ AND $\boldsymbol{V}_{\boldsymbol{n}}$ WHEN $\boldsymbol{q}=\boldsymbol{p}-1$

We conclude this note by giving a brief account of the various kinds of summation formulas for U_{n} and V_{n} that are valid when (3.1) and (3.4) hold. Since their proofs are straightforward, they are omitted for brevity. We confine ourselves to mentioning that the proofs of (5.4)-(5.5) and (5.6)-(5.7) involve the use of the identities-see (3.1) and (3.4) of [1]-

$$
\sum_{i=0}^{h} i y^{i}=\frac{h y^{h+2}-(h+1) y^{h+1}+y}{(y-1)^{2}} \text { and } \sum_{i=0}^{h}\binom{h}{i} i y^{i}=h y(y+1)^{h-1},
$$

respectively.

$$
\begin{gather*}
\sum_{k=0}^{n} U_{k m+r}=\frac{q^{r} U_{m(n+1)}}{(q-1) U_{m}}-\frac{n+1}{q-1} \quad(m \neq 0) \tag{5.1}\\
\sum_{k=0}^{n}\binom{n}{k} U_{k m+r}=\frac{q^{r} V_{m}^{n}-2^{n}}{q-1}, \tag{5.2}\\
\sum_{k=0}^{n}\binom{n}{k} V_{k m+r}=q^{r} V_{m}^{n}+2^{n} \tag{5.3}
\end{gather*}
$$

$$
\begin{align*}
\sum_{k=0}^{n} k U_{k m+r}= & q^{r} \frac{n U_{m(n+2)}-(n+1) U_{m(n+1)}+U_{m}}{\left[(q-1) U_{m}\right]^{2}}-\frac{n(n+1)}{2(q-1)} \quad(m \neq 0), \tag{5.4}\\
\sum_{k=0}^{n} k V_{k m+r}= & q^{r} \frac{n V_{m(n+2)}-(n+1) V_{m(n+1)}+V_{m}}{\left[(q-1) U_{m}\right]^{2}}-\frac{n(n+1)}{2} \quad(m \neq 0), \tag{5.5}\\
& \sum_{k=0}^{n} k\binom{n}{k} U_{k m+r}=\frac{n}{q-1}\left(q^{m+r} V_{m}^{n-1}-2^{n-1}\right), \tag{5.6}\\
& \sum_{k=0}^{n} k\binom{n}{k} V_{k m+r}=n\left(q^{m+r} V_{m}^{n-1}+2^{n-1}\right) . \tag{5.7}
\end{align*}
$$

It is obvious that summations (5.1)-(5.7) can be expressed simply in terms of powers of q. Doing so, we sometimes obtain more compact expressions. For example, we get

$$
\begin{equation*}
\sum_{k=0}^{n} k V_{k m+r}=q^{m+r} \frac{q^{m n}\left[n\left(q^{m}-1\right)-1\right]+1}{\left(q^{m}-1\right)^{2}}+\frac{n(n+1)}{2} \quad(m \neq 0) . \tag{5.5}
\end{equation*}
$$

Finally, we give the following example pertaining to alternate sign summations:

$$
\sum_{k=0}^{n} k\binom{n}{k}(-1)^{k} V_{k m+r}= \begin{cases}0, & \text { if } n=0 \tag{5.8}\\ -V_{m+r}, & \text { if } n=1, \\ n(-1)^{n} q^{m+r}\left[(q-1) U_{m}\right]^{n-1}, & \text { if } n>1\end{cases}
$$

The interested reader is urged to work out analogous summation formulas for the case in which $q=-(p+1)$ and m is even.

ACKNOWLEDGMENT

This work has been carried out in the framework of an agreement between the Italian PT Administration (Istituto Superiore PT) and the Fondazione Ugo Bordoni.

REFERENCES

1. P. Filipponi \& A. F. Horadam. "Derivative Sequences of Fibonacci and Lucas Polynomials." In Applications of Fibonacci Numbers 4:99-108. Ed. G. E. Bergum et al. Dordrecht: Kluwer, 1991.
2. A. F. Horadam. "Basic Properties of a Certain Generalized Sequence of Numbers." The Fibonacci Quarterly 3.2 (1965):161-76.
3. Z. Zhang. "Some Summation Formulas of Generalized Fibonacci, Lucas Sequences." Pure and Appl. Math. 10 (Supplement) (1994):209-12.
AMS Classification Numbers: 11B37, 11B39
