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1. INTRODUCTION 

The positive integers h, n, and k are used as parameters to postulate 

a set of rules for generating a family of sequences of positive integers. It is 
th 

shown that some of the sequences are directly related to sums of the k 
th powers of roots of selected n degree polynomials in which the coefficient 

tb 
of the (n - h) ~ power is zero. The remaining sequences are the Lucas-like 
sequences described in a previous paper [ l l plus a transition sequence. 

2, FIRST-TYPE SEQUENCE 

th 
For a given ns the k- member of a sequence is u, . For each h, 

n has the values specified by n > h + 1, There are , in general, four types 

of behavior within a sequence. A general sequence is formularized in (1) with 

boundaries between types of behavior Indicated by xxxxx, ooooo, or . 

For the special case h = 1, there are no values above the xxxxx di-

vider. By interpreting a summation as zero when its upper limit is zero, it 

is seen that the first term (i. e, , the k = 1 term) for h = 1 appears "between 

the xxxxx and ooooo dividers and is zero,, For h > 2 there are always 

some terms for each type of behavior^ and the first term of a sequence is 

always one* Some examples are given In Table 1. 

Table 1 

k 

1 

2 

3 

4 

5 

6 

7 

8 

h=l,n=2 

0 
0000000 

2 

0 

2 

0 

2 

0 

2 

h - l 9 n = 6 

0 
0000000 

2 

3 

6 

10 

17 

21 

38 

h=3,n=7 

1 

3 
xxxxxxx 4 

0000000 
11 

21 

42 

78 

139 

h=5,n=8 

1 

3 

7 

15 
-xxxxxxx 

26 
0000000 

57 

113 

223 

64 
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u 

k-i 
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b=k-n 

It is interesting to note that there are h - 1 terms prior to a xxxxx 

divider and n terms prior to a dividere Inspection of (1) shows that 
k 

for h > 2 the first h - 1 terms follow the pattern 1, 3, 7, 15, 31, • • • , 2 

- ! , • • • . For values of k > h, it is seen from (1) that u, is found from a 
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sum which includes u,
 !

s in an order which would be consecutive except for 

an always excluded u, , term. Behavior of the first-type sequences is in-

cluded in tables in the Appendix for h = 1(1)5, n = 1(1)11, and k = 1(1)11. 

3. A USE OF THE FIRST-TYPE SEQUENCE 

For selected h and n, the k term of a first-type sequence is the 

same as s! , the sum of the k powers of the roots of 

(2) f(x) = a0x + a4x + a2x + • • • + a , 

if the choices a0 = 1, a, = 0, and all other a
f
s = -1 are made. Verifica-

tion over a limited range can be made by direct comparison of Table 1 of [ 1 ] 

and the corresponding table of the Appendix. The interpretation i s , of course, 

that SJ_' = u, for a given h. 

4. SECOND-TYPE SEQUENCE 

The first-type sequence applied for n > h + 1 and the u,
 !

s were 

identically the sji
1
'
 ?

s in that range. If for 2 < n < h the s j
n
'
 !

s are cal-

culated and interpreted as u,
 !

s , the u,
 !

s so determined are members 

of a second-type sequence. The tables of the Appendix include second-type 

sequences. 
n—h 

For n < h - 1, (2) does not have an a, x term, and does not have 

the missing term resulting from a = 0. Since the Lucas-like sequences of 

[ l] are found from (2) with no missing terms, the second-type sequences are 

the Lucas-like sequences for n < h - 1. 

For n = h - 1 and n = h, the second-type sequences are the same 

since setting a, = 0 in each case produces equations (2) differing only by a 

root factor (x - 0) which contributes nothing to the sum of powers of roots. 

The sequence for n = h > 2 accordingly is equal to the Lucas-like sequence 

obtained for n = h - 1. Alternatively, it is seen that the sequence for n = fa 

> 2 is related to the second-type sequences. This is demonstrated in (3) 

which is applicable for n = 3i > 2 only. 
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(3) 
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u l n . . - 2 i - 1 

67 

u, = 2 - 1 (general term) 

h-isn 

xxxxxxxxxxxxx 

h-i 

hn / - ' bn 
b=i 

ooooooooooooo 

(1 < k < h - 1) 

(k = h) 

u
h+i,n

 =
( f o E

 u
b n ) "

U
l n 

U
to

 =
 \ b | _ n

U
b n j " V n , n 

(general term) / (k > h + 1) 

Comparison of (3) with (1) indicates that (3) is essentially (1) with the 000000000 

and boundaries coalesced, Thuss it is seen that a second-type 

sequence for n = h > 2 is a transition between Lucas-like sequences and a 

first-type sequence. 
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5. APPENDIX 

[June 

Table 2 h = 1 

k/n 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

0 

2 

0 

2 

0 

2 

0 

2 

0 

2 

0 

3 

0 

2 

3 

2 

5 

5 

7 

10 

12 

17 

22 

4 

0 

2 

3 

6 

5 

11 

14 

22 

30 

47 

66 

5 

0 

2 

3 

6 

10 

11 

21 

30 

48 

72 

110 

6 

0 

2 

3 

6 

10 

17 

21 

38 

57 

92 

143 

7 

0 

2 

3 

6 

10 

17 

28 

38 

66 

102 

165 

8 

0 

2 

3 

6 

10 

17 

28 

46 

66 

112 

176 

9 

0 

2 

3 

6 

10 

17 

28 

46 

75 

112 

187 

10 

0 

2 

3 

6 

10 

17 

28 

46 

75 

122 

187 

11 

0 

2 

3 

6 

10 

17 

28 

46 

75 

122 

198 

Second-Type Sequence 
First-Type Sequences 

Table 3 h - 2 

k/n 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

3 

1 

1 

4 

5 

6 

10 

15 

21 

31 

46 

67 

4 

1 

1 

4 

9 

11 

16 

29 

39 

66 

111 

179 

5 

1 

1 

4 

9 

16 

22 

36 

67 

114 

188 

313 

6 

1 

1 

4 

9 

16 

28 

43 

73 

130 

226 

386 

7 

1 

1 

4 

9 

16 

28 

50 

81 

139 

246 

430 

8 

1 

1 

4 

9 

16 

28 

50 

89 

148 

256 

452 

9 

1 

1 

4 

9 

16 

28 

50 

89 

157 

266 

463 

10 

1 

1 

4 

9 

16 

28 

50 

89 

157 

276 

474 

11 

1 

1 

4 

9 

16 

28 

50 

89 

157 

276 

485 

i 
Second-Type Sequences 

First-Type Sequences 
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Table 4 h - 3 

k/n 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

1 

3 

4 

7 

11 

18 

29 

47 

76 

123 

199 

3 

1 

3 

4 

7 

11 

18 

29 

47 

76 

123 

199 

Second-Type 
Sequences 

4 

1 

3 

4 

11 

16 

30 

50 

91 

157 

278 

485 

5 

1 

3 

4 

11 

21 

36 

64 

115 

211 

383 

694 

6 

1 

3 

4 

11 

21 

42 

71 

131 

238 

443 

815 

First-

7 

1 

3 

4 

11 

21 

42 

78 

139 

256 

473 

881 

-Type 

8 

1 

3 

4 

11 

21 

42 

78 

147 

265 

493 

914 

.9 

1 

3 

4 

11 

21 

42 

78 

147 

274 

503 

936 

Sequences 

10 

1 

3 

4 

11 

21 

42 

78 

147 

274 

513 

947 

11 

1 

3 

4 

11 

21 

42 

78 

147 

274 

513 

958 

Table 5 h 

k/n 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

~T~ 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2~ 

1 

3 

4 

7 

11 

18 

29 

47 

76 

123 

199 

3 

1 

3 

7 

11 

21 

39 

71 

131 

241 

442 

814 

Second-Type 
Sequences 

4 

1 

3 

7 

11 

21 

39 

71 

131 

241 

442 

814 

5 

1 

3 

7 

11 

26 

45 

85 

163 

304 

578 

1090 

6 

1 

3 

7 

11 

26 

51 

92 

179 

340 

648 

1244 

7 . 

1 

3 

7 

11 

26 

51 

99 

187 

358 

688 

1321 

First 

8 

1 

3 

7 

11 

26 

51 

99 

195 

367 

708 

1365 

9 

1 

3 

7 

11 

26 

51 

99 

195 

376 

718 

1387 

10 

1 

3 

7 

11 

26 

51 

99 

195 

376 

728 

1398 

-Type Sequences 

11 

1 

3 

7 

11 

26 

51 

99 

195 

376 

728 

1409 
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Table .6 h = 5 

k/n 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2_ 

1 

3 

4 

7 

11 

18 

29 

• 47 

76 

123 

199 

3_ 

1 

3 

7 . 

11 

21 

39 

• 71 • 

131 

241 

443 

815 

' 4 

1 

3 

T 

15 

26 

51 

99 

191 

367 

708 

1365 

" 5_ 

1 

3 

7 

15 

26 

51 

99 

191 

367 

708 

1365 

6 

1 

3 

7 

15 

26 

57 

106 

207 

403 

788 

1530 

7_ 

1 

3 

7 

15 

26 

57 

113 

215 

421 

828 

1618 

8 

1 

3 

7 

15 

26 

57 

113 

223 

430 

848 

1662 

9_ 

1 

3 

7 

15 

26 

57 

113 

223 

439 

858 

1684 

10 

1 

3 

. 7 

15 

26 

57 

113 

223 

439 

868 

1695 

11 

1 

3 

7 

15 

26 

. 57 

113 

223 

439 

868 

1706 

Second-Type Sequences F i r s t - T y p e Sequences 

6e REFERENCE 

1. D. C„ F ie lde r , "Cer t a in Lucas -L ike Sequences and the i r Generat ion by 

Par t i t ions of N u m b e r s /
1
 Fibonacci Quar t e r ly , Vol. 5 , No. 4S Nov . , 1967e 

pp, 319-324. * * * * * 

ERRATA 

SCOTT'S FIBONACCI SCRAPBOOK 

In the equations on p. 176., p lease a r r a n g e all the exponents in ascending o rde r . 

Also on p. 176, p lease change the sign in the l ine beginning with P4(x) to a plus 

instead of minus . On p. 191 (continuation of Scott
T
s a r t i c le ) , p l ea se make the 

l ine beginning with P5(x) read as follows: 

P5(x) - 3125•+. 7768x - 15851x
2
 - 9463X^ 1976)1+ 243x

5 

On page 166, p l ease make the following c o r r e c t i o n s : In P ^ x ) , change the next -

to l as t number to 2689x
6
„ In P5&), change the las t number on the f i r s t l ine to 

read : 594, 362x
5
. In Pe(x), change the las t number on the f i rs t l ine to r ead : 

85,906, 862x
4
, and the following number to 21,282,070x

5
.In P7(x), p l ea se change 

the las t number of the f i r s t l ine to read : 3,730,909,778x
3
, and the following n u m -

b e r to 2,311,372,054x
4
„ * * * * * 


