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1. I N T R O D U C T I O N 

One approach to the study of the distributions of residues of second-order recurrence se-

quences (wn) modulo powers of a prime p is to identify and examine subsequences w% = wn+tmj 

that are themselves first-order recurrence sequences. In particular, the restricted period, 

h = h(pr), and the multiplier, M = M(p
r
) , satisfy wn+t/i = Mtwn (mod pr) for all t and 

all n, and are independent of the initial terms of the sequence (see, e.g., [1]). In [1], we gener-

alized the notion of the restricted period and multiplier to that of the special restricted period 

and special multiplier. Theorem 3.5 of [1] shows that if the sequence w is p-regular for an odd 

prime p,r is sufficiently large, and wn is not divisible by p, then wn+th^pr*^ = (M*(n,pr))twn 

(mod pr) for all £, where r* = [ r /2] , and the integer M*(n,p
r
) , which is defined up to con-

gruence modulo pr
 and depends upon n, is called the special multiplier of w with respect to n. 

In this article, we examine the residues d that actually occur as special multipliers of a 

second-order recurrence sequence. We show that if there exists ap-regular sequence satisfying a 

given second-order recursion and r is sufficiently large, then every conceivable special multiplier 

actually exists modulo pr. Since the special multiplier M*(n,p
r
) must satisfy the congruence 

M*(n,p
r
) = M(pr*) (mod p

r
*), 

this amounts to showing that if d = M(p
r
*) (mod pr*)j then there exists a sequence w that 

satisfies the given recursion, and an index n, such that d actually occurs as the special multiplier 

M*(n,pr) of that sequence. 

The proof of the theorem is broken into three cases depending upon whether I ^ J = — 1, 1, 

or 0, where D is the discriminant of the sequence w. 

2. P R E L I M I N A R I E S 

We employ the standard notation of [1]. In particular, w(a,h) represents a second-order 

sequence that satisfies the recursion 

wn+2 = awn+1 - bwn, (2.1) 

and, for a given odd prime p, T{a, b) denotes the family of sequences (w) that satisfy (2.1) and 

for which p Y (w0,wi). We let Xw(pr) denote the period of w(a,h) modulo pr, i.e., the least 

positive integer A such that for all n 

wn+x=Wn (modp
r
) , 
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and similarly, we let hw(pr) denote the restricted period of w(a, 6) modulo f?
r
, i.e., the least 

positive integer h such that for some integer M and for all n 

wn+h = Mwn (mod pr). 

The integer M = Mw(pr), defined up to congruence modulo pT, is called the multiplier of 

w(a,b) modulo pr, Since they are critical to the present study, we also remind the reader of 

the definitions of the special restricted period and special multipliers of a sequence w E T(a,b). 

Defini t ion 2 .1 : For fixed n and r, let h%J{n,pr) be the least integer m of the set { hw(pc) | 1 < 

c < r } for which the sequence w% = wn+tm satisfies a first-order recurrence relation wj+i — 

M*w% (naod pr) for some integer M*. The integer ft* = hla(n,pr) is called the special restricted 

period and M* = A4^(n^pr) (defined up to congruence modulo pr) the special multiplier with 

respect to wn modulo pr. 

Finally, we let f(x) = x2 — ax + b be the characteristic polynomial of (w) and D = 

D(a, b) = a2 — 46 the discriminant of (w). 

In general, when studying recursive sequences w(a, 6) modulo powers of a prime p, elements 

wn for which p | wn behave quite differently from elements for which p fwn. It is convenient to 

refer to a term wn for which p fwn as p~regular and a term wn for which p | wn as p-singular. 

Analogously, we call an integer d ^singular if p \ d and f>-regular if p j / d. 

The sequences of T(ajb) are partitioned into equivalence classes, usually called m-blocks? 

by the equivalence relation m o t , which relates two sequences if one is equivalent modulo m to 

a multiple of a translation of the other. We are interested here in p
r
-blocks, where p is an odd 

prime. 

A recurrence w(a,6) is p~regular if WQW2 — w\ =£ 0 (mod p), and p-irregular (or simply 

irregular, if the prime p is evident) otherwise. It is well known that either every sequence 

in a block of T{a, b) is p-regular, or none of them are, and hence, the blocks of T{a, 6) are 

divided into p-regular and p-irregular blocks. It is also easy to see that all p-regular sequences 

in T{a, 6) have the same period, restricted period, and multiplier. Consequently, the period, 

restricted period, and multiplier of a regular sequence in J7(a, 6) are independent of the initial 

terms of the sequence, and are global parameters of the family F(a,b). We denote these 

global parameters by A(p
r
), h(pr), and M(p

r
) , respectively. If u(a3b) E T(a,b) denotes the 

generalized Fibonacci sequence, i.e., the sequence in T(a,b) with initial terms 0 and 1, then 

u(a,b) is j>-regular and therefore can be used to determine the global parameters of ,F(a,&). 

In particular, h(pr) = hu(p
T). 

For most second-order sequences w(a,b), the restricted period moduloj?
r + 1

 is p times the 

restricted period of w(a, 6) modulo pr
 when the exponent r is sufficiently large. The precise 

value of r that constitutes sufficiently large in this sense is denoted by the critical parameter 

e(w), as defined below. 

Defini t ion 2.2: If w(a,b) E J*(o,6), then we define e = e(w) to be the largest integer, if it 

exists, such that hw(pe) = hw(jp). 

The period of a second-order recurrence manifests a similar behavior and we define the 

corresponding parameter f(w). 

Definint ion 2.3: If w(a,b) E T{a,6), then we define / = f(w) to be the largest integer, if it 

exists, such that Xw{p^) — Aw(p). 

The sequence w(a,b) is said to be nondegenerate if the parameter e(w) exists, and de-

generaie otherwise. If w is p-regular and e(w) does not exist, then hu(p) = 0, and all of 
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the p-regular sequences in T(a,b) are degenerate. Our main theorem, Theorem 5.1, concerns 

families T{a, b) that contain a nondegenerate p-regular sequence. It follows that all of the 

p-regular sequences examined in this paper are nondegenerate. 

On the other hand, we must take into account degenerate p-irregular sequences in T(a,b). 

For notational convenience we adopt the convention that e(w) = oo when w is degenerate, 

and consider the statement r < e(w) to be true when e(w) = oo. Note that a degenerate 

p-irregular second-order recurrence satisfies a first-order recurrence modulo pr
 for all positive 

integers r. 

The restricted periods of p-regular sequences are given by the following important theorem. 

T h e o r e m 2.4 (Theorem 2.11 of [1]): Suppose that w(a,6) E ^"(a, b) is p-regular and that 

e = e(w) and f = f(w) both exist. Let e* = min(r, e), / * = min ( r , / ) ; and s = X(p)/h(p). 

Then, for all positive integers r, 

h(pT) = Pr-e'h(pe) (2.2) 

\{pr)=pr-r\{pf) and (2.3) 

W - »VW)) = ffi - £$g -/•-''.. (2.4) 

The following theorem is analogue for p-irregular sequences. We note that both Theorem 

2.5 and Corollary 2.6 remain true in the case that w is degenerate. 

T h e o r e m 2.5:'Let w(a,b) E T(a,b) be a p-irregular recurrence and set hf(pr) = hw(pr)^ e = 

e(u), and el — e(w). Let f = max(r — e',0). Then 

{
1 if r< e

;
, 

h(pr-e') - h(pe) = h(p) if e1 < r < e' + e, 

h(pT~e') - pT~e-e>h(p) if e' + e<r. 

Theorem 2.5 has an important corollary that we require below. 

Corol la ry 2.6: If w, wf
 E T{a,b) are p-irregular and satisfy e(w) = e(wf), then hw(pr) = 

hw>(pr). 

Proof: It is clear from Theorem 2.5 that the restricted period depends only on e(w) and 

the global parameters h(p) and e. 

The ratios of terms of recurrences (w) modulo p
r
 are closely related to multipliers and 

play a key role in our study. If a, 6, c, and d are integers, with p f b and p Yd, then the quotients 

a/b and c/d may be viewed as elements of Zp , the localization of the integers at the prime 

ideal (p). It is then natural to define 

a/b = c/d (mod p
r
) if and only if ad — be = 0 (mod p

r
) . 

In [1], the notation pw{n,m) was introduced to represent the ratio of elements wn+m and wn 

of a second-order recurrence sequence (w) when wn was not divisible by p. We extend that 
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notation to include the situation when the p-power dividing wn does not exceed the p-power 

dividing w n + m . 

Defini t ion 2,7: If w(a,b) £ !F(a,b) and m and n are nonnegative integers such that pk \\ wn 

and pk
 i| w n + m , then we define p(n,m) = pw(n,m) to be the element (wn+m/pk)/(wn/p

k) £ 

Zp. 

Note, in particular, that if wn is p-regular, then the multiplier and special multiplier 

modulo pr
 can be expressed in terms of ratios: 

Mw(pT) = p(n, hw(pT)) (mod p
r
) , 

K(Pr) = rt*,*i(Pr)) (mod*'). 

To make it convenient to refer to elements congruent to ratios modulo p
r
, we introduce the 

mapping TTT : Z p -> Z/j?
r
Z, the canonical extension to Zp of the quotient map TT : Z -» Z/j /Z. 

We require the following three basic lemmas from [1] in our analysis below. 

L e m m a 2*8 (Lemma 3.3 of [1]): Let w(a, b) £ «F(a, b) and fix a positive integer c. Let i and j 

be two integers such that i < j . Let £ be the largest integer (possibly zero) such that h{pl) \ c 

and m the largest integer (possibly zero) such that hw(pm) | j — i. Then 

Wi+cWj — Wj+cWi = 0 (mod pr) 

if and only if £-\-m > r. In particular, if Wi and Wj are p-regular, then pw(i,c) = pw{jjc) 

(mod pr) if and only if £ + m>r. 

L e m m a 2,9 (Lemma 3.4) of [1]): Let w(a, b) £ T{a, b) and w'(a, b) £ T(a, b) and fix a positive 

integer c. Let £ be the largest integer such that h(pl) | c and assume that £•< r. If, for integers 

n and i, 

w'n+cwn+i - wn+i+cw
f
n = 0 (mod pr), (2.5) 

then wf(a,b) is a m o t ofw(a,b) modulo pr""i. 

Conversely, if wf(a,b) is a m o t of w(a,b) modulo pr~'i? then there exists an i such that 

(2.5) holds for all n. 

L e m m a 2.10 (Lemma 2.13 of [1]): Let B be apr'-block of T{a,b) containing the sequence w. 

Then, up to congruence modulo j?
r
, B contains pr~1(p ~ l)hw(pT) distinct sequences. 

Finally, we require two tools to "lift" roots modulo p of the characteristic polynomial to 

roots modulo higher powers of p. When I ^ J = 1, the characteristic polynomial f(x) has 

nonsingular roots, that is, roots that are not simultaneously roots of ff(x). In this situation, 

each of the roots modulo p lifts to a unique root modulo each higher power of p. The required 

lifting theorem is Hensel's lemma, which we state here for reference. 

T h e o r e m 2.11 (Hensel's lemma): Suppose that f(x) is a polynomial with integral coefficients. 

If f(m) = 0 (modf/ ) and fr(rn) ^ 0 (mod j?), then there is a unique i modulo p such that 

f(m + tp{) = 0 (mod p
i + 1

) . 

Proof: See Theorem 2.23, p. 87 of [2]. D 

When (£•) = 0, the characteristic polynomial f(x) has only one singular root modulo 

p, that is, the single root of f(x) modulo p is simultaneously a root of f(x). In this case, the 

lifting of roots is governed by the following theorem. 
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T h e o r e m 2.12: Suppose that f(x) is a polynomial with integral coefficients. If f(m) = 

0 (mod pl) and ff(m) = 0 (mod p), then f(m + tp%) = f(m) (mod pt+1). Furthermore, one of 

the following occurs: 

(a) Each of the p distinct residues rn + tp%
 (mod jp*

+1
), for 0 < t < p, satisfy f(m + tpl) = 

Q(modpi+1). 

(b) None of the residues m+tp1
 (mod p*

+ 1
), for 0 <t < p, satisfy f{m+tpl) = 0 (mod p*

+1
). 

Proof: See p. 88 of [2]. • 

The lifting of singular roots of a polynomial f{x) is more complicated than that of non-

singular roots and is best described by the modulo p root tree of f{x). 

Definit ion 2.13: The modulo p root tree of f{x) is a tree whose nodes at the fe-th level are 

labelled by the roots of f(x) modulo pk. The nodes at level k + 1 are connected to the nodes 

at level k corresponding to the roots from which they are lifted. A terminal node of the root 

tree at the fc-th level corresponds to a root modulo pk
 that does not lift to a root modulo pk+1. 

For use below, we denote by n& the number of nonterminal nodes of the modulo p root 

tree of f(x) at the fc-th level. In other words, f(x) has exactly n* roots modulo pk
 that lift to 

roots modulo pk+1. 

The root tree may be finite or infinite: in the first case, all the nodes at some level of the 

root tree are terminal; in the second case, one of the roots modulo p lifts to a root modulo pk
 for 

all k. The polynomials that concern us in this paper, the quadratic characteristic polynomials 

f(x) = x2
 - ax + 6, have at most one singular root when f ™ J = 0 , and consequently the root 

tree is connected with a single base node. We illustrate the root tree with two examples. 

E x a m p l e 2.14: Let f(x) — x2 — x — 1, the characteristic polynomial of the Fibonacci family 

^ ( 1 , - 1 ) . Since D = a2
 - 4 6 = 1 + 4 = 5 = 0 (mod 5), we see that ( f ) = 0 and f(x) has a 

unique, singular root modulo 5, namely ra = 3. However, since / (3) = 5 ^ 0 (mod 25), this 

root does not lift to any root of f(x) modulo 25. It follows that the root tree of f(x) modulo 

5 consists of only the base node. 

FIGURE 1. The Modulo 3 Root Tree of f(x) = x2
 + x + 61 
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E x a m p l e 2„15: Let f(x) = a;
2
 + a;H-61, the characteristic polynomial of the family :F(-1,61). 

Since D = 1 — 244 = —243 = 0 (mod 3), we see that f(x) has a unique singular root modulo 

3, namely ra = 1. Since / ( I ) = 63 = 0 (mod 9), Theorem 2.12 implies that the root 1 lifts to 

three distinct roots modulo 9, namely 1, 4, and 7. Thus the root tree of f(x) modulo 3 has 

three nodes on the second level 

Since / ( I ) = 63 ^ 0 (mod 27) and / (7) = 117 -£ 0 (mod 27), neither 1 nor 7 lifts to a 

root of f(x) modulo 27. However, / (4) = 81 = 0 (mod 27), so Theorem 2.12 implies that the 

root 4 lifts to three roots of f(x) modulo 27, namely 4, 13, and 22. We conclude that the root 

tree of f(x) modulo 3 has three nodes on the third level. 

Next, we observe that / (4) = /(13) = /(22) = 0 (mod 81), so each of these roots lifts 

to three roots modulo 81. Clearly the root '4 lifts to 4, 31, and 58; 13 lifts to 13, 40, and 67; 

and 22 lifts to 22, 49, and 76. Therefore the root tree of f(x) modulo 3 has nine nodes on the 

fourth level. 

To compute the fifth level of the root tree, we observe that f(x) ^ 0 (mod 243) when 

x G {4,31,58,22,49,76} while f(x) = 0 (mod'243) when x G {13,40,67}. Therefore the roots 

13, 40, and 67 each lift to three roots modulo 243, namely 13, 94, 175, 40, 121, 202, 67, 148, 

and 229. Thus the fifth level of the root tree has nine nodes. 

Finally, it is easy to check that none of the nine roots of f(x) modulo 243 lifts to a root 

modulo 729. Thus the root tree of f(x) modulo 3 is finite with five levels. (See Figure 1.) 

3 . p - R E G U L A R B L O C K S 

Our analysis of special multipliers requries a careful accounting of the number of p
r
-blocks 

in ^"(a, 6) having certain properties. For p-regular blocks, this accounting was performed in 

T h e o r e m 3.1 (Corollary 2.17 of [1]): Let T8ing(p
r) and T r eg(p

r
) denote, respectively, the 

number of p-regular blocks in J°(a,6) with and without p-singular terms. Then 

r^frr) = £^) and T^r ) = M £ > • (3J) 

4. ^ I R R E G U L A R B L O C K S 

Counting the number of p-irregular blocks in !F(a,b) is somewhat more complicated, and 

requires examination of several cases. Note that the p-irregular sequences w in this section 

may be degenerate, in which case e(w) = oo. By convention, the assertion that e(w) > r 

includes the possibility that e(w) = oo. 

L e m m a 4 .1 : IfwE ^(a^b) is p-irregular and r < e(w), then w lies in the same pr-block as 

a sequence in F(a, b) that has initial terms 1, j , where 7 is congruent modulo pT to a root of 

the characteristic polynomial f{x) = x2 — ax + 6. 

Proof: Since w is p-irregular and r < e(w), the sequence w is first-order modulo p
r
. 

Moreover, since w E J*(a,&), we know that p Y (wo,w±), and therefore pY w$. Choose £ and 

7 G Z to satisfy C = WQ1
 (mod pT) and 7 = w^wi (mod p

r
) . Then the multiple (w of the 
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sequence w is first-order modulo p
r
, satisfies the recurrence relation (2.1), and has initial terms 

1, 7. It follows that 7
2
 = cry - b (mod p

r
) , and we see that ^(7) = 0 (mod p

r
) , as desired. • 

T h e o r e m 4.2: Suppose B is a p-irregular pr-block of jF{a^b) and w, wf
 E B. Then either 

e(w) — e(wf) <r or e(w), e(wf) > r. 

Proof: First suppose that w, wf
 E B C T{a, b) and r < e(w). Since r < e(w) and w is 

p-irregular, it follows that w satisfies a first-order recurrence modulo pr. Since wf
 lies in the 

same p
r
-block as w, and, obviously, any multiple of a translation of a first-order recurrence 

is also a first-order recurrence, it is clear that wf
 is also first-order modulo p

r
, and hence 

r < e(wf). 

Next, suppose that w, wf
 E B C T and r > e(w). Without loss of generality, we may 

assume that e(w!) > e(w). If e(wf) > r, then wf
 is a first-order recurrence modulo p

r
, and, 

since w belongs to the same p
r
-block, w must also be first-order modulo pr. But then e(w) > r, 

a contradiction. Thus, r > e(wf) > e(w). 

Since r > e(w
;
), it is now clear that w and ws

 belong to the same pe^w
 ^-block. By 

definition of e(wf) and the fact that wf
 is p-irregular, we know that w1

 is first-order modulo 

pe{w )o Therefore w is also first-order modulo pe^w \ and hence e(w) > e(w
/
). We now conclude 

that e(w) = e(t£/
;
), as desired. • 

The next two theorems provide an accounting of p-irregular p
r
-blocks when (^-J = 1, 

making extensive use of Hensel's lemma. 

T h e o r e m 4,3: If ( ~ J = 1, then there are exactly two distinct p-irregular pT-blocks in !F(a,b) 

that contain a sequence w with the property that r < ew. 

Proof: Since ( —• 1 = 1 , the characteristic polynomial f(x) = x2 — ax + b has two distinct 

roots in Z/pZ. Suppose that a, /3 E Z project onto these distinct roots. It is easy to verify 

that f(a) ^ 0 (mod p) and /
;
(/3) ^ 0 (mod p), as otherwise a = ft = a/2 (mod p), and the 

roots are not distinct. By Hensel's lemma, applied repeatedly, the polynomial f(x) has exactly 

two distinct roots modulo p
r
. If we suppose now that a and /? E Z were chosen to project onto 

these distinct roots modulo p
r
, then the two sequences wa and wp that satisfy the recursion 

(2.1) and have initial terms 1, a and 1, p, respectively, are p-irregular and first-order modulo 

pr. Hence e(wa) > r and e{w@) > r. Moreover, it is clear that wa and w@ lie in different 

p
r
-blocks. 

Conversely, if w is p-irregular with e(w) > r, then, by Lemma 4.1, w lies in the same 

p
r
-block as wa or (ic/^), as desired. D 

T h e o r e m 4.4: If (j) = 1 and k <r, then there are exactly 2pr~k~1(p - l)/hw(pr) 

distinct p-irregular pr-blocks in T{a, b) that contain a sequence w with the property that ew = k. 

Proof: First we note that, by Corollary 2.6, hw(pr) is independent of the choice of the 

sequence w. 

Next, we count the number of sequences, up to congruence modulo p
r
, in the set 

ftk = {w G JT(a, 6) J w is p-irregular, e(w) = ft, and WQ = 1 (mod p
r
) } . 
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If w E fifc, then w is first-order modulo p
fc

, but is not first order modulo pk+1. Consequently, 

if f(x) — x2 — ax 4- h is the characteristic polynomial of w and w% = 7, then 

f(j) = 0 (mod pk) and (4.1) 

/ ( 7 ) ^ 0 ( m o d / *
1

) . (42) 

Since (f -•) = 1, the polynomial / (x ) has two distinct roots modulo p . By Hensel's lemma, 

there are exactly two residues modulo pk
 that satisfy (4.1), and, again by Hensel's lemma, 

exactly 2(p ~ 1) residues modulo pk~¥1
 that satisfy both (4=1) and (4.2). It follows that there 

are 2pr~~(k+1^(p - 1) residues modulo pr
 that satisfy both (4.1) and (4.2). 

On the other hand, if w G F(a,b) has initial terms 1, 7, where 7 is congruent modulo pT 

to one of the 2pr~^k+1^(p — 1) residues that satisfy both (4.1) and (4.2), then w satisfies (2.1) 

and is first-order modulo pk, but is not first order modulo j?
fc+1

. Thus e(w) — k and w E O&. 

It follows that Qt contains exactly 2pr~^k+1\p — 1) sequences that are distinct modulo pr. 

Since the initial term WQ of a p-irregular sequence in !F(a, b) is invertible, it is clear that 

each p-irregular sequence in T(a,h) for which e(w) — k is equivalent modulo pr
 to one of 

the sequences in fi&. Moreover, the 4>(pr) multiples by an invertible element of Z /p
r
Z of 

each of the 2pr~tk+1)(p - 1) sequences in Q^ are distinct modulo pT
'. Thus there are exactly 

2^(p
r
)p

r
"~^

+1
^(p — 1) = 2p2r~k~~2(p — I )

2
 p-irregular sequences w E T(a3b) that are distinct 

modulo pr
 and satisfy e(w) = k. 

Finally, by Lemma 2.10 and Corollary 2.6, every j?
r
-block of T{a, b) that contains a se-

quence w that is p-irregular and satisfies e(w) = k contains pr~~1 (p—l)hw(pT) distinct sequences 

modulo p
r
, and hence there are 2pr~^k+1^{p — l)/hw(pr) such p

r
-blocks. D 

Finally, we examine the situation when 1—1 = 0 . Again, our objective is to count the 

number of p-irregular p
r
-blocks and the primary technique is to lift the roots of the charac-

teristic polynomial. In this situation, however, the roots are singular, and the primary tool is 

Theorem 2.12 rather than Hensel's lemma. 

As in the analysis when ( ^ J = 1, we wish to count separately the p-irregular blocks 

that which contain a sequence w for which ew < r and those that which contain a sequence w 

for which r < ew. However, the computation here depends heavily on the parameters a and 

b. Consequently, our results will depend upon the structure of the modulo p root tree of the 

characteristic polynomial f(x) = x2 — ax + 6. In particular, the next two results depend upon 

the number of nonterminal nodes n*. at the fc-th level of the root tree. 

T h e o r e m 4.5: If ( — j = 0 and n r _ i is the number of nonterminal nodes at level r — 1 of 

the modulo p root tree of f(x) — x2 — ax + b, then there are exactly pnr^i distinct p-irregular 

pT-blocks in !F{a,b) that contain a sequence w with the property that r < ew. 

Proof: As in the proof of Theorem 4.3, the ^irregular j?
r
-blocks that contain a sequence 

w for which r < ew correspond to the sequences wa that satisfy the recursion (2.1) and have 

initial terms 1, a, where a G Z projects onto a root of f(x) modulo p
r
. The roots of f(x) 

modulo pr
 correspond to the nodes at the r-th level of the modulo p root tree. 

By Theorem 2.12 each root of f(x) modulo •pr~1
 either fails to lift to any root modulo 

p
r
, or lifts to p distinct roots modulo j?

r
. By definition of n r _ i , the characteristic polynomial 
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f(x) has exactly n r _ i roots modulo p
r _ 1

 that lift to roots modulo p
r
. It follows that there 

are exactly pnr-\ distinct roots of f(x) modulo p
r
, and consequently, there are exactly pnr~i 

distinct p-irregular p
r
-blocks that contain a sequence w for which r < ew. D 

T h e o r e m 4.6: Suppose that ( ^ 1 = 0 and k <r. Let ra& denote the number of nonterminal 

nodes at the k-th level of the modulo p root tree of f(x) = x2 — ax + b. Then the number of 

distinct p-irregular pr-blocks in ,F(a,&) that contain a sequence w with the property that ew — k 

is exactly 

(a) (1 — ni)pr~1/hw(pr), if k — 1, and 

(b) (pr**.-! - nk)p
r~k/hw(pT), if l<k <r. 

Proof: As in the proof of Theorem 4.4, we first observe that, by Corollary 2.6, hw{pT) is 

independent of the choice of the sequence w. 

For each k < r, we let 

ilk = {w E J7(a, b) | w is p-irregular, e(w) = fc, and wo = l (mod pr)}. 

As in the proof of Theorem 4.4, if w E ilk, then w is first-order modulo pk, but is not first 

order modulo pk+1. Consequently, if f(x) = x2 — ax + b is the characteristic polynomial of w 

and w\ = 7, then 

/ (7 ) = 0 (modp*) and (4.3) 

/ ( 7 ) ^ 0 (modp
& + 1

) . (4.4) 

Therefore, 7 corresponds to a node on level k of the modulo p root tree of / ( x ) , but not on 

level k + 1, i.e., a terminal node on the fc-th level of the root tree. 

Suppose that k = 1. We know that there is a unique node at the first level of the root 

tree, corresponding to the unique root modulo p of the characteristic polynomial f(x). Since 

rii, which must be either 0 or 1, is the number of nodes that lift, there remain (1 — n±) 

terminal nodes, that is, (1 — n\) roots modulo p that satisfy both (4.3) and (4.4). It follows 

that there are (1 — ni)pr"1
 residues modulo pT

 that satisfy both (4.3) and (4.4), and hence 

\tt1\ = (l-n1)p
r~\ 

Now suppose that 1 < k < r. By Theorem 2.12 there are pn^-i nodes at the fc-th level 

of the modulo p root tree, and n& of these lift. It follows that the k-th level of the root tree 

contains (pnk-i — nk) terminal nodes. These nodes correspond to roots 7 of f(x) modulo 

pk
 that satisfy both (4.3) and (4.4). Therefore there are (pnk-i — nk)pT~k

 distinct residues 

modulo pr
 that satisfy both (4.3) and (4.4), and hence |fi&| = (pn^-i — nk)pr~k. 

Since the initial term WQ of a p-irregular sequence in .F(a, b) is invertible, it is clear that 

each p-irregular sequence in T(a,b) for which e(w) = k is equivalent modulo pT
 to one of the 

sequences in ilk. Moreover, the <j>{pr) multiples by an invertible element of Z / p
r
Z of each 

of the sequences in fi& are distinct modulo pr. Thus there are exactly 0(p
r
)|Ofc | p-irregular 

sequences w E T(a, b) that are distinct modulo pr
 and satisfy e(w) = k. 

Finally, by Lemma 2.10 and Corollary 2.6, every p
r
-block of T{a, b) that contains a se-

quence w that is p-irregular and satisfies e(w) = k contains pr~1(p - l)hw(pr) = <j>{pr)hw{pT) 

distinct sequences modulo p
r
, and hence there are \ilk\/hw(pr) such p

r
-blocks. 

By substituting in the computed values of \ilk\ for k = 1 and 1 < k < r, we obtain the 

conclusion of the theorem. D 
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5. T H E M A I N T H E O R E M 

T h e o r e m 5.1: Suppose that T{a,b) contains anondegeneratep-regular sequence and r > e. 

Let d be a nonnegative integer such that d = M(pr*) (mod p
r
*). Then there exists a recurrence 

w(a,b) E ^ ( a , 6) and an,index n such that 0 < n < h(pr~~T
 ) and 

d = pw(n, ft*) (mod p
r
) . 

Proof: Jfw(a,b) E J"(a?6)? then for each p-regular term u/n, the ratio pw(n,h*) satisfies 

pw(n, h*) = M(pr
 ) (mod p

r
*). 

There are exactly p
r
~~

r
* residues t modulo pr

 with the property that t = d (mod p
r
*). Conse-

quently, if we can show that the residues 7rr(pw(n,h*)) E Z /p
r
Z, corresponding to the ratios 

pw(n,h*) arising from every p-regular term wn of every sequence w(a,b) E !F(a,b), account 

for pT~T
 distinct residues modulo p

r
, then one ratio must satisfy the required congruence 

Pwirij h*) = d (mod p
r
) . To this end, we carefully enumerate the distinct residues modulo pr 

that appear as ratios pw(n, h*)(mod pr) for sequences w(a, b) E T. 

First observe that, by Lemma 2.8, the ratios pw(n3 h*) are distinct modulo pT
 for 0 < n < 

h(pr~r*)« Second, by Lemma 2.9, 

{irr(pw(n,h*)) \0<n< (p
r
~

r
*)} = {irr(pw,(n,h*)) \0<n< h(pr~r*)} 

when w and wf
 lie in the same block modulo pT~r

 , while 

{nr{Pw{n, h*)) \0<n< (pr^)} D K ( p w / ( n , h*)) \0<n< fc(p
r
"

r
*)} = 4> 

when w(a,b) and w
;
(a, 6) lie in different blocks modulo p

r
~

r
* . Thus we may narrow our 

analysis to one sequence from each p
r
""~

r
* -block of ,F(a,6). 

If «/(«,&) contains no p-singular elements, then the ratios {pw(n,h*) | 0 < n < /i(p
r
"~

r
 )} 

account for h(pT~~r*) distinct residues modulo pr. On the other hand, suppose that w(a,b) 

contains p-singular terms, Clearly every cycle in the same block as w(a, b) has the same number 

of p-singular terms, and without loss of generality, we may assume that WQ is p-singular. Then 

wm isp-singular if and only if h{p) \ TO. Consequently, one restricted period of w(a, b) contains 

h{pT~T*)/h{p) p-singular terms and h(pr™~r,¥)—h(pr~r*)/h(p) p-regular terms. As noted above, 

these p regular terms wm give rise to distinct ratios pw(m, h*) modulo p
r
, and hence the block 

of w(a, b) contributes h(pr~r*) — h(pr"~"r )/h(p) ratios modulo p
r
. 

We can now apply Theorem 3.1 to count the distinct special multipliers that arise from 

sequences in the p-regular p
r
""

r
 -blocks of T(a,b). The number of distinct ratios pw(n,h®) 

modulo pr
 is: 

Treg(j/-
r*) • h(p

r
~

r
') + W p - ' - * ) • (h(p

r
~

r
') - ^ p ) 
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To complete the proof, we count the number of distinct special multipliers that arise from 

sequences in the p-irregular pT~r* -blocks. We break the analysis into three cases corresponding 

to (f) = - 1 , 1 , and 0. 

Case 1: ( f ) = - 1 . 

If ( ^ J = —1, (5.1) yields pr~r* distinct ratios, and the argument is complete. 

Case 2: (f) = 1. 

Assume that ( ^ 1 = 1. Then (5.1) yields pr~~r* — 2pr~r*~~1
 distinct ratios arising from 

the p-regular pr~r
 -blocks. To complete the argument, we counnt the distinct ratios arising 

from sequences in the p-irregular p
r
~

r
* -blocks. 

If B is a p-irregular pr~r* -block of ^*(a,6) that contains a sequence w for which e(w) > 

r — r* then, by Theorem 2.5, hw(pr~r*) = 1 and the block B contributes only one additional 

ratio, p(0,1). Since, by Theorem 4.3, there are exactly two such blocks, these blocks contribute 

two additional ratios. 

If B is a p
r
~

r
* -block containing a sequence w for which e(w) = k < r — r*, then w 

contributes hw(pT~~r ) additional ratios. By Theorem 4.4, there are exactly 2pr"~r*~k~l{p — 

l)/hw{pr~~T ) such pT"T
 -blocks, and therefore these blocks contribute 

additional ratios. If we sum over all possible values of fc, i.e., 1 < k < r — r*, we obtain 

= 2(p - i f " ~^~ l = 2pr~r'-1 - 2 (5.2) 

additional ratios. 

Combining the new ratios obtained from the p-irregular pT~~r* -blocks with those obtained 

from the p-regular pr~r* -blocks yields p
r
~

r
* - 2 p

r
"

r
* -

1
 + 2pT~r*-1 - 2 + 2 = pr~r* ratios, as 

desired. 

Case 3: (jf) = 0. 
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Assume that ( y j = 0. Then (5.1) yields pr r
* -pr r

*
 1

 distinct ratios arising from the 

p-regular pr~T
 -blocks. As in the previous case, we complete the argument by counting the 

distinct ratios arising from sequences in the p-irregular _p
r
~"

r
*-blocks. 

As usual, for each k satisfying 1 < k < r, let nk represent the number of nonterminal nodes 

at the fc-th level of the modulo p root tree of the characteristic polynomial f(x) = x2
 — ax + b, 

If B is a p-irregular pr~r
 -block of T(a, h) that contains a sequence w for which e(w) > 

r — r* then, by Theorem 2.5, hwp(T~r*} = 1 and the block B contributes only one additional 

ratio, p(0,1). Since, by Theorem 4.5, there are exactly pn r _ r *„ i such blocks, these blocks 

contribute pnr-T*-i ratios. 

If B is a j>-irregular p
r
~

r
* -block that contains a sequence w for which e(w) = k < r — r*, 

then w contributes hwp^T~~T*} additional ratios. Theorem 4.6 implies that there are exactly 

(1 — ni)pT~~T*~x/hw{pT~T*) such p
r
~

r
*-blocks when k = 1 and (pnk-i—nk)pr~'r*~k/hw(j)r~r*) 

such jf~
r
*-blocks when 1 < k < r — r*. Therefore the number of additional ratios contributed 

by these blocks is 

{1
 hZi^-n'

1
' *«(pr~r">=p{l

 ~ nw^
1
'
 when k

=
x 

^ ^ " / ^ y r ' " * • K(pr-r*) = (pn*-i - n * ) ! / - " - * , when k > 1. 
hw(pr r ) 

If we sum over all possible values of A, i.e., 1 < k < r — r*, we obtain a simple telescoping sum: 

i—r* — 1 

(l-ni)p r- r '-1+ J2 (Pnk-i-nk)p
r
-

r
*~

k 

jfc=2 

= (1 - ni)p
r
""

r
*

_ 1
 + (pax - n 2 )p

r
~

r
*~

2
 + • • • + (pn r_ r*_2 - nr-r*-i)p 

T — T * — 1 

= p — jra r _ r *_i . 

Adding the count of new ratios obtained from the p irregular pT~~r
 -blocks to that obtained 

from the p-regular p
r
~

r
*-blocks yields pT~~r* -~pr~"r*~1-j-pnT^T*~.i+pr'~'T*~"1

 —pn r_ r*-i = PT~~T 

ratios, as desired. • 
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