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SYMMETRIC SEQUENCES

BROTHER ALFRED BROUSSEAU
St. Mary's Coliege, California 84575

This paper deals with integer sequences geverned by linear recursion relations. To avoid useless duplication, se-
quences with terms having a common factor greater than one will be considered equivalent to the sequence with the
greatest common factor of the terms eliminated. The recursion relation governing a sequence will be taken as the
recursion relation of lowest order which it obeys.

Symmetric sequences are of two types:

A. Sequences with an Unmatched Zero Term

(1 T3, T2, 71,70, T7,7T2, T3,
with
Tn = Tn
B. Seguences with All Matched Terms
(2) T3, T2,T—1.771.T2, 73,

FIRST-ORDER SEQUENCES
The recursion relation of the first order is:
(3) Tht1 = alp

which will have all terms integers only if a = #7. The only sequences governed by such relations subject to the initial
restrictions given above are:
YA A

L A A I

These sequences and the sequence -0, 0, 0, 0, --- will be eliminated from consideration in the work that follows.

SECOND-ORDER SEQUENCES

For a recursion relation
Tper = al g +0T 4

to have all integer terms, the quantity # must be +7 or —7. The same applies to sequences of higher order. These will
be dencted Case | (+7) and Case Il (—7).
Case 1. Tpe1 = alpt Thog

A, Zero Term
To=To—aly, T_y=Ti—aTg=Ty—ala+a’Ty =Ty,  alaT;—Ta) = 0.
Thus either a=0 or Tg=0. a =0 leads to sequences such as:
~2,3,2,3,2,323, -
if 7Tp=0,
T.2=7T2=Tgp—-al_; = —aly .

Hence 75 = aTy and T3 = —aTy with the result that 2= 0.
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34 SYMMETRIC SEQUENCES {FEB.

B. No Zero Term

T.1=Tg—afl; =Ty, fa+1)Ty = Ta, To=To=Ty—al_; =(1-aT;.
Therefore a7; = 0. 1f T4 = 0, ali the terms are zero. 1fa = 0, we have the type of sequence given above for this value.
Case 1. Tnt1 =alp—Th-7.

A. Zerc Term
) To=aly=Ta, T =T;=alg—T;=2a’T;—aTo—T;
(a2—2)T;j~aTp =0, Tp=To=al;—Tp=al-.;—al;+To =Ty .
If symmetry holdsup to 7,,, then
Top-1 = aln—=T_p+1 = aTp—Tpog = Tpey
and hence the entire sequence will be symmetrical.
EXAMPLES

Forany value of a, select 7y and T2 to satisfy (4) in order to generate a symmetric sequence. Thusfora=3, 77 =
375, giving the sequence:
-47,18,7,3,2,3,7,18,47, -

governed by
Tnt1 = 3T —Thoy .

Fora=8, 62T =8T2, giving the sequence:
- 1921,244,31,4, 1,4, 31,244, 1921, -

governed by Tp7,=8T, ~ Thog .
B. No Zero Term

The relations
T 4=T;=al{-T> and T o=al4-T;
both lead to
fa—1)T; = T5.
if 7_,=T, holdsup te n, then
Topey =8l ~Topsg = 8Ty~ Tpg = Ther

and the symmetry will be maintained throughout the sequence.

For a=5, To=4T; giving a sequence

--19,4,1,1,4,19, 91,436, -
governed by
Tne1 = 8T —Tpho1 .

THIRD-GRDER SEQUENCES
Case I. Thet =alp+bTy_1+Tp 0.
A. Zero Term
Tho=Ther—al,—5bTh g, To=T3—alo—bTq,
Ty =Ty =To~al;—bTg = Tp—al;—b6T3+abTo+5%T;

(5) (62 —a—1)T;+(ab+1)Tp = bT3 .
Also
Tp=Tp=Ty—alg—bT_g = Ty—aTz+a’To+abT; —bT;
from which
(6) (ab—b+1)T;+(a%—1)To = aT3

T._3 = T3 = Tg —-aT.;—-bT_z = T3—3T2—bT1 ~aT7 ——sz
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so that

(7) fa+bT;+T2) = 0.
Equation (7) will hold if & = —a which makes (5) and (6}:

(5°) (a2 —a— 1T, +(1—a°)To = —aT3
(6") (—82‘/‘3'/'7)7-7'/'(32-— s = als

which are the same relation. Since
Tg =alz—bTo+T; and T 4=T_y—-alo—bT_3=T;—alo+al3 =Ty

the symmetry persists up to this point. An entirely similar argument shows that it holds in general.
EXAMPLE. For a given value of 4, many symmetric sequences can be determined. For =5,

1971 — 24T = =573
from which one may derive any number of symmetric sequences obeying the relation
Tat1 = 8T, —5Tp1+Th-o.

Examples are:
- 1350, 361,96,25,6, 1,0, 1, 6, 25, 96, 361, 1350, -

--363,98,27,8,3,2,3,8,27,98, 363, -, -362,97,26,7,2,1,2, 7,26, 97, 362, -
B. No Zero Term
Thet = alp +an_1+Tn__2, Then = T,,.,.,—aT,,—bT,,..;, T_1 =Ty =T3—alo—bTy

(8) (b+1T;+aTo = T3
T o=To=Ty—al;—5bT_4
(9) (a+b)T; = 0

which is satisfied if &= —a
T_g = T3 = T; ~aT_7 -—bT_2

(10) T3 =(1-alT;+aTy

which agrees with (8) when b = —a.
If the symmetry holdsto 7, = 7_,,, then

Topet = Topio—aFpegtalop = Tnoz—aTp1+aln = They

so that all corresponding pairs are equal.
EXAMPLES. For a=4, T3 = 475 — 3T yields many sequences governed by

Toey = 4Ty —4Tp 1+ Tp-2
--233,89,34,13,5,2,1,1,2, 5,13, 34, 89,233, ---
--177,67,25,9,3,1,1,3,9,25,67, 177, -
-265,100,37,13,4,1, 1,4, 13, 37, 100, 265, ---

Case I1. Tpt1 = alpn+bTp_1—Tho. Th-2 = alp+bT 1 — They
A. Zero Term
To=aTa#hTy—Tg, Tog=Ty = aT;+bTg—To = aT7+baTo+b%T; —bhT3— T
(11) (a+bh?—1)T;+(ba—1)To~bT3 =0
To=Ty=alg—-0T_34-T4 = 327'—2'/'3[77-7 —alz+bT.41—Ty
(12) (ab+b—1)T;+(a° —1)To~alTg = 0
T.3=T3=aly+tbTo—alo—bT1+7T3
{13) fa—b)T;~T2) =0

so that b = a satisfies this relation.
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Equations {11) and (12) both become for b = a:
(14) (a+a—~1)T;+(a2—1)To—aT3 = 0.
For a=2, 2T3=5T;+ 3T, vields an infinity of sequences satisfying
Tnt1 = 2T+ 2T 1.~ Tp-2
-64,25,9,4,1,1,01,1,4,9,25,64, --
--129,49,19,7,3,1,1,1,3,7, 19,48, 129, -
- 194,73,29,10,5,1,2,1,5,10,29,73, 194, -
--259,97,39,13,7,1,3, 1,7, 13, 39,97, 259, -
B. No Zero Term
Theo = Typg—aly~bTph-1, Tt =T3—alo—bTq

(15) (b+1)T;+aTo = T3
To=Tp=Ta—al;-bT_4
(16) (a+b)T; = 0.
Equation (15) becomes T3 = (1 —a)T; +aTo for b=—a. Now, T.3=T3=Ty—al_;—bT.o
(17) T3 =(1-a)T;+al>

in agreement with (15) if b = —a.
Toq=T.1—alp+al_3 =alz—ala+7;
whereas
Tg =alz—alo—Ty

sothat Ty=0 if T_4=Ty4.

Similarly setting 7_5 = T'5 makes T2 =0, etc. Hence this case yields nothing more than the trivial result ---0,0,0,0,0,.

FOURTH-ORDER SEQUENCES
Case . Tht1 = alp+bT g1+ cTp2+ Th-3
A. Zero Term

Th-3 = Tpe1—aln—bTp—1—¢Tph-2, To=T4—al3—bTa—cTy

Ty =Ty =T3-alp—bT;—cTg=T3—aTa—iT;—cTg+acTz+beTo+c?T;
(18) (c2~b —1)T;+(be —a)To+(ac+1)T3—cTq = 0

T2=Tz=To—aly—bTg~cT_y = To—al;~bTg+abT3+b%To+becT; ~cTy
(19) lbc—c—a)T;+b%To+abT3—bT4 = 0

T 3=Ts=T1—alp—bT_1—cT_2 =Ty —aT4+32T3+abT2+acT7 —bT;—-cTo
(26) fac —b+1)T;+(ab —c)To+(a% ~1)T3~aTq = 0

Tg=Tqg=Tg—al.;—bT_2-¢cT_3=Tg—alz—bTo—cTy—al;—bTy—cT3
(21) fa+c)Ty+26To+(a+c)T3 = 0.

If this set of four equationsin Ty, T2, T3, T4 is to have a non-zero soluticen, the determinant of the coefficients
must be zero.
Z—b—1 be—-a ac+l — 7

be—c—a b2 ab ~bi_,
ac—bh+1 ab-c a°—1 -a
l ate 2h ate 0.
from which
(22) (a+b+cl-a+bh—cha®—c2+4b) = 0.
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Before proceeding to further analysis some refations will be derived from equations (18) to (20). From {18) and (19)

(23) (c?+ac b2 —b)Ty—abTo+bT3 = 0 .
From (18) and (20)

(24) (62 —b —ac —a®)T;+bcTo+bT3 = 0

and from (23) and (24)

(25) (c2 +a2 + 2ac ~ 262)T = bla+c)T.

THE CONDITIONa+b+c=0
b =—a — ¢ substituted into (25) gives

(2 +a2+2ac— 202 — 222 4ac)Ty = ~(a +L‘)2T2
so that 77 = To. Then by (21)
(a+c)Ty+2(—a—¢c)Ty+(a+c)T3 = 0
so that T3="74. By (18),
(c+atc—T1—-c?—ac—atac+1)T; = cTy
so that 74 = T7. Ifthe termsup to 7, areall equal to 7y, then
Tneg =alg+{—a—c)T;+¢cTy+T7 =Ty
so that ali terms of the sequence are the same.
THE CONDITION —a+b6 —¢c=0

b =a+c leads to
Tp=-Ty, T3=T7, Tg=-Tg.

If this alternation holds up to 7, , then
Tper = lal=1)""T +(a+c)=1)"+e(=1)" T+ (=1)"]T; = (-1)"T,

so that the alternation continues.
THE CONDITION 22 =2 +4p =0

a and ¢ must be of the same parity.

EXAMPLE: a=1 b=12 ¢=7.
Using Eqs. (18}, (19) and {20) we obtain:
36T;+83To+8T3—7T4 = 0, 76T;+144To+12T3—12T4 = 0,  —4T;+5To+0T3—T4 = 0.

fromwhich 77:72:T3: T4 =3:-7:158:-47.
Using the recursion relation
Tpty = Tp+ 12Ty 4+ 7Tp 2+ Th-3

and a corresponding backward recursion relation, the following terms were ohtained:
843, -322 123, 47,18, 7,3, 2,3, -7, 18, —47, 123, =322, 843, ---.

Second-Order Factor
If the symmetry is to continue beyond a term 7_,, , the condition for this would be:

Tt = Tpey = Tapiz—aloptz—0T_pry—cT_y = T3 —aTpn2—0Tp g —cTy .
But
Tpet = alp+bTpq+cTpe2+Tph-3 .

Hence there is a relation
(a+c)T,+2bT_qy+(a+c)T,.2 = 0.

But since 46 = (¢ — a){c + a) we have in fact

Tn = {a—¢JT, —1/2_Tn-2 .
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Thus if the symmetry is to continue the terms must satisfy a second-order recursion relation. That they do so can
be seen from factoring
x¥—ax3 —px—c—1=0 intofactors (xZ+Ex+1)(x2+Fx—1) = g,
where £ is {¢ —a)/2. The conditions would be:
fc—al)/2+F=-a o F=—latc)2

from the coefficient of x cubed and the same value of £ comes from the coefficient of x. Then the coefficient of x2
would be: 2. 2
EF = (= +a“)/4 = —b

as required. Hence the terms obey this second-order relation and this insures the continuation of symmetry beyond
T.4. Note that this is not a proper fourth-order symmetric sequence.

B. No Zero Term
Th-3=Tpe1—aTn—bTp1—¢cTp2, T4 =T1=T4—-al3—-bT>—cTg

(26) (c+1)T;+bTo+al3~T4 = 0
Tp=Tp=Ts—alo—bTy—cT_q
(27) (b+c)Ty+(a+1)T2—T3 =0
T_3=T3=To—al1—-bT.;1—cT_o
(28) fa+b)T;+(c—1)]To+T3 =0
Tg=Tqg=T;—al_;-bT_2—cT_3
(29} fa— DT +bT2+cT3+T4 = 0.

To have a non-zero solution the following determinant must be zero.

c+i b a -1
b+c a+l1 —~1 0
ath c¢c-17 i g
a-17 b c 7
or
(30) a+b+chc? —a?—4b) = 0.

As in the zero case, the condition a + b + ¢ = {0 leads to a sequence where all terms are the same. The other condition
requires that the fourth-order recursion relation have a second-order factor which the terms of the symmetric sequence
must obey. Hence this is a degenerate case also.

Case il. Tper = alpn+tbTp_1+cTp0—Tph3
A. Zero Term
Tp3 = alp+bTp1+cTp2—Tney
If the symmetry is to continue indefinitely
Top-1 = al_ps2 + 0T prg t¢T_n— Tops3
Tnt1 = aTpa+bTpq+cTy—Tp3 = aly+bTpay+cTp-2—Tp-3
fa—cHTp2~Tp) =0

so that @ = ¢ unless there is to be a recursinn relation of lower order.
To=alg+bTo+al;—Ty4, T_1=T; =ala+bT1+alg—T3

from which
(31) (a2 +b—1)Ty+al(1+b)To+(a% - 1)T3 = aTy

T_2 = T2 = aT1+b(aT3 +bT2+aT7 — T4}+3T._] - T2
from which

(32) a2 +b)T+ (b2 - 2)Ty+abT3 = bT4 .
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Other relations simply repeat one of the above. Eliminating 74 from (31) and (32):
(33) (62 — b —2a2)T; +alb +2)T5 —bT3 = 0
For given a and 4, a suitable selection of 7 and 7 will given an integral value for T3, Thusfora=7,b6 =8,
—68T1—21T5 = —5T3 .
Ty =1, Tp=2 Tg3=22.
Then from (31), T4 = 749. The symmetric sequence:
--368494, 6029, 946, 148,22, 2, 1,2, 1, 2,22, 149, 946, 6029, 38494, ---

is governed by the recursion relation: )
Tn+7 = 7T,-, — 5Tn—1 +7Tpo—Th-3.

B. No Zero Term
As before the continuation of symmetry for all terms requires that @ = ¢ in the relation
Tot1 = alp+bTp_1+¢Tpo— Th-3 .

Two relations are obtained from the requirement 7.7 =77 and 7_p=T2, namely:

(34) fa=UT;+bT3+aT3 = T4
(35} fb+a)Ty+{a—1)To = T3
The relations for 7.5 and 7_4 repeat these in inverse order.
EXAMPLE: a=-2, b=29§ -37T;1-3T3="T3

Ty =4, To=7 Tz=-9.

Then from (34), T4 = 41.

The symmetric sequence:

6399, —1810, 506, —145,41,-9,7,4,4,7, -9, 41, —145, 506, ~1810, 6399, ---
obeys the recursion relation:
Tprr = =2Tp+ 5Ty —2Tp 2—Th3
FIFTH-ORDER SEQUENCES
Case |. The1 = alpn+bTpg+cTpo+dTn 3+ Ty
A. Zero Term
To insure symmetry for all n we set:
Ton-1= Tne1 = Toptq— 8T 23— 6T pi2—cToptg =0T n = Tpg—alp3—bTp2—CTpg—dTp, .
Combining this with the original recursion relation:
(3 +d}{7-n + 7-[7—-3} + (b +C)(Tn_.7 + Tn-Z} =0

so that & = -a and & = ¢ are necessary conditions to prevent reduction to a lower order recurrence relation.
Using the same techniques as previously we have the relations:

(36) (a2+bh — 1)T; +(ab —b)To+(~ab — a)T3+ (1 —a°)T4+aT5 = 0
(37) (ab—b+a)Ty+ (2 —a—1To+(1—b2jT3—abT4+6T5 = 0 .
Eliminating 75 from (36) and (37) gives:

(38) (02 —b+ab—a2)T; + (a2 +a—b2)To+(—ab —a)T3+bT4 = 0 .

EXAMPLE: a=5, b =-3 from which
—28T;+21To+ 10T3 = 3T,
which is satisfied by 77 =7, To =3, T3=4, T4=25. Then from (36)
21Ty — 12T+ 10T3 — 24T4 = —5T5
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which gives 75 = 775.

The sequence

-+ 190299, 43060, 3745, 2203, 498, 115,25,4,3,1,-2, 1,3, 4,25, 115, 498, 2203, 9745, 43060, 190299, -
is governed by the recursion relation:
Tnt1 = 5Ty~ 3Ty 1 +3Tp20—5Tp 3+ Thg .
B. No Zero Term

An entirely similar analysis leads to two relations:
(39) Ts =(1-alT;—bTo+bT3+aly
{40} Tg=(-b—alT;+(b+1)Ty +aT3

EXAMPLE. 2=5, b =~-3. From (40},

Tqg=—-2T1-2T3+5T3

which is satisfied by Ty=1, To=3, T3=4, T4=12
Then by (39), Tg=—4T;+37T5—3T3+574=>53. The sequence

--19428,4397,995,227,53,12,4,3,1,1,3,4, 12,53, 227, 995, 4397, 19428, ---

is governed by the recursion relation:
Thtt = 5T, —3Tp1+3Th 20— 86Tp-3+Tphy .

Case 1. Tnet = alTp+bTpeg +¢Tp2+dTpe3—Thneg .
In this case symmetry in the sequence requires that a=4 and b =c.
A. Zero Case

The final relations obtained from the analysis are:
(a1) (a2 +b — 1)Ty +(ab +b)To +(ab +a) T3+ (2% — 1)T4 = aT5
(42) (ab+a+b)T;+(b2+a—1)To+ (62— 1)Tg+abTy = bTs
from which
(43) (b2 —p—a® —ab)T;+ (62 —a2+a)Ty+(ab+a)T3 = bT4 .

EXAMPLE. a=3, b =—7. (43) becomes
68T +43T9— 18T3 = —7T4
which is satisfied by
Ty=14, To2=3 T3=8 T4=-5.
Then from {(41),
T;—-28T5—18T3+8T4 = 375 gives T =-95.
The symmetric sequence:
- 2203, —-191, -305, -95,-5,9,3,1,-1,1, 3, 8, -5, 95, -305, — 191, 2203, -
is governed by the recursion relation:
Tnt1 = 3Tp—7Tpg —7Tp2+3Tp-3—~Tpg
B. No Zero Term
The relations obtained are:

(44) (a— 1T +bTo+bT3+al4 = Ts
(45) (@a+b)T;+(b—1Top+alg = Ty
{46) bT;+als = T3

EXAMPLE. a= -8, 5 =7. (46) becomes 77y — 575 = T3 which is satisfied by
Te=1 To=3 T3=-8.
Then (45)
2T1+6T2—-58T3 =Ty gives T4=2680..
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Finally {44) —6T1+7T2o+7T3—-5T4 = T35
gives a value 75=—341. The symmetric sequence:
72667, —12195, 2053, 341,60, -8, 3, 1,1, 3, -8, 60, —341, 2053, —12195, 72667, -

is governed by the recursion relation:
Tn+1 = —57.” +7Tn_7 + 7Tn_2—- 5T -3 Tn_4 .

CONCLUSION

From this investigation the following general approach to creating symmetric sequences of integers governed by
linear recursion relations emerges.
(1) Given a linear recursion relation of order £,

Toty = arlptazTpeg + - tag-t Tpogr2+ Tnefer1
the condition of symmetry in the sequence requires that:
. . aj = —ak-j
and for the recursion relation:
Tpey = agTp+agTp g+ Fag g Tpp+2~ Tn-k+1
symmetry requires that a;=a,_;.
{2) For the reduced number of parameters a;, set up a corresponding number of symmetry conditions using the
first few terms of the sequence. !
(3) Using these conditions, select values for the parameters a; and then find starting values in integers that satisfy

the given conditions.
Foloioeiiok



