Fibonacci Quarterly 1975 (13,1): 33-41
 SYMMETRIC SEQUENCES

BROTMER ALFRED BROUSSEAU
St. Mary's College, California 94575

This paper deals with integer sequences governed by linear recursion relations. To avoid useless duplication, sequences with terms having a common factor greater than one will be considered equivalent to the sequence with the greatest common factor of the terms eliminated. The recursion relation governing a sequence will be taken as the recursion relation of lowest order which it obeys.
Symmetric sequences are of two types:
A. Sequences with an Unmatched Zero Term

$$
\begin{equation*}
\cdots T_{-3}, T_{-2}, T_{-1}, T_{0}, T_{1}, T_{2}, T_{3}, \cdots \tag{1}
\end{equation*}
$$

with

$$
T_{n}=T_{-n}
$$

B. Sequences with All Matched Terms
(2)

$$
\cdots T_{-3}, T_{-2}, T_{-1}, T_{1}, T_{2}, T_{3}, \cdots
$$

FIRST-ORDER SEQUENCES

The recursion relation of the first order is:

$$
\begin{equation*}
T_{n+1}=a T_{n} \tag{3}
\end{equation*}
$$

which will have all terms integers only if $a= \pm 7$. The only sequences governed by such relations subject to the initial restrictions given above are:

$$
\begin{gathered}
\cdots 1,1,1,1,1,1, \cdots \\
\cdots-1,1,-1,1,-1,1, \cdots
\end{gathered}
$$

These sequences and the sequence $\cdots, 0,0,0, \cdots$ will be eliminated from consideration in the work that follows.

second-order sequences

For a recursion relation

$$
T_{n+1}=a T_{n}+b T_{n-1}
$$

to have all integer terms, the quantity b must be +1 or -1 . The same applies to sequences of higher order. These will be denoted Case I $(+1)$ and Case $11(-1)$.
Case I.

$$
T_{n+1}=a T_{n}+T_{n-1}
$$

A. Zero Term

$$
T_{0}=T_{2}-a T_{1}, \quad T_{-1}=T_{1}-a T_{0}=T_{1}-a T_{2}+a^{2} T_{1}=T_{1}, \quad a\left(a T_{1}-T_{2}\right)=0
$$

Thus either $a=0$ or $T_{0}=0 . a=0$ leads to sequences such as:

$$
\cdots 2,3,2,3,2,3,2,3, \ldots
$$

If $T_{O}=0$,

$$
T_{-2}=T_{2}=T_{0}-a T_{-1}=-a T_{1} .
$$

Hence $T_{2}=a T_{1}$ and $T_{2}=-a T_{1}$ with the result that $a=0$.

B. No Zero Term

$$
T_{-1}=T_{2}-a T_{1}=T_{1}, \quad(a+1) T_{1}=T_{2}, \quad T_{-2}=T_{2}=T_{1}-a T_{-1}=(1-a) T_{1}
$$

Therefore $a T_{1}=0$. If $T_{1}=0$, all the terms are zero. If $a=0$, we have the type of sequence given above for this value.
Case II.

$$
T_{n+1}=a T_{n}-T_{n-1}
$$

A. Zero Term

$$
\begin{gather*}
T_{0}=a T_{1}-T_{2}, \quad T_{-1}=T_{1}=a T_{0}-T_{1}=a^{2} T_{1}-a T_{2}-T_{1} \\
\left(a^{2}-2\right) T_{1}-a T_{2}=0, \quad T_{-2}=T_{2}=a T_{-1}-T_{0}=a T_{-1}-a T_{1}+T_{2}=T_{2} . \tag{4}
\end{gather*}
$$

If symmetry holds up to T_{n}, then

$$
T_{-n-1}=a T_{-n}-T_{-n+1}=a T_{n}-T_{n-1}=T_{n+1}
$$

and hence the entire sequence will be symmetrical.

EXAMPLES

For any value of a, select T_{1} and T_{2} to satisfy (4) in order to generate a symmetric sequence. Thus for $a=3,7 T_{1}=$ $3 T_{2}$, giving the sequence:

$$
\ldots 47,18,7,3,2,3,7,18,47, \ldots
$$

governed by

$$
T_{n+1}=3 T_{n}-T_{n-1}
$$

For $a=8,62 T_{1}=8 T_{2}$, giving the sequence:

$$
\ldots 1921,244,31,4,1,4,31,244,1921, \ldots
$$

governed by $T_{n+1}=8 T_{n}-T_{n-1}$.

B. No Zero Term

The relations

$$
T_{-1}=T_{1}=a T_{1}-T_{2} \quad \text { and } \quad T_{-2}=a T_{-1}-T_{1}
$$

both lead to

$$
(a-1) T_{1}=T_{2}
$$

If $T_{-n}=T_{n}$ holds up to n, then

$$
T_{-n-1}=a T_{-n}-T_{-n+1}=a T_{n}-T_{n-1}=T_{n+1}
$$

and the symmetry will be maintained throughout the sequence.
For $a=5, T_{2}=4 T_{1}$ giving a sequence

$$
\ldots 19,4,1,1,4,19,91,436, \ldots
$$

governed by

$$
T_{n+1}=5 T_{n}-T_{n-1}
$$

THIRD-ORDER SEQUENCES

Case I.

$$
T_{n+1}=a T_{n}+b T_{n-1}+T_{n-2}
$$

A. Zero Term

$$
\begin{gathered}
T_{n-2}=T_{n+1}-a T_{n}-b T_{n-1}, \quad T_{0}=T_{3}-a T_{2}-b T_{1} \\
T_{-1}=T_{1}=T_{2}-a T_{1}-b T_{0}=T_{2}-a T_{1}-b T_{3}+a b T_{2}+b^{2} T_{1} \\
\left(b^{2}-a-1\right) T_{1}+(a b+1) T_{2}=b T_{3} .
\end{gathered}
$$

(5)

Also

$$
T_{-2}=T_{2}=T_{1}-a T_{0}-b T_{-1}=T_{1}-a T_{3}+a^{2} T_{2}+a b T_{1}-b T_{1}
$$

from which
(6)

$$
(a b-b+1) T_{1}+\left(a^{2}-1\right) T_{2}=a T_{3}
$$

$$
T_{-3}=T_{3}=T_{0}-a T_{-1}-b T_{-2}=T_{3}-a T_{2}-b T_{1}-a T_{1}-b T_{2}
$$

so that

$$
(a+b)\left(T_{1}+T_{2}\right)=0
$$

Equation (7) will hold if $b=-a$ which makes (5) and (6):
(6)

$$
\begin{align*}
& \left(a^{2}-a-1\right) T_{1}+\left(1-a^{2}\right) T_{2}=-a T_{3} \\
& \left(-a^{2}+a+1\right) T_{1}+\left(a^{2}-1\right) T_{2}=a T_{3}
\end{align*}
$$

which are the same relation. Since

$$
T_{4}=a T_{3}-b T_{2}+T_{1} \quad \text { and } \quad T_{-4}=T_{-1}-a T_{-2}-b T_{-3}=T_{1}-a T_{2}+a T_{3}=T_{4}
$$

the symmetry persists up to this point. An entirely similar argument shows that it holds in general.
EXAMPLE. For a given value of a, many symmetric sequences can be determined. For $a=5$,

$$
19 T_{1}-24 T_{2}=-5 T_{3}
$$

from which one may derive any number of symmetric sequences obeying the relation

$$
T_{n+1}=5 T_{n}-5 T_{n-1}+T_{n-2}
$$

Examples are:
... 1350, 361,96, 25, 6, 1, 0, 1, 6, 25, 96, 361, 1350, ...

$$
\cdots 363,98,27,8,3,2,3,8,27,98,363, \cdots, \quad \cdots 362,97,26,7,2,1,2,7,26,97,362, \ldots
$$

B. No Zero Term
(8)

$$
\begin{gathered}
T_{n+1}=a T_{n}+b T_{n-1}+T_{n-2}, \quad T_{n-2}=T_{n+1}-a T_{n}-b T_{n-1}, \quad T_{-1}=T_{1}=T_{3}-a T_{2}-b T_{1} \\
(b+1) T_{1}+a T_{2}=T_{3} \\
T_{-2}=T_{2}=T_{2}-a T_{1}-b T_{-1} \\
(a+b) T_{1}=0
\end{gathered}
$$

(9)
which is satisfied if $b=-a$
(10)

$$
\begin{gathered}
T_{-3}=T_{3}=T_{1}-a T_{-1}-b T_{-2} \\
T_{3}=(1-a) T_{1}+a T_{2}
\end{gathered}
$$

which agrees with (8) when $b=-$ a.
If the symmetry holds to $T_{n}=T_{-n}$, then

$$
T_{-n-1}=T_{-n+2}-a T_{-n+1}+a T_{-n}=T_{n-2}-a T_{n-1}+a T_{n}=T_{n+1}
$$

so that all corresponding pairs are equal.
EXAMPLES. For $a=4, T_{3}=4 T_{2}-3 T_{1}$ yields many sequences governed by

$$
T_{n+1}=4 T_{n}-4 T_{n-1}+T_{n-2}
$$

$\cdots 233,89,34,13,5,2,1,1,2,5,13,34,89,233, \ldots$
$\ldots 177,67,25,9,3,1,1,3,9,25,67,177, \ldots$
$\ldots 265,100,37,13,4,1,1,4,13,37,100,265, \cdots$
Case II.

$$
T_{n+1}=a T_{n}+b T_{n-1}-T_{n-2}, \quad T_{n-2}=a T_{n}+b T_{n-1}-T_{n+1}
$$

A. Zero Term

$$
\begin{gather*}
T_{0}=a T_{2}+b T_{1}-T_{3}, \begin{array}{c}
T_{-1}=T_{1}=a T_{1}+b T_{0}-T_{2}=a T_{1}+b a T_{2}+b^{2} T_{1}-b T_{3}-T_{2} \\
\left(a+b^{2}-1\right) T_{1}+(b a-1) T_{2}-b T_{3}=0 \\
T_{-2}=T_{2}=a T_{0}-b T_{-1}-T_{1}=a^{2} T_{2}+a b T_{1}-a T_{3}+b T_{-1}-T_{1} \\
(a b+b-1) T_{1}+\left(a^{2}-1\right) T_{2}-a T_{3}=0 \\
T_{-3}=T_{3}=a T_{1}+b T_{2}-a T_{2}-b T_{1}+T_{3} \\
(a-b)\left(T_{1}-T_{2}\right)=0
\end{array}
\end{gather*}
$$

so that $b=a$ satisfies this relation.

Equations (11) and (12) both become for $b=a$:

$$
\begin{equation*}
\left(a^{2}+a-1\right) T_{1}+\left(a^{2}-1\right) T_{2}-a T_{3}=0 . \tag{14}
\end{equation*}
$$

For $a=2,2 T_{3}=5 T_{1}+3 T_{2}$ yields an infinity of sequences satisfying

$$
T_{n+1}=2 T_{n}+2 T_{n-1}-T_{n-2}
$$

$\ldots 64,25,9,4,1,1,0,1,1,4,9,25,64, \cdots$
$\ldots 129,49,19,7,3,1,1,1,3,7,19,49,129, \ldots$

$$
\ldots 194,73,29,10,5,1,2,1,5,10,29,73,194, \ldots
$$

$$
\ldots 259,97,39,13,7,1,3,1,7,13,39,97,259, \ldots
$$

B. No Zero Term

$$
T_{n-2}=T_{n+1}-a T_{n}-b T_{n-1}, \quad T_{-1}=T_{3}-a T_{2}-b T_{1}
$$

$$
\begin{equation*}
(b+1) T_{1}+a T_{2}=T_{3} \tag{15}
\end{equation*}
$$

$$
T_{-2}=T_{2}=T_{2}-a T_{1}-b T_{-1}
$$

(16)

$$
(a+b) T_{1}=0
$$

Equation (15) becomes $T_{3}=(1-a) T_{1}+a T_{2}$ for $b=-a$. Now, $T_{-3}=T_{3}=T_{1}-a T_{-1}-b T_{-2}$

$$
\begin{equation*}
T_{3}=(1-a) T_{1}+a T_{2} \tag{17}
\end{equation*}
$$

in agreement with (15) if $b=-a$.

$$
T_{-4}=T_{-1}-a T_{-2}+a T_{-3}=a T_{3}-a T_{2}+T_{1}
$$

whereas

$$
T_{4}=a T_{3}-a T_{2}-T_{1}
$$

so that $T_{1}=0$ if $T_{-4}=T_{4}$.
Similarly setting $T_{-5}=T_{5}$ makes $T_{2}=0$, etc. Hence this case yields nothing more than the trivial result $\cdots 0,0,0,0,0, \cdots$.
FOURTH-ORDER SEQUENCES

Case I.

$$
T_{n+1}=a T_{n}+b T_{n-1}+c T_{n-2}+T_{n-3}
$$

A. Zero Term

$$
\begin{gathered}
T_{n-3}=T_{n+1}-a T_{n}-b T_{n-1}-c T_{n-2}, \quad T_{0}=T_{4}-a T_{3}-b T_{2}-c T_{1} \\
T_{-1}=T_{1}=T_{3}-a T_{2}-b T_{1}-c T_{0}=T_{3}-a T_{2}-b T_{1}-c T_{4}+a c T_{3}+b c T_{2}+c^{2} T_{1}
\end{gathered}
$$

$$
\begin{equation*}
\left(c^{2}-b-1\right) T_{1}+(b c-a) T_{2}+(a c+1) T_{3}-c T_{4}=0 \tag{18}
\end{equation*}
$$

$$
T_{-2}=T_{2}=T_{2}-a T_{1}-b T_{0}-c T_{-1}=T_{2}-a T_{1}-b T_{4}+a b T_{3}+b^{2} T_{2}+b c T_{1}-c T_{1}
$$

$$
\begin{equation*}
(b c-c-a) T_{1}+b^{2} T_{2}+a b T_{3}-b T_{4}=0 \tag{19}
\end{equation*}
$$

$$
T_{-3}=T_{3}=T_{1}-a T_{0}-b T_{-1}-c T_{-2}=T_{1}-a T_{4}+a^{2} T_{3}+a b T_{2}+a c T_{1}-b T_{1}-c T_{2}
$$

$$
\begin{equation*}
(a c-b+1) T_{1}+(a b-c) T_{2}+\left(a^{2}-1\right) T_{3}-a T_{4}=0 \tag{20}
\end{equation*}
$$

$$
\begin{gathered}
T_{-4}=T_{4}=T_{0}-a T_{-1}-b T_{-2}-c T_{-3}=T_{4}-a T_{3}-b T_{2}-c T_{1}-a T_{1}-b T_{2}-c T_{3} \\
(a+c) T_{1}+2 b T_{2}+(a+c) T_{3}=0 .
\end{gathered}
$$

If this set of four equations in $T_{1}, T_{2}, T_{3}, T_{4}$ is to have a non-zero solution, the determinant of the coefficients must be zero.

$$
\left|\begin{array}{cccc}
c^{2}-b-1 & b c-a & a c+1 & -c \\
b c-c-a & b^{2} & a b & -b \\
a c-b+1 & a b-c & a^{2}-1 & -a \\
a+c & 2 b & a+c & 0
\end{array}\right|=0
$$

from which

$$
\begin{equation*}
(a+b+c)(-a+b-c)\left(a^{2}-c^{2}+4 b\right)=0 . \tag{22}
\end{equation*}
$$

Before proceeding to further analysis some relations will be derived from equations (18) to (20). From (18) and (19)

$$
\begin{equation*}
\left(c^{2}+a c-b^{2}-b\right) T_{1}-a b T_{2}+b T_{3}=0 \tag{23}
\end{equation*}
$$

From (19) and (20)

$$
\begin{equation*}
\left(b^{2}-b-a c-a^{2}\right) T_{1}+b c T_{2}+b T_{3}=0 \tag{24}
\end{equation*}
$$

and from (23) and (24)

$$
\begin{equation*}
\left(c^{2}+a^{2}+2 a c-2 b^{2}\right) T_{1}=b(a+c) T_{2} . \tag{25}
\end{equation*}
$$

$$
\text { THE CONDITION } a+b+c=0
$$

$b=-a-c$ substituted into (25) gives

$$
\left(c^{2}+a^{2}+2 a c-2 c^{2}-2 a^{2}-4 a c\right) T_{1}=-(a+c)^{2} T_{2}
$$

so that $T_{1}=T_{2}$. Then by (21)

$$
(a+c) T_{1}+2(-a-c) T_{1}+(a+c) T_{3}=0
$$

so that $T_{3}=T_{7}$. By (18),

$$
\left(c^{2}+a+c-1-c^{2}-a c-a+a c+1\right) T_{1}=c T_{4}
$$

so that $T_{4}=T_{1}$. If the terms up to T_{n} are all equal to T_{1}, then

$$
T_{n+1}=a T_{1}+(-a-c) T_{1}+c T_{1}+T_{1}=T_{1}
$$

so that all terms of the sequence are the same.

$$
\text { THE CONDITION }-a+b-c=0
$$

$b=a+c$ leads to

$$
T_{2}=-T_{1}, \quad T_{3}=T_{1}, \quad T_{4}=-T_{1} .
$$

If this alternation holds up to T_{n}, then

$$
T_{n+1}=\left[a(-1)^{n-1}+(a+c)(-1)^{n}+c(-1)^{n-1}+(-1)^{n}\right] T_{1}=(-1)^{n} T_{1}
$$

so that the alternation continues.

$$
\text { THE CONDITION } a^{2}-c^{2}+4 b=0
$$

a and c must be of the same parity.
EXAMPLE: $\quad a=1, b=12, c=7$.
Using Eqs. (18), (19) and (20) we obtain:

$$
36 T_{1}+83 T_{2}+8 T_{3}-7 T_{4}=0, \quad 76 T_{1}+144 T_{2}+12 T_{3}-12 T_{4}=0, \quad-4 T_{1}+5 T_{2}+0 T_{3}-T_{4}=0
$$

from which $T_{1}: T_{2}: T_{3}: T_{4}=3:-7: 18:-47$.
Using the recursion relation

$$
T_{n+1}=T_{n}+12 T_{n-1}+7 T_{n-2}+T_{n-3}
$$

and a corresponding backward recursion relation, the following terms were obtained:

$$
\cdots 843,-322,123,-47,18,-7,3,-2,3,-7,18,-47,123,-322,843, \cdots
$$

Second-Order Factor

If the symmetry is to continue beyond a term $T_{w n}$, the condition for this would be:

$$
T_{-n-1}=T_{n+1}=T_{-n+3}-a T_{-n+2}-b T_{-n+1}-c T_{-n}=T_{n-3}-a T_{n-2}-b T_{n-1}-c T_{n}
$$

But

$$
T_{n+1}=a T_{n}+b T_{n-1}+c T_{n-2}+T_{n-3} .
$$

Hence there is a relation

$$
(a+c) T_{n}+2 b T_{n-1}+(a+c) T_{n-2}=0 .
$$

But since $4 b=(c-a)(c+a)$ we have in fact

$$
T_{n}=(a-c) T_{n-1} / 2-T_{n-2} .
$$

Thus if the symmetry is to continue the terms must satisfy a second-order recursion relation. That they do so can be seen from factoring

$$
x^{4}-a x^{3}-b x-c-1=0 \text { into factors }\left(x^{2}+E x+1\right)\left(x^{2}+F x-1\right)=0
$$

where E is $(c-a) / 2$. The conditions would be:

$$
(c-a) / 2+F=-a \quad \text { or } \quad F=-(a+c) / 2
$$

from the coefficient of x cubed and the same value of F comes from the coefficient of x. Then the coefficient of x^{2} would be:

$$
E F=\left(-c^{2}+a^{2}\right) / 4=-b
$$

as required. Hence the terms obey this second-order relation and this insures the continuation of symmetry beyond T_{-4}. Note that this is not a proper fourth-order symmetric sequence.

B. No Zero Term

$$
\begin{gather*}
T_{n-3}=T_{n+1}-a T_{n}-b T_{n-1}-c T_{n-2}, \quad T_{-1}=T_{1}=T_{4}-a T_{3}-b T_{2}-c T_{1} \\
(c+1) T_{1}+b T_{2}+a T_{3}-T_{4}=0 \tag{26}\\
T_{-2}=T_{2}=T_{3}-a T_{2}-b T_{1}-c T_{-1} \\
(b+c) T_{1}+(a+1) T_{2}-T_{3}=0 \tag{27}\\
T_{-3}=T_{3}=T_{2}-a T_{1}-b T_{-1}-c T_{-2}
\end{gather*}
$$

$$
T_{-4}=T_{4}=T_{1}-a T_{-1}-b T_{-2}-c T_{-3}
$$

$$
\begin{equation*}
(a+b) T_{1}+(c-1) T_{2}+T_{3}=0 \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
(a-1) T_{1}+b T_{2}+c T_{3}+T_{4}=0 \tag{29}
\end{equation*}
$$

To have a non-zero solution the following determinant must be zero.
or

$$
\left|\begin{array}{ccrr}
c+1 & b & a & -1 \\
b+c & a+1 & -1 & 0 \\
a+b & c-1 & 1 & 0 \\
a-1 & b & c & 1
\end{array}\right|=0
$$

(30)

$$
(a+b+c)\left(c^{2}-a^{2}-4 b\right)=0
$$

As in the zero case, the condition $a+b+c=0$ leads to a sequence where all terms are the same. The other condition requires that the fourth-order recursion relation have a second-order factor which the terms of the symmetric sequence must obey. Hence this is a degenerate case also.
Case II.

$$
\begin{gathered}
T_{n+1}=a T_{n}+b T_{n-1}+c T_{n-2}-T_{n-3} \\
\text { A. Zero Term } \\
T_{n-3}=a T_{n}+b T_{n-1}+c T_{n-2}-T_{n+1}
\end{gathered}
$$

If the symmetry is to continue indefinitely

$$
\begin{gathered}
T_{-n-1}=a T_{-n+2}+b T_{-n+1}+c T_{-n}-T_{-n+3} \\
T_{n+1}=a T_{n-2}+b T_{n-1}+c T_{n}-T_{n-3}=a T_{n}+b T_{n-1}+c T_{n-2}-T_{n-3} \\
(a-c)\left(T_{n-2}-T_{n}\right)=0
\end{gathered}
$$

so that $a=c$ unless there is to be a recursion relation of lower order.

$$
T_{0}=a T_{3}+b T_{2}+a T_{1}-T_{4}, \quad T_{-1}=T_{1}=a T_{2}+b T_{1}+a T_{0}-T_{3}
$$

from which
(31)

$$
\begin{gathered}
\left(a^{2}+b-1\right) T_{1}+a(1+b) T_{2}+\left(a^{2}-1\right) T_{3}=a T_{4} \\
T_{-2}=T_{2}=a T_{1}+b\left(a T_{3}+b T_{2}+a T_{1}-T_{4}\right)+a T_{-1}-T_{2}
\end{gathered}
$$

from which

$$
\begin{equation*}
a(2+b) T_{1}+\left(b^{2}-2\right) T_{2}+a b T_{3}=b T_{4} \tag{32}
\end{equation*}
$$

Other relations simply repeat one of the above. Eliminating T_{4} from (31) and (32):
(33)

$$
\left(b^{2}-b-2 a^{2}\right) T_{7}+a(b+2) T_{2}-b T_{3}=0
$$

For given a and b, a suitable selection of T_{7} and T_{2} will given an integral value for T_{3}. Thus for $a=7, b=-5$,

$$
\begin{gathered}
-68 T_{1}-21 T_{2}=-5 T_{3} . \\
T_{1}=1, \quad T_{2}=2, \quad T_{3}=22 .
\end{gathered}
$$

Then from (31), $T_{4}=149$. The symmetric sequence:

$$
\ldots 38494,6029,946,149,22,2,1,2,1,2,22,149,946,6029,38494, \ldots
$$

is governed by the recursion relation:

$$
\begin{gathered}
T_{n+1}=7 T_{n}-5 T_{n-1}+7 T_{n-2}-T_{n-3} . \\
\text { B. No Zero Term }
\end{gathered}
$$

As before the continuation of symmetry for all terms requires that $a=c$ in the relation

$$
T_{n+1}=a T_{n}+b T_{n-1}+c T_{n-2}-T_{n-3}
$$

Two relations are obtained from the requirement $T_{-1}=T_{1}$ and $T_{-2}=T_{2}$, namely:

$$
\begin{align*}
(a-1) T_{1}+b T_{2}+a T_{3} & =T_{4} \tag{34}\\
(b+a) T_{1}+(a-1) T_{2} & =T_{3}
\end{align*}
$$

(35)

$$
\begin{gathered}
a=-2, \quad b=5, \quad-3 T_{1}-3 T_{2}=T_{3} \\
T_{1}=4, \quad T_{2}=7, \quad T_{3}=-9 .
\end{gathered}
$$

Then from (34), $T_{4}=41$.
The symmetric sequence:

$$
\cdots 6399,-1810,506,-145,41,-9,7,4,4,7,-9,41,-145,506,-1810,6399, \ldots
$$

obeys the recursion relation:

$$
T_{n+1}=-2 T_{n}+5 T_{n-1}-2 T_{n-2}-T_{n-3}
$$

FIFTH-ORDER SEQUENCES

Case 1.

$$
T_{n+1}=a T_{n}+b T_{n-1}+c T_{n-2}+d T_{n-3}+T_{n-4}
$$

A. Zero Term

To insure symmetry for all n we set:

$$
T_{-n-1}=T_{n+1}=T_{-n+4}-a T_{-n+3}-b T_{-n+2}-c T_{-n+1}-d T_{-n}=T_{n-4}-a T_{n-3}-b T_{n-2}-c T_{n-1}-d T_{n}
$$

Combining this with the original recursion relation:

$$
(a+d)\left(T_{n}+T_{n-3}\right)+(b+c)\left(T_{n-1}+T_{n-2}\right)=0
$$

so that $d=-a$ and $b=-c$ are necessary conditions to prevent reduction to a lower order recurrence relation.
Using the same techniques as previously we have the relations:

$$
\begin{array}{r}
\left(a^{2}+b-1\right) T_{1}+(a b-b) T_{2}+(-a b-a) T_{3}+\left(1-a^{2}\right) T_{4}+a T_{5}=0 \tag{36}\\
(a b-b+a) T_{1}+\left(b^{2}-a-1\right) T_{2}+\left(1-b^{2}\right) T_{3}-a b T_{4}+b T_{5}=0
\end{array}
$$

Eliminating T_{5} from (36) and (37) gives:
(38)

$$
\left(b^{2}-b+a b-a^{2}\right) T_{1}+\left(a^{2}+a-b^{2}\right) T_{2}+(-a b-a) T_{3}+b T_{4}=0 .
$$

EXAMPLE: $a=5, b=-3$ from which

$$
-28 T_{1}+21 T_{2}+10 T_{3}=3 T_{4}
$$

which is satisfied by $T_{1}=1, T_{2}=3, T_{3}=4, T_{4}=25$. Then from (36)

$$
21 T_{1}-12 T_{2}+10 T_{3}-24 T_{4}=-5 T_{5}
$$

which gives $T_{5}=115$.
The sequence
... 190299, 43060, $9745,2203,498,115,25,4,3,1,-2,1,3,4,25,115,498,2203,9745,43060,190299, \ldots$
is governed by the recursion relation:

$$
T_{n+1}=5 T_{n}-3 T_{n-1}+3 T_{n-2}-5 T_{n-3}+T_{n-4}
$$

B. No Zero Term

An entirely similar analysis leads to two relations:

$$
\begin{gather*}
T_{5}=(1-a) T_{1}-b T_{2}+b T_{3}+a T_{4} \tag{39}\\
T_{4}=(-b-a) T_{1}+(b+1) T_{2}+a T_{3} \tag{40}
\end{gather*}
$$

$$
T_{4}=-2 T_{1}-2 T_{2}+5 T_{3}
$$

which is satisfied by $T_{1}=1, T_{2}=3, T_{3}=4, T_{4}=12$.
Then by (39), $T_{5}=-4 T_{1}+3 T_{2}-3 T_{3}+5 T_{4}=53$. The sequence

$$
\ldots 19428,4397,995,227,53,12,4,3,1,1,3,4,12,53,227,995,4397,19428, \ldots
$$

is governed by the recursion relation:

$$
\begin{aligned}
& T_{n+1}=5 T_{n}-3 T_{n-1}+3 T_{n-2}-5 T_{n-3}+T_{n-4} \\
& T_{n+1}=a T_{n}+b T_{n-1}+c T_{n-2}+d T_{n-3}-T_{n-4}
\end{aligned}
$$

Case II.
In this case symmetry in the sequence requires that $a=d$ and $b=\varepsilon$.
A. Zero Case

The final relations obtained from the analysis are:

$$
\begin{equation*}
\left(a^{2}+b-1\right) T_{1}+(a b+b) T_{2}+(a b+a) T_{3}+\left(a^{2}-1\right) T_{4}=a T_{5} \tag{41}
\end{equation*}
$$

(42)

$$
(a b+a+b) T_{1}+\left(b^{2}+a-1\right) T_{2}+\left(b^{2}-1\right) T_{3}+a b T_{4}=b T_{5}
$$

from which
(43)

$$
\left(b^{2}-b-a^{2}-a b\right) T_{1}+\left(b^{2}-a^{2}+a\right) T_{2}+(a b+a) T_{3}=b T_{4} .
$$

EXAMPLE. $a=3, b=-7$. (43) becomes

$$
68 T_{1}+43 T_{2}-18 T_{3}=-7 T_{4}
$$

which is satisfied by

$$
T_{1}=1, \quad T_{2}=3, \quad T_{3}=9, \quad T_{4}=-5
$$

Then from (41),

$$
T_{1}-28 T_{2}-18 T_{3}+8 T_{4}=3 T_{5} \quad \text { gives } \quad T_{5}=-95
$$

The symmetric sequence:

$$
\cdots 2203,-191,-305,-95,-5,9,3,1,-1,1,3,9,-5,-95,-305,-191,2203, \cdots
$$

is governed by the recursion relation:

$$
\begin{gathered}
T_{n+1}=3 T_{n}-7 T_{n-1}-7 T_{n-2}+3 T_{n-3}-T_{n-4} \\
\text { B. No Zero Term }
\end{gathered}
$$

The relations obtained are:

$$
\begin{gather*}
(a-1) T_{1}+b T_{2}+b T_{3}+a T_{4}=T_{5} \tag{44}\\
(a+b) T_{1}+(b-1) T_{2}+a T_{3}=T_{4} \tag{45}\\
b T_{1}+a T_{2}=T_{3} \tag{46}
\end{gather*}
$$

EXAMPLE. $a=-5, b=7$. (46) becomes $7 T_{1}-5 T_{2}=T_{3}$ which is satisfied by

$$
T_{1}=1, \quad T_{2}=3, \quad T_{3}=-8
$$

Then (45)

$$
2 T_{1}+6 T_{2}-5 T_{3}=T_{4} \quad \text { gives } \quad T_{4}=60 \ldots
$$

Finally (44)

$$
-6 T_{7}+7 T_{2}+7 T_{3}-5 T_{4}=T_{5}
$$

gives a value $T_{5}=-341$. The symmetric sequence:

$$
\ldots 72667,-12195,2053,-341,60,-8,3,1,1,3,-8,60,-341,2053,-12195,72667, \ldots
$$

is governed by the recursion relation:

$$
T_{n+1}=-5 T_{n}+7 T_{n-1}+7 T_{n-2}-5 T_{n-3}-T_{n-4}
$$

CONClUSION

From this investigation the following general approach to creating symmetric sequences of integers governed by linear recursion relations emerges.
(1) Given a linear recursion relation of order k,

$$
T_{n+1}=a_{1} T_{n}+a_{2} T_{n-1}+\cdots+a_{k-1} T_{n-k+2}+T_{n-k+1}
$$

the condition of symmetry in the sequence requires that:

$$
a_{j}=-a_{k-j}
$$

and for the recursion relation:

$$
T_{n+1}=a_{1} T_{n}+a_{2} T_{n-1}+\cdots+a_{k-1} T_{n-k+2}-T_{n-k+1}
$$

symmetry requires that $a_{j}=a_{k-j}$.
(2) For the reduced number of parameters a_{i}, set up a corresponding number of symmetry conditions using the first few terms of the sequence.
(3) Using these conditions, select values for the parameters a_{i} and then find starting values in integers that satisfy the given conditions.

