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In [1 ] , we find many well known formulas which involve the sums of Fibonacci and Lucas numbers. For example, 

we have 

n 

(1) X Fi = Fn+2-l n > 1; 

i=l 

n 

(2) X Li= Ln+2-3, n > 1; 

i=1 

<3> £ F*-1 = f2"< n > 1; 

i=1 

n 

(4) Y. L*-1 = L2n~2< n > U 
i=1 

Hence, it is natural to ask if there exist summation formulas for other lists of Fibonacci and Lucas numbers. If 

such formulas exist it is then natural to ask if the formulas can be extended to other recurring sequences. The pur-

pose of this paper is to show that both of these questions can be answered in the affirmative. To do this, we first re-

call the following [1 , p. 59] 

(5) Fn+k + Fn„k = FnLk, k even; 

(6) Fn+k + Fn„k = LnFk, k odd; 

(7) Fn+k-Fn-k = FnLk, k odd; 

(8) Fn+k-Fn„k = LnFk, k even. 

Using Ln = an + j5n where a and 0 are the roots of x2 - x - / = 0 with a= (1 + y/s)/2, P = (1 - s/5 )/2 it is easy to 

show that 

(9) Ln+k + Ln-k = LnLk, k even; 

(10) 
l~n+k + l-n-k ~ 5FnFk, k odd; 

(11) Ln+k-Ln-k = LnLk, k odd; 

(12) Ln+k~Ln„k = 5FnFk, k even. 

Observing that a sum involv ing^ terms, by combining pairs, reduces to a sum of 2P~ terms, we were able to show 

Theorem 1. If k> 7 then ,-

(13) V Fn+4ki = F •, U L . . 
L^j , n-t-m, n+(2j-1)2k j=1 28k 
j=0 ' l 
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Proof. \ij= /then 

' i 
y\ Fn+4ki = Fn + Fn+4k = L2kFn+2k = Fn+(2l-D2k n h'k 

and the theorem is true. 

Assume the proposition is true fo r / Using (5), we have 

2^-1 2'-i 

/ J Fn+4ki = L2k /2 Fn+2k+8ki 

1=0 1=0 

i 
= L2kFn+2k+(2J-1)4k n

 L
2

i+1k 

1+1 

- F , j+1 , n L i 

and the theorem is proved. 

Using (9) and an argument like that of Theorem 1, we have 

2''-, / 

(14) ST Ln+4ki = L •. , n I / , Ar > / . 
^j n+«Ki n+(2j-1)2k i=1 2'k 
i=0 ' 

Using (8) and (14) with / - 7 in place of j, n+2k in place of n and 2k in place of kf one has 

(15) Z <-^Fn+4ki - ^ ^ f f / _ f / a t n ^ , * > , 
1=0 ' * 

Similarly, with the aid of (12) and Theorem 1, one obtains 

2''-i j 

(16) £ <-Vi+1Ln+4ki - 5F2kFnH2j H t , * > , . 

i=0 ' * 

From (9) and (14), we have 

2J-1 j-1 

(17) £ W / - / M - Ln+(2hKij2k UQ L2jk, k even 

while Theorem 1 with the aid of (12) gives 

(18) ± (-V
i+1

LnH2h1)k « 5FkF H H ^ * even. 

1=0 ' ' 

Theorem 1 together with (5) can be used! to show 

2j-i j-1 

(19) E Fn+(2i-l)k = F
n+(2H„1)2k J Li k even 

/=0 ' u 

while (8) with (14) yields 

2J'-1 j-1 

(20) E <-1>'+1 FnH2i-Dk = FkL , f-1 t n L j , k even. 
*-* IZI ,/K K h+(2j -1}2k 2sk 
1=0 1=1 

Since we have used (5) and (8) as well as (9) and (12) on several occasions, it seems natural to ask if formulas exist 
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using (6) and (7) as we!! as (10) and (11). With this in mind, we developed the next four formulas. 

By use of (10) and (11), respectively with Theorem 1, we have 

2j-1 j-1 

(2D E L^H2M)k - SFkF M U L ^ .A: odd 

i=0 l ' 
and 

(22) £ (-^FnHV-m - FnH2H.1j2k '1 L^. k odd. 

Finally, if we apply (6) and (7) respectively with (14) we are able to show that 

(23) t Fn«2i-m = FkLn+(2h1_mk n L2,k, k odd 

1=0 ' 
and 

(24) Z <-1>i+1LnH2<-l>k = Ln+(2h1_im n L ^ , k odd. 

To Sift the results above to the generalized Fibonacci sequence which is defined recursively by 

(25) H0 = q, H1 = p, Hn = / / „ _ , + Hn_2, n > 2 

it is necessary and sufficient to examine formulas comparable to (5) through (12). To do this, we first define a gen-

eralized Lucas sequence by 

(26) Gn = Hn+1+Hn-1 -
In Horadam [3 ] , it is shown that 

(27) Hn = (ran-s$n)/2^/5 , 

where r = 2(p -q$),s = 2(p - qa) and a, |3 are the usual roots of x2 - x - 1 = 0, Furthermore, he shows that 

(28) Hn+k = Hn^Fk + HnFk+1 , 

where the Fk are the Fibonacci numbers. 

Using (27) and Binet's formula for Fk, a straightforward argument shows that 

(29) HnFk-l-Hn-lFk = (-VkHn.k . 

By (28) and (29) with the aid of Lk = Fk+1 + Fk^i, we have 

(30) Hjl+k+Hn„k = HnLkf k even 

and 

(31) Hn+k-Hn„k = HnLk, Arodd. 

If we use (25), (28), and (29) together with the fact that Fk = Fk+1 - Fk-l > w e n a v e 

(32) Hn+k + Hn„k = GnFk, k odd 

and 

(33) Hn+k-Hn„k = GnFk, k even. 

Replacing n by n + k in (26) and using (28), we have 

(34) Gn+k = Hn-jLk + HnLk+i 

while replacing n by n - k in (26) and applying (29) gives 

(35) Gn-k = (-1)k(Hn^Lk-HnLk^). 

Applying (34) and (35) as we did (28) and (29), we obtain 

(36) Gn+k + Gn„k = GnLk, k even; 

(37) Gn+k + Gn-k = 5HnFk, k odd; 



118 SUMS AND PRODUCTS FOR RECURRING SEQUENCES [APR. 

(38) Gn+k-Gn-k = GnLk/ k odd; 

(39) Gn+k - Gn„k = 5HnFk, k even. 

Examining (30) through (33) and (36) through (39) with H replaced by Fand G replaced by L, we obtain proper-
ties (5) thorugh (12). Hence, it is clear that identities (13) through (24) can be lifted to the generalized Fibonacci 
and Lucas sequences and in fact are 

(40)
 s ' w - v , ! , ; , ^ *>'•• 

i=0 ' 

(41>
 £ *«**' =

 G
nH2>-mk £ V*' *

 > 1; 

i=0 

(42) 

(48) 

2>-1 

£ M / " / w - F2kGn+(2U)2k n v k > , . 
/=0 

2'-? / 

(43) £ f - W w , - ^2kHnH2Lim n ^ * > 7; 

2^1 j-1 

(44) £ W - / * - Gn+(2h1_i)2k U L^, k even; 

2j-i / - / 

W5) £ (-Vi+1GnH2i-1)k = 5FkH
n+(2H„1)2k

 E L
2'k' keyen; 

i=0 ' 1 

2s-1 j-1 

(46) £ Hn«2i-m = "nH2i-1_1)2k .n L2ik. k even ; 

(47) £ <-'>»'»nH2,-M - ^ < w - / _ „ 2 , 'ny V*^ * •»"; 

E W/-/;* =
 5F

^nH2n,1)2k £ V*- *
 odd; 

i=0 

2J'-1 j-1 

(49) £ ' - "
/ + /

> W ^ - "**• /_ , ,» n V*- *
o d d ; 

/«0 
n+(2J~'-1)2k j=o 2'k 

2*-1 

( 50 ) 2-r ' W w * = fkG j-1 n / , .Ar o d d ; 
i=0 i=1 2 k 

(51) £ M / " W f * = ^ / - / . ^ £ LJk. k odd. 

The infinite sequence \xn J- ^L ; is called a recurring sequence if, from a certain point on, every term can be rep-
resented as a linear combination of the preceding terms of the sequence. Hence, the sequence j Un(x,y)\ ^=/ 
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defined recursively by 

(52) U0(x,y) = 0, Ui(x,y) = 7, Un(x,y) = xUn-i(x,y).+ yUn-2(x,y}r n > 2. 

where Un (x,y) e F[x,y], F any field is a recurring sequence. 

If we let \ and \ be the roots of the equation X2 -x\-y = 0, where we assume X1 = (x + %Jx2 + 4y)/2, y{Qf 

and x2 + 4y is a nonperfect square different from zero, then it is easy to show that 

(53) ua0,y) - £ ^ f • 
Furthermore, if we let 

(54) Vn(x,y) = \" +\n2 

then 

(55) Vn(x,y) = yUn^(xfy +Un+1(x,y). 

Because of the y coefficient, the formulas (5) through (12) do not follow the same pattern for this recurring se-

quence. However, it can be shown using (53) through (55) together with the facts \ \ =-y m&\ *\2 =x tha t 

(56) Un+k (x,y) + yk Un-k (x,yi = Un (x,y)Vk (x,y), k even ; 

(57) Un+k(x,y)+ykUn„k(x,y) = Vn{x,y)Uk(x,y), k odd ; 

(58) Un+k (x,y) - yk Un-k (x,y) = Un (x,y)Vk (x,y), k odd ; 

(59) Un+k(xty).- ykUn„k(xfy) = Vn(x,y)Uk(x,y), k even 

(60) Vn+k (x,y) + yk Vn„k (x,y) = Vn (x,y)Vk (x,y), k even 

(61) Vn+k(x,y)+ykV„-k(x,y) = (x2+ 4y)Un(x,y)Uk(x,y), k odd; 

(62) Vn+k{x,y)-ykVn-k(x,y) = Vn(x,y)Vk(x,y), k odd; 

(63) Vn+k (x,y) -yk Vn„k (x,y) = (x2 + 4y)Un(x,y)Uk (x,y), k even. 

Because of the y , it is quite obvious that formulas (13) through (24) do not have the same form for the recurring 

sequences \un(x,y) | and j Vn(x,y)\. If we let the coefficients of Un^2(xfy) in (52) be y = 1 then the se-

quences \Un(x,y) \ and \ S/n(x,y) {• are sequences of polynomials in x. In fact, they are respectively the se-

quences of Fibonacci and Lucas polynomials. With y=1,\X is easy to see that formulas (56) through (63) are of the 

same nature as (5) through (12) with F in place of U and L in place of V. Hence, the formulas (13) through (24) can 

be lifted to the sequences i Un (x,y) \ and ] Vn (xfy) \ if y = 7 by replacing Fn by Un (x, 1) and Ln by Vn (x, 1). 

Of course, we have* + 4 in palce of 5 in formulas (16), (18), and (21). 

In conclusion, we will examine whiat happens if we consider the recurring sequence J Hn (x,y)\ J= / where 

( . H0(x,y) = f(x,y), H<,(x,y) = g(x,y), 

Hn(x,y) = xHn-j(x,y) +yHn-2(x,y), n > 2. 

By using properties of difference equations, it is easy to show that 

(65) Hn (x,y) = (r(x,y)>? - s(xtyT^)/2^xTT'4^ 

where \ and \ are as before, r(x,y) = 2(g(x,y) - f(x,y)\), and $(x,y) = 2(g(x,y) - f(x,y)\). 

If we let 

(66) Gn (x,y) = (r0c,y)7$ + s(x,y)7£)/2 

then 

(67) Gn (xfy) = yHn„ 1 (x,y) + Hn+1 (xfy). 

Using (53) and (65), a direct calculation will show that 

(68) Hn (x,y)Uk+; (x,y) + yHn„ 1 (xfy)Uk (x,y) = Hn+k (x,y) 

and 

(69) Hn(x,y)Uk-.](x,y)- Hn^(x/V)Uk(xry) = (-1)kyk'7Hn„k(x,y). 

If we use (57) with (67) and (68) and remember that Ui(x,yt = 1, we obtain 
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(70) Gn+k(x,y) = yHn^(x,y)Vk(x,y) + Hn(x,y)Vk+1(x,y). 

Using (55) with (69) and (67), it can be shown that 

(71) Hn^(x,y)Vk(x,y)- Hn(x,y)Vk„7(x,y) = (-1)kyk~1 Gn-k(x,y). 

Letting k be odd or even in (68) through (71), we have 

(72) Hn+k(x,y) + ykHn„k(x,y) = Hn(x,y)Vk(x,y), k even ; 

(73) Hn+k(x,y) + ykHn„k(x,y) = Gn(x,y)Uk(x,y), k odd ; 

(74) Hn+k(x,y)-ykHn-k(x,y) = Hn(x,y)Vk(x,y), k odd ; 

(75) Hn+k(xfy)-ykHn..k(x,y) = Gn(x,y)Uk(x,y), k even; 

(76) Gn+k(x,y)+ykGn„k(x,y) = Gn(x,y)Vk(x,y), k even ; 

(77) Gn+k(x,y) + ykGn„k (x,y) = (x2 + 4y)Hn(x,y)Uk(x,y), k odd ; 

(78) Gn+k(x,y)-ykGn„k(x,y) = Gn(x,y)Vk(x,y), k odd ; 

(79) Gn+k(x,y)-ykGn-k(x,y) = (x2+ 4y)Hn(x,y)Uk(x,y), k even. 

Observe that if we replace H by U and G by V then Eqs. (72) through (79) yield Eqs. (56) through (63). 

If we let y = 1 in (64) then Eqs. (72) through (79) are those of (30) through (33) and (36) through (39) where we 

replace Vn(x,y) by Ln, Hn(x,y) by Hn, Gn(x,y) by Gn, and Un(x,y) by Fn. The same substitutions in (40) through 

(51) will give us the summation-product relations relative to the sequences \Hn(x,y)\ and \Gn(x,y)\ i f y = I 

In conclusion, we observe several other results which are a direct consequence of the formulas of this paper [2; p. 19]. 

If we replace n by k + 1 in (5) through (8) we have Fk, Lk, Fk+1,m& Lk+1 are relatively prime to F2k+1 for A-

> 1. If we let/? = £* ,? in (5) through (8), we have Fk, Lk, Fk+2, and Lk+2 are all relatively prime to F2k+2^k> 

1. Letting n = k + / i n (9) through (12), we see that Fk, Lk, Fk+f,and Lk+1 are all relatively prime to I~2k+1-

If we let n = k + 1 in (56) through (59) with y= / we see that the Fibonacci polynomials U2k+i(x,1) + 1 are fac-

torable for/r > 2. \$n = k\N\thy= 1 in (56) through (59) then U2k(x,l) is factorable for k > 2. 
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[Continued from Page 110.] 

(3B) Ifkis an integer for which Fermat's Last Theorem is true, then there is no Pythagorean triangle with the 

hypotenuse and one of the legs equal to kth powers of natural numbers. 

Proofs of 1B and 2B are provided in the complete text, but 3B remains an open question. 

The authors have attempted to compile a complete bibliography related to Pythagorean triangles. Included in the 

bibliography are 111 references to journal articles, 66 references to problems (with solutions) in Amer. Math Monthly, 

17 references to notes in Math. Gaz., and 12 references to notes in Math. Mag. Since it is impossible to compile such 

a bibliography without some omissions, the authors would appreciate receiving any references not already included 

in the bibliography. 

The complete report of which this article is a summary consists of 23 pages. It may be obtained for $1.50 by writ-

ing the Managing Editor, Brother Alfred Frousseau, St. Mary's College, Moraga, California 94575. 
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