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in [1], we find many well known formulas which involve the sums of Fibonacei and Lucas numbers. For example,
we have

(1) > Fi= Faez—1, n=1;
=1
n
2) D Li=lpa=3 a1
=1
n
{3) E Foie1 = Fop, n=1;
=1
n
(4) E Lojiog = Lop—2, n>1T.
=1

Hence, it is natural to ask if there exist summation formulas for other lists of Fibonacci and Lucas numbers, if
such formulas exist it is then natural to ask if the formulas can be extended to other recurring sequences. The pur-
pose of this paper is to show that both of these questions can be answered in the affirmative. To do this, we first re-
call the following [1, p. 591

(5) Fotk * Fpte = Fnlg, k even;
(6) Fpik + Fpeie = LpFe, k odd;
(7) Foti- Fo-k = Fplg, k odd;
(8) Frtk - Fnok = LnFr, k even.

Using L, =a” + " where a.and {3 are the roats of x>~ x - 7 = O with a= (7 +~/5)/2, 3 =(1- /5 )/2 itiseasy to
show that

{9) Lotk +bpte = Lpli, k even;
(10) Ltk * Lok = 5FnFr, k odd:
(11) Lotk Lok = Lk, k odd;
(12) Lypthe = Lpote = 5FpFr, k even.

Observing thata sum invalving 2° terms, by combining pairs, reduces to a sum of 2pP-1 terms, we were able to show
Theorem 1. 1f k = 7 then o

7
(13) > Friani =

Foo. T,
n+2'-1)2k ;=7 2k
115



116 SUMS AND PRODUCTS FOR RECURRING SEQUENCES [APR.
Proof. 1fj=1 then
I

1
1

D Fovaki = Fot Forak = LokFeak = Fat(2-1)26 ,EI, Lzik

=0 -

and the theorem is true,
Assume the propaosition is true forj Using (5), we have

2114 21
Do Foeaki = Lac D Foszkeski
=0 =0
) /
= LokFprzkr2/-rjac 1 Lyivt,
=1

1

= F P H .
_ o2t _gjo oy Lok
and the theorem is proved.

Using (9) and an argument like that of Theorem 1, we have
201 j

(14) Z; Lnsati = Lo 1o ,E, Lo,

k=1,

Using (8) and (14) with j— 7 in place of /, n +2k in place of n and 2k in place of k, one has

201 i
—1)*7 ; = ; nL; > 1.
(15) Z; (=1)" Fprani = Faxl oz 1 Ly k=1
Similarly, with the aid of (12) and Theorem 1, one obtains
2/.q i
_7)i*7 .= . I . s> 7
(16) Eo (=1)""" Ly ra; 5F2an+{2/—-7)2k =2 Lzlk, k=1.
=
From (9) and (14), we have
2/4 -1
(17 Z Lptf2i-1)k = Ln+(2j'1-7)2k il—IO Lo e k even
o =
while Theorem T with the aid of {12) gives
2/_q j-1
_1)i*1 - = . oL ; .
(18) ZO (-1) Lo+(2i-1)k 5Fan+IZI 7-—1)2k o L2,k, k even
-
Theorem 1 together with (5) can be used to show
2/ j-1
(19) Z F,7+|i2,-_7)k = Fn+{2/-7—7/2k ,'Eg in/(’ k even
=0
while (8) with (14) yields
2/ 1
i*+1
_ ) = - o )
(20) 2 {-1) Fn+(2’/-7}k FkLh'f'(ZI 7-7)2k = LZ’k' k even

=0
Since we have used (5) and (8) as well as (9) and (12) on several occasions, it seems natural to ask if formulas exist
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using (6) and (7) as well as (10) and (11}, With this in mind, we developed the next four formulas.
By use of (10} and {11), respectively with Theorem 1, we have

2/ i1
21 L il = 5FLF i ;
(21) Zg nH2i-1) = SFkF it e I_g Lyi . K odd
and )
277 ) -1
22 S Ly P : ; :
(22) Z‘% (=107 Fnizi-1c Fot2 126 ,-£I0 Lyir K odd
i=
Finally, if we apply (6) and (7) respectively with (14) we are able to show that
2/-q -1
23 F i = . H .
(23) § w2tk = Fib it g 1L Lo,k odd
and )
24 -1
4 1 o1 = : ni; .
(24) Z; (1" L oie1)k Ln+(2/'7-7)2k o I;Z,k, k odd
=i
To lift the results above to the generalized Fibonacci sequence which is defined recursively by
(25) Ho=4q Hy=p Hy=Hpg+tHpo, n>2

it is necessary and sufficient to examine formulas comparabie ta (5) through {12). To do this, we first define a gen-
eralized Lucas sequence by

{26) Gn = Hn+7 +Hn_1 .
in Horadam [31], it is shown that
(27) Hy = (ra” —sB87)/25 ,
where r=2(p — gf}, 5= 2(p — ga) and a, f§ are the usual roots of x* — x — 7 =0, Furthermore, he shows that
{28) Hpte = HpgFre + HnFrer

where the £, are the Fibonacci numbers,
Using (27) and Binet's formula for £y, a straightforward argument shows that

(29) HyFret = HnpiFre = (=15 Hp g .
By (28) and (29) with the aid of Ly = Fgr7 + Fiy, we have

(30 Aptic + Hpepe = Hplix, Kk even

and

(31) Hn+k_Hn—k = HnLkr k odd.
if we use (25), (28), and (29) together with the fact that Fi = Fr+y — Fg-7. we have

(32) Hptte + Hpoic = GpFi, Kk odd

and

(33) Hptte — Hnte = GpFr, Kk even,
Replacing 7 by n + k in (26) and using {28), we have

(34) Gpew = Hp-gli+ Hnli+s

while replacing 7 by # — k in (26) and applying (29) gives

(35) Gpt = (=15 (Hpeylic — Hnlieq).
Applying (34) and (35) as we did {(28) and (29), we obtain

(36) G *Gpek = Gply, k even;

(37) Gpape + Gpte = 5H Fi, k odd;
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(38) Gtk — G-k = Gplg, Kk odd;
(39) Gp+k — Gt = 5H,Fr, Kk even,

Examining (30) through (33) and (36) through (39) with 4 replaced by F and G replaced by L, we obtain proper-
ties (5) thorugh (12). Hence, it is clear that identities (13) through {24) can be lifted to the generalized Fibonacci
and Lucas sequences and in fact are

211 i
‘0 g Hotaki = H ol 1ok ,-E, Loipr k=12
2/_q j
) g Crraki = G Lol 1ok ,-£I, Lyjr k=1
214 j
(42) Z:O (=1)" T Hpyrages = FokG o0 112 i£12 Ly k=z1;
2/-q i
(43) "_2:; (-1 G pygui = SFoH iy i£12 Lo k=1
2j—1 j-1
(44) go: Gnif2i-1)k = Gn+{2j'7—1}2k iI=10 ink' k even;
- 2l j-1
(45) g (1) Grpfoit i = 5Fan+(2,-_1_”2k ig ink' k even ;
2j-7 j~1
(46) Z% Hpwioie1)ic = Hn+(2/-_,_”2k i£10 ink’ k even;
2/_q -1
(47) i}__;, (-1t toiea i = FiGni=1_1)0 igi Lyip, K oeven;
2/ -1
(48) Z% Goszi-tike = SFcH it _yppe M Lyir K 0dd;
2/ j-1
(49) ?:; (1) e t2ie 1) = = igo Lyi . K odd;
2.1 -1
(50) g Htizimtk = FkG 01 41 WLy, kodd;
2/ j~1
(51) ‘; (-1 G pioict i = G ook I_£10 Ly, K odd

The infinite sequence 4)(,, ; =1 is called a recurring sequence if, from a certain point an, every term can be rep-
resented as a linear combination of the preceding terms of the sequence. Hence, the sequence { Unix,y) },T:;
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defined recursively by

(52) Uoly) = 0, Uitxy) = 1, Upley) = xUnpily) +yUnolxy), n = 2

where Uy, (x,y) € Flx,yl, F any field is a recurring sequence. .
ifwelet A, and A, be the roots of the equation A* — x\ — y = 0, where we assume A, = (x +/x*> +4y}/2, y # 0,
and x? + 4y is a nonperfect square different from zero, then it is easy to show that

' _ )\,; - >\r21
(63) . Unlx,y) = Ny
Furthermore, if we let
(54) Valoy) = Nj +05
then
(65) Valxy) = yUp_1lxy +Upsrlxyl).

Because of the y coefficient, the formulas (5) through (12) de not follow the same pattern for this recurring se-
quence. However, it can be shown using (53) through {85) together with the facts A, A, = —y and A, # X, =x that

(56) Unsk 6y) + YK Upieby) = Uplxy)Vielxy), K even;
{87) Unsie,y) #y* Up-i ey} = Voliy)Uxy), & odd;

(58) Unsiclx,y) =y  Unetty) = UnlyVilxy), k odd:

(59) Unscy) =y  Uniely) = Valoy)Uslxy),  k even

(60) Vst 6,51+ v 5 Vi iy} = Vil yWVilx,y),  k even

(61) Vs x,y) +y* Voiely) = (x2 +4y)UnleylUkxy), K odd;
(62) Vi 7] — y Vi ) = VolyWilxy),  k odd;
(63) Vit (,0) = v ¥ Vooie oyt = (x2 +4y)Un(x,y) Uk (x,y), K even.

Because of the yk, it is quite obvious that farmulas (13} through (24) do not have the same form for the recurring
sequences  JUn(x,y) t and g Vi (x,y)}. if we let the coefficients of U,-2{x,y/ in (52) be y = 7 then these-
guences %Un(x,y)} and {V,,(x,y) } are sequences of polynomials in x. In fact, they are respectively the se-
quences of Fibonacci and Lucas polynomials. With y = 7, it is easy to see that formulas (56) through (63) are of the
same nature as (5) through (12) with 7 in place of ¢/ and L in place of /. Hence, the formulas (13) through (24} can
be lifted to the sequeznces % Uplx,y) ¢ and g Viplxy) f if y = 1 by replacing Fp, by U, (x,7) and L, by V. (x, 1)
Of course, we have x“ + 4 in palce of 5 in formuias (18}, (18), and (21).

In conclusion, we will examine whiat happens if we consider the recurring sequence g H, (x,y}} =1 where

Holx,y) = fixyl, Hilxy) = glxy),
Hotx,y) = xHu_1(xy} +yHpolxy), n = 2.

(64)

By using properties of difference equations, it is easy to show that
(65) Holxy) = (rooyINT — sty NI )/ 2 x> +dy

where \, and X, are as before, rx,y) = 2(gix,y) — fix,yJ\, ), and sle,y) = 2g0x,y) — flx,y )N )
If we let

(66) Gpx,y) = (ricyIN] +six,yIN )/ 2
then
67) Gnlxy) = yHu 10y} +Hpeilx,y).
Using (53) and (65), a direct calculation will show that
(68) Hpl,y Wit 100y) +yHp_1 (v Wi (xy) = Hpwe(xy)
and
(69) Haloy W1 (0,y) = Hoog oy Ui ley) = (=115y T Hy i ey).

if we use (57) with (67} and (68) and remember that ¥ ;(x,y) = 7, we obtain
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(70) Gric(x,y) = yHu 1Oy Wilx,y) + Hylx,yWisr(x,y).
Using (55) with (69) and (87), it can be shown that
(71) Hpe106,yVicly) = Holay Wit loy) = (=151 6o _lxy).
Letting & be odd or even in (68) through (71), we have
{(72) Hn+k(x,yl+ka,,_k(x,y) = Hplx,yWiix,yl, k even;
(73) Hpsie(ey) +yK Hooi(y) = GolxylUklxy), & odd ;
(74) Hn+k(x,y)—ka,,-k(x,y) = Holxy)WVilxy) &k odd;
(75) Hpticly) =y ¥ Hoieley) = Golxy)Uplxy), & even;
{76) G,,+k(x,y)+yk6,,_k(x,y) = Gulx,yWVilxy), Kk even;
(77) Gkl y) +y* Gpoktry) = (x2 +ayIH, (v Uk (x,y), Kk odd ;
(78) Gratclx,y) = yX Grtliy) = Gpl,y)WViixyl), Kk odd;
(79) Grail®y) = yXCreicly) = (xZ+4y)H, by Ur(xy), K even.

Observe that if we replace # by U/ and G by V then Egs. (72) through (79) yield Egs. (56) through (63).

if we let y = 7 in (64) then Egs. (72) through (79) are these of (30} through (33) and (36) through {39) where we
replace Vi, (X,y) by Ly, Holx,y) by Hy, Gp(x,y) by G,, and U, (x,y) by F,,. The same substitutions in (40) through
{51) will give us the summation-product relations relative to the sequences ;H,, (x,y) : and ': G, (x,y}} ify=1

In conclusion, we observe several other results which are a direct consequence of the formulas of this paper [2; p. 19].

If we replace n by & + 7 in (5) through (8) we have Fy, Ly, Fr+7, and Lg+q are relatively prime to Foy 4+ for &
= 1. lfweletn = k + 2 in (6) through (8), we have Fi, L, Fro, and L+ are all relatively prime to Fog4o for & >
1. Letting 7 = k + 7 in (8) through (12), we see that Fy, Ly, Fr+7, and Lg+7 are all relatively prime to £ og+7.

If we let n = k + 7 in (56) through (59) with y = 7 we see that the Fibonacci polynomials Usg 11 (x,7) + 7 are fac-
torable for k = 2. If n = k with y = 7 in (56) through (59) then Uoy (x, 7) is factorable for k > 2,
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[Continued from Page 110.]

(3B) /f k is an integer for which Fermat’s Last Theorem is true, then there is no pythagorean triangle with the

hypotenuse and one of the legs equal to K powers of natural numbers.

Proafs of 1B and 2B are provided in the complete text, but 3B remains an open question.

The authors have attempted tc compile a complete bibliography related to pythagorean triangles. Included in the
bibliography are 111 references to journal articles, 66 references to problems (with solutions) in Amer. Math Monthly,
17 references to notes in Math. Gaz., and 12 references to notes in Math. Mag. Since it is impossible to compile such
a hibliography without some omissions, the authors would appreciate receiving any references not already included
in the bibliography.

The complete report of which this article is a summary consists of 23 pages. It may be obtained for $1.50 by writ-
ing the Managing Editor, Brother Alfred Frousseau, St. Mary’s College, Moraga, California 94575,
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