The Fibonacci Quarterly 1995 (33,3): 279-282

# ON A SYSTEM OF SEQUENCES DEFINED BY <br> A RECURRENCE RELATION 

Shiro Ando<br>College of Engineering, Hosei University, Koganei-shi, Tokyo 184, Japan<br>(Submitted November 1993)

## 1. INTRODUCTION

Sequences defined by recurrence relations have been studied in many papers. Some of these studies treated the system of sequences defined by a recurrence relation. For instance, Lucas [6] studied the second-order case; Shannon and Horadam [8] dealt with the third-order recurrence relations.

The purpose of this note is to summarize some properties of the system of $m$ sequences $\left\{u_{k, n}\right\}$ (where $k=1,2, \ldots, m$ ) defined by the recurrence relation

$$
\begin{equation*}
u_{k, n}=P_{1} u_{k, n-1}+P_{2} u_{k, n-2}+\cdots+P_{m} u_{k, n-m} \tag{1}
\end{equation*}
$$

with initial conditions

$$
\begin{equation*}
u_{k, n}=\delta_{k, n+1}(\text { where } k=1,2, \ldots, m ; n=0,1, \ldots, m-1) \tag{2}
\end{equation*}
$$

where the right-hand side stands for Kronecker's delta.
We will first write down the fundamental relations, and then consider the calculation of $u_{k, n}$. Finally, we will deal with some applications.

## 2. FUNDAMENTAL RELATIONS

A few leading terms for each of these sequences can be found in the following table:

|  | $n$ | 0 | 1 | 2 | $\cdots$ | $\cdots$ | $\cdots$ | $m-1$ | $m$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| $m+1$ |  |  |  |  |  |  |  |  |  |
| $k$ |  |  |  |  |  |  |  |  |  |
| 1 | 1 | 0 | 0 | $\cdots$ | $\cdots$ | $\cdots$ | 0 | $P_{m}$ | $P_{1} P_{m}$ |
| 2 | 0 | 1 | 0 | $\cdots$ | $\cdots$ | $\cdots$ | 0 | $P_{m-1}$ | $P_{m}+P_{1} P_{m-1}$ |
|  | $P_{m-1}\left(P_{1}^{2}+P_{2}\right)$ |  |  |  |  |  |  |  |  |
| $\vdots$ |
| $m-1$ | 0 | $\cdots$ | $\cdots$ | $\cdots$ | 0 | 1 | 0 | $\left.P_{2}\right)+P_{1} P_{m}$ |  |
| $m$ | 0 | $\cdots$ | $\cdots$ | $\cdots$ | 0 | 0 | 1 | $P_{3}+P_{1} P_{2}$ | $P_{2}+P_{1}^{2}$ |
| $P_{2}\left(P_{1}^{2}+P_{2}\right)+P_{1} P_{3}+P_{4}$ |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |

Now, the fundamental relations

$$
\begin{equation*}
u_{1, n+1}=P_{m} u_{m, n}, u_{k, n+1}=u_{k-1, n}+P_{m-k-1} u_{m, n}(\text { for } k=2, \ldots, m) \tag{3}
\end{equation*}
$$

can be established easily by induction.

Using the matrices

$$
U_{n}=\left(\begin{array}{c}
u_{1, n} \\
u_{2, n} \\
\vdots \\
u_{m-1, n} \\
u_{m, n}
\end{array}\right) \text { and } T=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & P_{m} \\
1 & 0 & \cdots & 0 & P_{m-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & 1 & 0 & P_{2} \\
0 & 0 & \cdots & 1 & P_{1}
\end{array}\right) \text {, }
$$

these relations can be written as

$$
\begin{equation*}
U_{n+1}=T U_{n} \tag{4}
\end{equation*}
$$

which gives us

$$
\begin{equation*}
U_{n}=T^{n} U_{0}, T^{n}=\left(U_{n}, U_{n+1}, U_{n+2}, \ldots, U_{n+m-1}\right) \tag{5}
\end{equation*}
$$

The generating functions

$$
\left.G_{k}(x)=u_{k, 0}+u_{k, 1} x+u_{k, 2} x^{2}+\cdots+u_{k, n} x^{n}+\cdots \quad \text { (where } k=1,2, \ldots, m\right)
$$

for these sequences are given by

$$
\begin{equation*}
G_{k}(x)=x^{k-1} H_{k}(x) / H_{0}(x), \tag{6}
\end{equation*}
$$

where $H_{k}(x)=1-P_{1} x-P_{2} x^{2}-\cdots-P_{m-k} x^{m-k}$ for $k=0,1, \ldots, m-1$ and $H_{m}(x)=1$.

## 3. CALCULATION OF TERMS

From the generating function (6), we can easily determine the formula for $u_{m, n}$, which is

$$
u_{m, m+n-1}=\sum_{s=1}^{n} \sum_{\substack{r_{1}+r_{2}+\ldots+r_{1}=n \\ 1 \leq r_{1} \leq m \\(i=1,2, \ldots s)}} P_{r_{1}} P_{r_{2}} \cdots P_{r_{s}},
$$

where the summation runs over all the decompositions of $n$ into the integers not exceeding $m$.
Following the method of Shannon and Horadam [7], it is easy to see that

$$
u_{m, m+n-1}=\sum_{i_{m}=0}^{\left[t_{m} / m\right]} \cdots \sum_{i_{3}=0}^{\left[t_{3} / 3\right]} \sum_{i_{2}=0}^{\left[t_{2} / 2\right]} \frac{\left(t_{1}+i_{2}+\cdots+i_{m}\right)!}{t_{1}!i_{2}!\cdots i_{m}!} P_{1}^{t_{1}} P_{2}^{i_{2}} \cdots P_{m}^{i_{m}},
$$

where $t_{m}=n$, and $t_{k}=t_{k+1}-(k+1) i_{k+1}$ for $k=m-1, \ldots, 2,1$.
If the coefficients $P_{1}, P_{2}, \ldots, P_{m}$ are given numerically, we have an $O\left(m^{2} \log n\right)$ algorithm for computing $U_{n}$ by using (4) and (5). To see this, examine Er [2] or Gries and Levin [4].

In the case of $P_{m} \neq 0$, we can also define $u_{k, n}$ and $U_{n}$ for negative values of $n$ by using the recurrence relation (1) in the opposite direction. Formulas (4) and (5) are also valid for negative $n$ and, in fact,

$$
T^{-1}=\left(\begin{array}{ccccc}
Q_{m} & 1 & 0 & \cdots & 0 \\
Q_{m-1} & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
Q_{2} & 0 & 0 & \cdots & 1 \\
Q_{1} & 0 & 0 & \cdots & 0
\end{array}\right),
$$

where $Q_{1}=P_{m}^{-1}$ and $Q_{k}=-P_{k-1} P_{m}^{-1}$ for $k=2,3, \ldots, m$. Thus, we have a similar algorithm for computing $U_{n}$ when $n$ is negative.

Following the ideas of Barakat [1] who used $2 \times 2$ matrices, we obtain similar formulas for the $m \times m$ matrices.

Theorem 1: Let $X$ be an $m \times m$ matrix that has the characteristic equation

$$
\begin{equation*}
\lambda^{m}-P_{1} \lambda^{m-1}-\cdots-P_{m-1} \lambda-P_{m}=0 \tag{7}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
X^{n}=u_{m, n} X^{m-1}+u_{m-1, n} X^{m-2}+\cdots+u_{2, n} X+u_{1, n} E, \tag{8}
\end{equation*}
$$

where the coefficients are defined by (1) and (2).If $X$ is regular, then $P_{m} \neq 0$, so that (8) is valid even for negative values of $n$.

Proof: For $n=0,1, \ldots, m-1,(8)$ is valid by (2). On the other hand, we have

$$
\begin{equation*}
X^{m}=P_{1} X^{m-1}+P_{2} X^{m-2}+\cdots+P_{m-1} X+P_{m} E \tag{9}
\end{equation*}
$$

by (7). Using this equality, we complete the proof for positive $n$ by induction. To prove (8) for negative $n$, we use (1) and (9) in the opposite direction.

Next, we consider the evaluation of some series related to the sequences $\left\{u_{k, n}\right\}$.
Theorem 2: Let

$$
\begin{equation*}
f(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots \tag{10}
\end{equation*}
$$

be a function defined by the power series in $x$ that has the radius of convergence $R$ with

$$
\begin{equation*}
R>\max _{1 \leq i \leq m}\left|\lambda_{i}\right| \tag{11}
\end{equation*}
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ are the roots of the characteristic equation

$$
\varphi(\lambda)=\lambda^{m}-P_{1} \lambda^{m-1}-\cdots-P_{m-1} \lambda-P_{m}=0
$$

of the difference equations given in (1). For the sequences $\left\{u_{k, n}\right\}$ defined by (1) and (2), we consider the series

$$
\begin{equation*}
f_{k}=\sum_{n=0}^{\infty} c_{n} u_{k, n}(k=1, \ldots, m) \tag{12}
\end{equation*}
$$

If all the $\lambda_{i}$ 's are distinct, $f_{k}$ has the representation

$$
\begin{equation*}
f_{k}=(-1)^{m-k} \sum_{i=1}^{m} f\left(\lambda_{i}\right) \frac{P_{m-k, i}}{\varphi^{\prime}\left(\lambda_{i}\right)} \quad(k=1,2, \ldots, m) \tag{13}
\end{equation*}
$$

where $p_{0, i}=1$, and $p_{h, i}$ stands for the elementary symmetric polynomial of degree $h$ in $\lambda_{1}, \lambda_{2}, \ldots$, $\lambda_{i-1}, \lambda_{i+1}, \ldots, \lambda_{m}$, for $1 \leq h \leq m-1$.

Proof: Using (8) for $X=T$ as defined in (4), we have

$$
f(T)=\sum_{n=0}^{\infty} c_{n} \sum_{k=1}^{m} u_{k, n} n^{k-1}=\sum_{k=1}^{m} f_{k} T^{k-1}
$$

If we compare this formula with Sylvester's formula (see Frazer et al. [3])

$$
f(T)=\sum_{i=1}^{m} f\left(\lambda_{i}\right) \frac{\left(T-\lambda_{1} E\right) \cdots\left(T-\lambda_{i-1} E\right)\left(T-\lambda_{i+1} E\right) \cdots\left(T-\lambda_{m} E\right)}{\left(\lambda_{i}-\lambda_{1}\right) \cdots\left(\lambda_{i}-\lambda_{i-1}\right)\left(\lambda_{i}-\lambda_{i+1}\right) \cdots\left(\lambda_{i}-\lambda_{m}\right)},
$$

we have (13), since the minimal polynomial of $T$ is of degree $m$ in this case.
Applying this formula for $m=2$ and $m=3$ to the functions $e^{x}, \sin x, \cos x, \sinh x$, and so on, we obtain many of the formulas shown in [1], [7], [8], and [9].

If $\lambda_{j}=\lambda_{i}$, the formula for $f_{k}$ corresponding to (13) will be given by taking the limit as $\lambda_{j}$ tends to $\lambda_{i}$ in (13).

For the sequence $\left\{u_{n}\right\}$ satisfying the same recurrence as (1) with initial conditions $u_{n}=a_{n}$ for $k=0,1, \ldots, m-1$, we have

$$
\sum_{n=0}^{\infty} c_{n} u_{n}=\sum_{k=1}^{m} a_{k-1} f_{k},
$$

which can also be calculated directly from the general solution.
J. Z. and J. S. Lee [5] applied this latter method to a function $f(x)$ that had a geometric progression for its coefficients in order to characterize some $B$-power fractions.

## REFERENCES

1. R. Barakat. "The Matrix Operator $e^{X}$ and the Lucas Polynomials." J Math. and Phys. 43 (1964):332-35.
2. M. C. Er. "The Matrices of Fibonacci Numbers." The Fibonacci Quarterly 22.2 (1984): 134-39.
3. R. A. Frazer, W. J. Duncan, \& A. R. Collar. Elementary Matrices. New York: Cambridge University Press, 1938.
4. D. Gries \& G. Levin. "Computing Fibonacci Numbers (and Similarly Defined Functions) in Log Time." Information Processing Letters 11 (1980):68-69.
5. J. Z. Lee \& J. S. Lee. "A Complete Characterization of $B$-Power Series of General $n$-bonacci Numbers." The Fibonacci Quarterly 25.1 (1987):72-75.
6. E. Lucas. Théorie des nombres. Paris: Albert Blanchard, 1958.
7. S. Pethe. "On Sequences Having Third-Order Recurrence Relations." In Fibonacci Numbers and Their Applications, pp. 185-92. Dordrecht: Kluwer, 1986.
8. A. G. Shannon \& A. F. Horadam. "Some Properties of Third-Order Recurrence Relations." The Fibonacci Quarterly 10.2 (1972):135-45.
9. J. E. Walton. "Lucas Polynomials and Certain Circular Functions of Matrices." The Fibonacci Quarterly 14.1 (1976):83-87.
AMS Classification Number: 11B37
