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Abstract

This report gives a rather arbitrary choice of formulas for (q-)hypergeometric orthogo-
nal polynomials which the author missed while consulting Chapters 9 and 14 in the book
“Hypergeometric orthogonal polynomials and their q-analogues” by Koekoek, Lesky and
Swarttouw. The systematics of these chapters will be followed here, in particular for the
numbering of subsections and of references.

Introduction

This report contains some formulas about (q)-hypergeometric orthogonal polynomials which I
missed but wanted to use while consulting Chapters 9 and 14 in the book

R. Koekoek, P. A. Lesky and R. F. Swarttouw, Hypergeometric orthogonal polynomials and their
q-analogues, Springer-Verlag, 2010.

These chapters form together the (slightly extended) successor of the report

R. Koekoek and R. F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials
and its q-analogue, Report 98-17, Faculty of Technical Mathematics and Informatics, Delft Uni-
versity of Technology, 1998; http://aw.twi.tudelft.nl/~koekoek/askey/.

Certainly these chapters give complete lists of formulas of special type, for instance orthog-
onality relations and three-term recurrence relations. But outside these narrow categories there
are many other formulas for (q-)orthogonal polynomials which one wants to have available. Of-
ten one can find the desired formula in one of the standard references listed at the end of this
report. Sometimes it is only available in a journal or a less common monograph. Just for my
own comfort, I have brought together some of these formulas. This will possibly also be helpful
for some other users.

Usually, any type of formula I give for a special class of polynomials, will suggest a similar
formula for many other classes, but I have not aimed at completeness by filling in a formula of
such type at all places. The resulting choice of formulas is rather arbitrary, just depending on
the formulas which I happened to need or which raised my interest. For each formula I give a
suitable reference or I sketch a proof. It is my intention to gradually extend this collection of
formulas.
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Conventions

The (x.y) and (x.y.z) type subsection numbers, the (x.y.z) type formula numbers, and the [x]
type citation numbers refer to the book by Koekoek et al. The (x) type formula numbers refer
to this manuscript and the [Kx] type citation numbers refer to citations which are not in the
book. Some standard references like [DLMF] are given by special acronyms.

N is always a positive integer. Always assume n to be a nonnegative integer or, if N is
present, to be in {0, 1, . . . , N}. Throughout assume 0 < q < 1.

For each family the coefficient of the term of highest degree of the orthogonal polynomial
of degree n can be found in the book as the coefficient of pn(x) in the formula after the main
formula under the heading “Normalized Recurrence Relation”. If that main formula is numbered
as (x.y.z) then I will refer to the second formula as (x.y.zb).
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Generalities

Critera for uniqueness of orthogonality measure According to Shohat & Tamarkin [K9,
p.50] orthonormal polynomials pn have a unique orthogonality measure (up to positive constant
factor) if for some z ∈ C we have

∞∑
n=0

|pn(z)|2 =∞. (1)

Also (see Shohat & Tamarkin [K9, p.59]), monic orthogonal polynomials pn with three-term
recurrence relation xpn(x) = pn+1(x) + Bnpn(x) + Cnpn−1(x) (Cn necessarily positive) have a
unique orthogonality measure if

∞∑
n=1

(Cn)−1/2 =∞. (2)

Furthermore, if orthogonal polynomials have an orthogonality measure with bounded sup-
port, then this is unique (see Chihara [146]).

Even orthogonality measure If {pn} is a system of orthogonal polynomials with respect to
an even orthogonality measure which satisfies the three-term recurrence relation

xpn(x) = Anpn+1(x) + Cnpn−1(x)

then
p2n(0)

p2n−2(0)
= − C2n−1

A2n−1
. (3)

Appell’s bivariate hypergeometric function F4 This is defined by

F4(a, b; c, c
′;x, y) :=

∞∑
m,n=0

(a)m+n(b)m+n

(c)m(c′)nm!n!
xmyn (|x|

1
2 + |y|

1
2 < 1), (4)

see [HTF1, 5.7(9), 5.7(44)] or [DLMF, (16.13.4)]. There is the reduction formula

F4

(
a, b; b, b;

−x
(1− x)(1− y)

,
−y

(1− x)(1− y)

)
= (1− x)a(1− y)a 2F1

(
a, 1 + a− b

b
;xy

)
,

see [HTF1, 5.10(7)]. When combined with the quadratic transformation [HTF1, 2.11(34)] (here
a− b− 1 should be replaced by a− b+ 1), see also [DLMF, (15.8.15)], this yields

F4

(
a, b; b, b;

−x
(1− x)(1− y)

,
−y

(1− x)(1− y)

)
=

(
(1− x)(1− y)

1 + xy

)a
2F1

( 1
2a,

1
2(a+ 1)

b
;

4xy

(1 + xy)2

)
.

This can be rewritten as

F4(a, b; b, b;x, y) = (1− x− y)−a 2F1

( 1
2a,

1
2(a+ 1)

b
;

4xy

(1− x− y)2

)
. (5)

Note that, if x, y ≥ 0 and x
1
2 + y

1
2 < 1, then 1− x− y > 0 and 0 ≤ 4xy

(1−x−y)2 < 1.
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9.1 Wilson

Symmetry The Wilson polynomial Wn(y; a, b, c, d) is symmetric in a, b, c, d.
This follows from the orthogonality relation (9.1.2) together with the value of its coefficient of
yn given in (9.1.5b). Alternatively, combine (9.1.1) with [AAR, Theorem 3.1.1].

Special value
Wn(−a2; a, b, c, d) = (a+ b)n(a+ c)n(a+ d)n , (6)

and similarly for arguments −b2, −c2 and −d2 by symmetry of Wn in a, b, c, d.

Uniqueness of orthogonality measure Under the assumptions on a, b, c, d for (9.1.2) or
(9.1.3) the orthogonality measure is unique up to constant factor.

For the proof assume without loss of generality (by the symmetry in a, b, c, d) that <a ≥ 0.
Write the right-hand side of (9.1.2) or (9.1.3) as hnδnm. Observe from (9.1.2) and (6) that

|Wn(−a2; a, b, c, d)|2

hn
= O(n4<a−1) as n→∞.

Therefore (1) holds, from which the uniqueness of the orthogonality measure follows.
By a similar, but necessarily more complicated argument Ismail et al. [281, Section 3] proved

the uniqueness of orthogonality measure for associated Wilson polynomials.

9.3 Continuous dual Hahn

Symmetry The continuou dual Hahn polynomial Sn(y; a, b, c) is symmetric in a, b, c.
This follows from the orthogonality relation (9.3.2) together with the value of its coefficient of
yn given in (9.3.5b). Alternatively, combine (9.3.1) with [AAR, Corollary 3.3.5].

Special value
Sn(−a2; a, b, c, d) = (a+ b)n(a+ c)n , (7)

and similarly for arguments −b2 and −c2 by symmetry of Sn in a, b, c.

Uniqueness of orthogonality measure Under the assumptions on a, b, c for (9.3.2) or (9.3.3)
the orthogonality measure is unique up to constant factor.

For the proof assume without loss of generality (by the symmetry in a, b, c, d) that <a ≥ 0.
Write the right-hand side of (9.3.2) or (9.3.3) as hnδnm. Observe from (9.3.2) and (7) that

|Sn(−a2; a, b, c)|2

hn
= O(n2<a−1) as n→∞.

Therefore (1) holds, from which the uniqueness of the orthogonality measure follows.

9.4 Continuous Hahn

Uniqueness of orthogonality measure The coefficient of pn−1(x) in (9.4.4) behaves as
O(n2) as n→∞. Hence (2) holds, by which the orthogonality measure is unique.
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9.5 Hahn

Special values

Qn(0;α, β,N) = 1, Qn(N,α, β,N) =
(−1)n(β + 1)n

(α+ 1)n
. (8)

Use (9.5.1) and compare with (9.8.1) and (26).

From (9.5.3) and (3) it follows that

Q2n(N ;α, α, 2N) =
(12)n(N + α+ 1)n

(−N + 1
2)n(α+ 1)n

. (9)

From (9.5.1) and [DLMF, (15.4.24)] it follows that

QN (x;α, β,N) =
(−N − β)x

(α+ 1)x
(x = 0, 1, . . . , N). (10)

Symmetries By the orthogonality relation (9.5.2):

Qn(N − x;α, β,N)

Qn(N ;α, β,N)
= Qn(x;β, α,N), (11)

It follows from (18) and (13) that

QN−n(x;α, β,N)

QN (x;α, β,N)
= Qn(x,−N − β − 1,−N − α− 1, N) (x = 0, 1, . . . , N). (12)

Duality The Remark on p.208 gives the duality between Hahn and dual Hahn polynomials:

Qn(x;α, β,N) = Rx(n(n+ α+ β + 1);α, β,N) (n, x ∈ {0, 1, . . . N}). (13)

9.6 Dual Hahn

Special values By (10) and (13) we have

Rn(N(N + γ + δ + 1); γ, δ,N) =
(−N − δ)n
(γ + 1)n

. (14)

It follows from (8) and (13) that

RN (x(x+ γ + δ + 1); γ, δ,N) =
(−1)x(δ + 1)x

(γ + 1)x
(x = 0, 1, . . . , N). (15)
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Symmetries Write the weight in (9.6.2) as

wx(α, β,N) := N !
2x+ γ + δ + 1

(x+ γ + δ + 1)N+1

(γ + 1)x
(δ + 1)x

(
N

x

)
. (16)

Then

(δ + 1)N wN−x(γ, δ,N) = (−γ −N)N wx(−δ −N − 1,−γ −N − 1, N). (17)

Hence, by (9.6.2),

Rn((N − x)(N − x+ γ + δ + 1); γ, δ,N)

Rn(N(N + γ + δ + 1); γ, δ,N)
= Rn(x(x−2N−γ−δ−1);−N−δ−1,−N−γ−1.N).

(18)
Alternatively, (18) follows from (9.6.1) and [DLMF, (16.4.11)].

It follows from (11) and (13) that

RN−n(x(x+ γ + δ + 1); γ, δ,N)

RN (x(x+ γ + δ + 1); γ, δ,N)
= Rn(x(x+ γ + δ + 1); δ, γ,N) (x = 0, 1, . . . , N). (19)

Re: (9.6.11). The generating function (9.6.11) can be written in a more conceptual way as

(1− t)x 2F1

(
x−N, x+ γ + 1

−δ −N
; t

)
=

N !

(δ + 1)N

N∑
n=0

ωnRn(λ(x); γ, δ,N) tn, (20)

where

ωn :=

(
γ + n

n

)(
δ +N − n
N − n

)
, (21)

i.e., the denominator on the right-hand side of (9.6.2). By the duality between Hahn polynomials
and dual Hahn polynomials (see (13)) the above generating function can be rewritten in terms
of Hahn polynomials:

(1− t)n 2F1

(
n−N,n+ α+ 1

−β −N
; t

)
=

N !

(β + 1)N

N∑
x=0

wxQn(x;α, β,N) tx, (22)

where

wx :=

(
α+ x

x

)(
β +N − x
N − x

)
, (23)

i.e., the weight occurring in the orthogonality relation (9.5.2) for Hahn polynomials.

9.7 Meixner-Pollaczek

Uniqueness of orthogonality measure The coefficient of pn−1(x) in (9.7.4) behaves as
O(n2) as n→∞. Hence (2) holds, by which the orthogonality measure is unique.
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9.8 Jacobi

Orthogonality relation Write the right-hand side of (9.8.2) as hn δm,n. Then

hn
h0

=
n+ α+ β + 1

2n+ α+ β + 1

(α+ 1)n(β + 1)n
(α+ β + 2)n n!

, h0 =
2α+β+1Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 2)
,

hn

h0 (P
(α,β)
n (1))2

=
n+ α+ β + 1

2n+ α+ β + 1

(β + 1)n n!

(α+ 1)n (α+ β + 2)n
.

(24)

Symmetry

P (α,β)
n (−x) = (−1)n P (β,α)

n (x). (25)

Use (9.8.2) and (9.8.5b) or see [DLMF, Table 18.6.1].

Special values

P (α,β)
n (1) =

(α+ 1)n
n!

, P (α,β)
n (−1) =

(−1)n(β + 1)n
n!

,
P

(α,β)
n (−1)

P
(α,β)
n (1)

=
(−1)n(β + 1)n

(α+ 1)n
. (26)

Use (9.8.1) and (25) or see [DLMF, Table 18.6.1].

Generating functions Formula (9.8.15) was first obtained by Brafman [109].

Bilateral generating functions For 0 ≤ r < 1 and x, y ∈ [−1, 1] we have in terms of F4

(see (4)):

∞∑
n=0

(α+ β + 1)n n!

(α+ 1)n(β + 1)n
rn P (α,β)

n (x)P (α,β)
n (y) =

1

(1 + r)α+β+1

× F4

(
1
2(α+ β + 1), 12(α+ β + 2);α+ 1, β + 1;

r(1− x)(1− y)

(1 + r)2
,
r(1 + x)(1 + y)

(1 + r)2

)
, (27)

∞∑
n=0

2n+ α+ β + 1

n+ α+ β + 1

(α+ β + 2)n n!

(α+ 1)n(β + 1)n
rn P (α,β)

n (x)P (α,β)
n (y) =

1− r
(1 + r)α+β+2

× F4

(
1
2(α+ β + 2), 12(α+ β + 3);α+ 1, β + 1;

r(1− x)(1− y)

(1 + r)2
,
r(1 + x)(1 + y)

(1 + r)2

)
. (28)

Formulas (27) and (28) were first given by Bailey [91, (2.1), (2.3)]. See Stanton [485] for a shorter
proof. (However, in the second line of [485, (1)] z and Z should be interchanged.) As observed

in Bailey [91, p.10], (28) follows from (27) by applying the operator r−
1
2
(α+β−1) d

dr ◦ r
1
2
(α+β+1)

to both sides of (27). In view of (24), formula (28) is the Poisson kernel for Jacobi polynomials.
The right-hand side of (28) makes clear that this kernel is positive. See also the discussion in
Askey [46, following (2.32)].
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Quadratic transformations

C
(α+ 1

2
)

2n (x)

C
(α+ 1

2
)

2n (1)
=
P

(α,α)
2n (x)

P
(α,α)
2n (1)

=
P

(α,− 1
2
)

n (2x2 − 1)

P
(α,− 1

2
)

n (1)
, (29)

C
(α+ 1

2
)

2n+1 (x)

C
(α+ 1

2
)

2n+1 (1)
=
P

(α,α)
2n+1 (x)

P
(α,α)
2n+1 (1)

=
xP

(α, 1
2
)

n (2x2 − 1)

P
(α, 1

2
)

n (1)
. (30)

See p.221, Remarks, last two formulas together with (26) and (41). Or see [DLMF, (18.7.13),
(18.7.14)].

Differentiation formulas Each differentiation formula is given in two equivalent forms.

d

dx

(
(1− x)αP (α,β)

n (x)
)

= −(n+ α) (1− x)α−1P (α−1,β+1)
n (x),(

(1− x)
d

dx
− α

)
P (α,β)
n (x) = −(n+ α)P (α−1,β+1)

n (x).
(31)

d

dx

(
(1 + x)βP (α,β)

n (x)
)

= (n+ β) (1 + x)β−1P (α+1,β−1)
n (x),(

(1 + x)
d

dx
+ β

)
P (α,β)
n (x) = (n+ β)P (α+1,β−1)

n (x).
(32)

Formulas (31) and (32) follow from [DLMF, (15.5.4), (15.5.6)] together with (9.8.1). They also
follow from each other by (25).

Generalized Gegenbauer polynomials See [146, p.156]. These are defined by

S
(α,β)
2m (x) := const. P (α,β)

m (2x2 − 1), S
(α,β)
2m+1(x) := const. x P (α,β+1)

m (2x2 − 1). (33)

Then for α, β > −1 we have the orthogonality relation∫ 1

−1
S(α,β)
m (x)S(α,β)

n (x) |x|2β+1(1− x2)α dx = 0 (m 6= n). (34)

If we define the Dunkl operator Tµ by

(Tµf)(x) := f ′(x) + µ
f(x)− f(−x)

x
(35)

and if we choose the constants in (33) as

S
(α,β)
2m (x) =

(α+ β + 1)m
(β + 1)m

P (α,β)
m (2x2 − 1), S

(α,β)
2m+1(x) =

(α+ β + 1)m+1

(β + 1)m+1
xP (α,β+1)

m (2x2 − 1)

(36)
then (see [K2, (1.6)])

Tβ+ 1
2
S(α,β)
n = 2(α+ β + 1)S

(α+1,β)
n−1 . (37)
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Formula (37) with (36) substituted gives rise to two differentiation formulas involving Jacobi
polynomials which are equivalent to (9.8.7) and (32).

Composition of (37) with itself gives

T 2
β+ 1

2

S(α,β)
n = 4(α+ β + 1)(α+ β + 2)S

(α+2,β)
n−2 ,

which is equivalent to the composition of (9.8.7) and (32):(
d2

dx2
+

2β + 1

x

d

dx

)
P (α,β)
n (2x2 − 1) = 4(n+ α+ β + 1)(n+ β)P

(α+2,β)
n−1 (2x2 − 1). (38)

Formula (38) was also given in [322, (2.4)].

9.8.1 Gegenbauer / Ultraspherical

Notation Here the Gegenbauer polynomial is denoted by Cλn instead of C
(λ)
n .

Orthogonality relation Write the right-hand side of (9.8.20) as hn δm,n. Then

hn
h0

=
λ

λ+ n

(2λ)n
n!

, h0 =
π

1
2 Γ(λ+ 1

2)

Γ(λ+ 1)
,

hn
h0 (Cλn(1))2

=
λ

λ+ n

n!

(2λ)n
. (39)

Hypergeometric representation Beside (9.8.19) we have also

Cλn(x) =

bn/2c∑
`=0

(−1)`(λ)n−`
`! (n− 2`)!

(2x)n−2` = (2x)n
(λ)n
n!

2F1

(
−1

2n,−
1
2n+ 1

2

1− λ− n
;

1

x2

)
. (40)

See [DLMF, (18.5.10)].

Special value

Cλn(1) =
(2λ)n
n!

. (41)

Use (9.8.19) or see [DLMF, Table 18.6.1].

Expression in terms of Jacobi

Cλn(x)

Cλn(1)
=
P

(λ− 1
2
,λ− 1

2
)

n (x)

P
(λ− 1

2
,λ− 1

2
)

n (1)
, Cλn(x) =

(2λ)n

(λ+ 1
2)n

P
(λ− 1

2
,λ− 1

2
)

n (x). (42)

Re: (9.8.21) By iteration of recurrence relation (9.8.21):

x2Cλn(x) =
(n+ 1)(n+ 2)

4(n+ λ)(n+ λ+ 1)
Cλn+2(x) +

n2 + 2nλ+ λ− 1

2(n+ λ− 1)(n+ λ+ 1)
Cλn(x)

+
(n+ 2λ− 1)(n+ 2λ− 2)

4(n+ λ)(n+ λ− 1)
Cλn−2(x). (43)

9



Bilateral generating functions

∞∑
n=0

n!

(2λ)n
rnCλn(x)Cλn(y) =

1

(1− 2rxy + r2)λ
2F1

(
1
2λ,

1
2(λ+ 1)

λ+ 1
2

;
4r2(1− x2)(1− y2)

(1− 2rxy + r2)2

)
(r ∈ (−1, 1), x, y ∈ [−1, 1]). (44)

For the proof put β := α in (27), then use (5) and (42). The Poisson kernel for Gegenbauer
polynomials can be derived in a similar way from (28), or alternatively by applying the operator
r−λ+1 d

dr ◦ r
λ to both sides of (44):

∞∑
n=0

λ+ n

λ

n!

(2λ)n
rnCλn(x)Cλn(y) =

1− r2

(1− 2rxy + r2)λ+1

× 2F1

(
1
2(λ+ 1), 12(λ+ 2)

λ+ 1
2

;
4r2(1− x2)(1− y2)

(1− 2rxy + r2)2

)
(r ∈ (−1, 1), x, y ∈ [−1, 1]). (45)

Formula (45) was obtained by Gasper & Rahman [234, (4.4)] as a limit case of their formula for
the Poisson kernel for continuous q-ultraspherical polynomials.

Trigonometric expansions By [DLMF, (18.5.11), (15.8.1)]:

Cλn(cos θ) =
n∑
k−0

(λ)k(λ)n−k
k! (n− k)!

ei(n−2k)θ = einθ
(λ)n
n!

2F1

(
−n, λ

1− λ− n
; e−2iθ

)
(46)

=
(λ)n
2λn!

e−
1
2
iλπei(n+λ)θ (sin θ)−λ 2F1

(
λ, 1− λ

1− λ− n
;
ie−iθ

2 sin θ

)
(47)

=
(λ)n
n!

∞∑
k=0

(λ)k(1− λ)k
(1− λ− n)kk!

cos((n− k + λ)θ + 1
2(k − λ)π)

(2 sin θ)k+λ
. (48)

In (47) and (48) we require that 1
6π < θ < 5

6π. Then the convergence is absolute for λ > 1
2 and

conditional for 0 < λ ≤ 1
2 .

By [DLMF, (14.13.1), (14.3.21), (15.8.1)]:

Cλn(cos θ) =
2Γ(λ+ 1

2)

π
1
2 Γ(λ+ 1)

(2λ)n
(λ+ 1)n

(sin θ)1−2λ
∞∑
k=0

(1− λ)k(n+ 1)k
(n+ λ+ 1)kk!

sin
(
(2k + n+ 1)θ

)
(49)

=
2Γ(λ+ 1

2)

π
1
2 Γ(λ+ 1)

(2λ)n
(λ+ 1)n

(sin θ)1−2λ=
(
ei(n+1)θ

2F1

(
1− λ, n+ 1

n+ λ+ 1
; e2iθ

))
=

2λΓ(λ+ 1
2)

π
1
2 Γ(λ+ 1)

(2λ)n
(λ+ 1)n

(sin θ)−λ<
(
e−

1
2 iλπei(n+λ)θ 2F1

(
λ, 1− λ

1 + λ+ n
;

eiθ

2i sin θ

))
=

22λΓ(λ+ 1
2)

π
1
2 Γ(λ+ 1)

(2λ)n
(λ+ 1)n

∞∑
k=0

(λ)k(1− λ)k
(1 + λ+ n)kk!

cos((n+ k + λ)θ − 1
2(k + λ)π)

(2 sin θ)k+λ
. (50)

We require that 0 < θ < π in (49) and 1
6π < θ < 5

6π in (50) The convergence is absolute for
λ > 1

2 and conditional for 0 < λ ≤ 1
2 . For λ ∈ Z>0 the above series terminate after the term

with k = λ− 1. Formulas (49) and (50) are also given in [Sz, (4.9.22), (4.9.25)].
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Fourier transform

Γ(λ+ 1)

Γ(λ+ 1
2) Γ(12)

∫ 1

−1

Cλn(y)

Cλn(1)
(1− y2)λ−

1
2 eixy dy = in 2λ Γ(λ+ 1)x−λ Jλ+n(x). (51)

See [DLMF, (18.17.17) and (18.17.18)].

Laplace transforms

2

n! Γ(λ)

∫ ∞
0

Hn(tx) tn+2λ−1 e−t
2
dt = Cλn(x). (52)

See Nielsen [K7, p.48, (4) with p.47, (1) and p.28, (10)] (1918) or Feldheim [K3, (28)] (1942).

2

Γ(λ+ 1
2)

∫ 1

0

Cλn(t)

Cλn(1)
(1− t2)λ−

1
2 t−1 (x/t)n+2λ+1 e−x

2/t2 dt = 2−nHn(x) e−x
2

(λ > −1
2). (53)

Use Askey & Fitch [K1, (3.29)] for α = ±1
2 together with (25), (29), (30), (66) and (67).

Addition formula (see [AAR, (9.8.5′)])

R(α,α)
n

(
xy + (1− x2)

1
2 (1− y2)

1
2 t
)

=
n∑
k=0

(−1)k(−n)k (n+ 2α+ 1)k
22k((α+ 1)k)2

× (1− x2)k/2R(α+k,α+k)
n−k (x) (1− y2)k/2R(α+k,α+k)

n−k (y)
R

(α− 1
2
,α− 1

2
)

k (t)

h
(α− 1

2
,α− 1

2
)

k

, (54)

where

R(α,β)
n (x) := P (α,β)

n (x)/P (α,β)
n (1), h(α,β)n :=

∫ 1
−1(R

(α,β)
n (x))2 (1− x)α(1 + x)β dx∫ 1
−1(1− x)α(1 + x)β dx

.

9.10 Meixner

History In 1934 Meixner [406] (see (1.1) and case IV on pp. 10, 11 and 12) gave the orthog-
onality measure for the polynomials Pn given by the generating function

exu(t) f(t) =

∞∑
n=0

Pn(x)
tn

n!
,

where

eu(t) =

(
1− βt
1− αt

) 1
α−β

, f(t) =
(1− βt)

k2
β(α−β)

(1− αt)
k2

α(α−β)

(k2 < 0; α > β > 0 or α < β < 0).

Then Pn can be expressed as a Meixner polynomial:

Pn(x) = (−k2(αβ)−1)n β
nMn

(
− x+ k2α

−1

α− β
,−k2(αβ)−1, βα−1

)
.

In 1938 Gottlieb [K4, §2] introduces polynonials ln “of Laguerre type” which turn out to be
special Meixner polynomials: ln(x) = e−nλMn(x; 1, e−λ).
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Uniqueness of orthogonality measure The coefficient of pn−1(x) in (9.10.4) behaves as
O(n2) as n→∞. Hence (2) holds, by which the orthogonality measure is unique.

9.11 Krawtchouk

Special values By (9.11.1) and the binomial formula:

Kn(0; p,N) = 1, Kn(N ; p,N) = (−1)np−n(1− p)n. (55)

Symmetry By the orthogonality relation (9.11.2):

Kn(N − x; p,N)

Kn(N ; p,N)
= Kn(x; 1− p,N), (56)

in particular:
Kn(N − x; 1

2 , N) = (−1)nKn(x; 1
2 , N). (57)

Hence
K2m+1(N ; 1

2 , 2N) = 0. (58)

From (9.11.11):

K2m(N ; 1
2 , 2N) =

(12)m

(−N + 1
2)m

. (59)

Quadratic transformations

K2m(x+N ; 1
2 , 2N) =

(12)m

(−N + 1
2)m

Rm(x2;−1
2 ,−

1
2 , N), (60)

K2m+1(x+N ; 1
2 , 2N) = −

(32)m

N (−N + 1
2)m

xRm(x2 − 1; 1
2 ,

1
2 , N − 1), (61)

K2m(x+N + 1; 1
2 , 2N + 1) =

(12)m

(−N − 1
2)m

Rm(x(x+ 1);−1
2 ,

1
2 , N), (62)

K2m+1(x+N + 1; 1
2 , 2N + 1) =

(32)m

(−N − 1
2)m+1

(x+ 1
2)Rm(x(x+ 1); 1

2 ,−
1
2 , N), (63)

where Rm is a dual Hahn polynomial (9.6.1). For the proofs use (9.6.2), (9.11.2), (9.6.4) and
(9.11.4).

Generating functions

N∑
x=0

(
N

x

)
Km(x; p,N)Kn(x; q,N)zx

=

(
p− z + pz

p

)m(q − z + qz

q

)n
(1 + z)N−m−nKm

(
n;− (p− z + pz)(q − z + qz)

z
,N

)
.

(64)

This follows immediately from Rosengren [K8, (3.5)], which goes back to Meixner [K6].
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9.12 Laguerre

Notation Here the Laguerre polynomial is denoted by Lαn instead of L
(α)
n .

Uniqueness of orthogonality measure The coefficient of pn−1(x) in (9.12.4) behaves as
O(n2) as n→∞. Hence (2) holds, by which the orthogonality measure is unique.

Special value

Lαn(0) =
(α+ 1)n

n!
. (65)

Use (9.12.1) or see [DLMF, (18.6.1)].

Quadratic transformations

H2n(x) = (−1)n 22n n!L−1/2n (x2), (66)

H2n+1(x) = (−1)n 22n+1 n!xL1/2
n (x2). (67)

See p.244, Remarks, last two formulas. Or see [DLMF, (18.7.19), (18.7.20)].

Fourier transform

1

Γ(α+ 1)

∫ ∞
0

Lαn(y)

Lαn(0)
e−y yα eixy dy = in

yn

(iy + 1)n+α+1
, (68)

see [DLMF, (18.17.34)].

Differentiation formulas Each differentiation formula is given in two equivalent forms.

d

dx
(xαLαn(x)) = (n+ α)xα−1Lα−1n (x),

(
x
d

dx
+ α

)
Lαn(x) = (n+ α)Lα−1n (x). (69)

d

dx

(
e−xLαn(x)

)
= −e−xLα+1

n (x),

(
d

dx
− 1

)
Lαn(x) = −Lα+1

n (x). (70)

Formulas (69) and (70) follow from [DLMF, (13.3.18), (13.3.20)] together with (9.12.1).

Generalized Hermite polynomials See [146, p.156]. These are defined by

Hµ
2m(x) := const. L

µ− 1
2

m (x2), Hµ
2m+1(x) := const. x L

µ+ 1
2

m (x2). (71)

Then for µ > −1
2 we have orthogonality relation∫ ∞

−∞
Hµ
m(x)Hµ

n (x) |x|2µe−x2 dx = 0 (m 6= n). (72)
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Let the Dunkl operator Tµ be defined by (35). If we choose the constants in (71) as

Hµ
2m(x) =

(−1)m(2m)!

(µ+ 1
2)m

L
µ− 1

2
m (x2), Hµ

2m+1(x) =
(−1)m(2m+ 1)!

(µ+ 1
2)m+1

xL
µ+ 1

2
m (x2) (73)

then (see [K2, (1.6)])
TµH

µ
n = 2nHµ

n−1. (74)

Formula (74) with (73) substituted gives rise to two differentiation formulas involving Laguerre
polynomials which are equivalent to (9.12.6) and (69).

Composition of (74) with itself gives

T 2
µH

µ
n = 4n(n− 1)Hµ

n−2,

which is equivalent to the composition of (9.12.6) and (69):(
d2

dx2
+

2α+ 1

x

d

dx

)
Lαn(x2) = −4(n+ α)Lαn−1(x

2). (75)

9.14 Charlier

Uniqueness of orthogonality measure The coefficient of pn−1(x) in (9.14.4) behaves as
O(n) as n→∞. Hence (2) holds, by which the orthogonality measure is unique.

9.15 Hermite

Uniqueness of orthogonality measure The coefficient of pn−1(x) in (9.15.4) behaves as
O(n) as n→∞. Hence (2) holds, by which the orthogonality measure is unique.

Fourier transforms

1√
2π

∫ ∞
−∞

Hn(y) e−
1
2
y2 eixy dy = inHn(x) e−

1
2
x2 , (76)

see [AAR, (6.1.15) and Exercise 6.11].

1√
π

∫ ∞
−∞

Hn(y) e−y
2
eixy dy = in xn e−

1
4
x2 , (77)

see [DLMF, (18.17.35)].

in

2
√
π

∫ ∞
−∞

yn e−
1
4
y2 e−ixy dy = Hn(x) e−x

2
, (78)

see [AAR, (6.1.4)].

14.1 Askey-Wilson

Symmetry The Askey-Wilson polynomials pn(x; a, b, c, d | q) are symmetric in a, b, c, d.

This follows from the orthogonality relation (14.1.2) together with the value of its coefficient of
xn given in (14.1.5b). Alternatively, combine (14.1.1) with [GR, (III.15)].
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Special value
pn
(
1
2(a+ a−1); a, b, c, d | q

)
= a−n (ab, ac, ad; q)n , (79)

and similarly for arguments 1
2(b+ b−1), 1

2(c+ c−1) and 1
2(d+d−1) by symmetry of pn in a, b, c, d.

Trivial symmetry

pn(−x; a, b, c, d | q) = (−1)npn(x;−a,−b,−c,−d | q). (80)

Both (79) and (80) are obtained from (14.1.1).

Re: (14.1.5) Let

pn(x) :=
pn(x; a, b, c, d | q)
2n(abcdqn−1; q)n

= xn + k̃nx
n−1 + · · · . (81)

Then

k̃n = −(1− qn)(a+ b+ c+ d− (abc+ abd+ acd+ bcd)qn−1)

2(1− q)(1− abcdq2n−2)
. (82)

This follows because k̃n− k̃n+1 equals the coefficient 1
2

(
a+a−1− (An+Cn)

)
of pn(x) in (14.1.5).

References See also Koornwinder [K5].

14.2 q-Racah

Symmetry

Rn(x;α, β, q−N−1, δ | q) =
(βq, αδ−1q; q)n
(αq, βδq; q)n

δnRn(δ−1x;β, α, q−N−1, δ−1 | q). (83)

This follows from (14.2.1) combined with [GR, (III.15)].

In particular,

Rn(x;α, β, q−N−1,−1 | q) =
(βq,−αq; q)n
(αq,−βq; q)n

(−1)nRn(−x;β, α, q−N−1,−1 | q), (84)

and
Rn(x;α, α, q−N−1,−1 | q) = (−1)nRn(−x;α, α, q−N−1,−1 | q), (85)

Trivial symmetry Clearly from (14.2.1):

Rn(y;α, β, γ, δ | q) = Rn(y;βδ, αδ−1, γ, δ | q). (86)

14.7 Dual q-Hahn

Orthogonality relation More generally we have (14.7.2) with positive weights in any of the
following cases: (i) 0 < γq < 1, 0 < δq < 1; (ii) 0 < γq < 1, δ < 0; (iii) γ < 0, δ > q−N ; (iv)
γ > q−N , δ > q−N ; (v) 0 < qγ < 1, δ = 0. This also follows by inspection of the positivity of
the coefficient of pn−1(x) in (14.7.4). Case (v) yields Affine q-Krawtchouk in view of (14.7.13).
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Symmetry

Rn(x; γ, δ,N | q) =
(δ−1q−N ; q)n

(γq; q)n

(
γδqN+1

)n
Rn(γ−1δ−1q−1−Nx; δ−1q−N−1, γ−1q−N−1, N | q).

(87)
This follows from (14.7.1) combined with [GR, (III.11)].

14.8 Al-Salam-Chihara

q−1-Al-Salam-Chihara

Re: (14.8.1) For x ∈ Z≥0:

Qn(12(aq−x + a−1qx);a, b | q−1) = (−1)nbnq−
1
2
n(n−1) ((ab)−1; q)

n

× 3φ1

(
q−n, q−x, a−2qx

(ab)−1
; q, qnab−1

)
(88)

= (−ab−1)x q−
1
2
x(x+1) (qba−1; q)x

(a−1b−1; q)x
2φ1

(
q−x, a−2qx

qba−1
; q, qn+1

)
(89)

= (−ab−1)x q−
1
2
x(x+1) (qba−1; q)x

(a−1b−1; q)x
px(qn; ba−1, (qab)−1; q). (90)

Formula (88) follows from the first identity in (14.8.1). Next (89) follows from [GR, (III.8)].
Finally (90) gives the little q-Jacobi polynomials (14.12.1). See also [79, §3].

Orthogonality

∞∑
x=0

(1− q2xa−2)(a−2, (ab)−1; q)x
(1− a−2)(q, bqa−1; q)x

(ba−1)xqx
2
(QnQm)(12(aq−x + a−1qx); a, b; q)

=
(qa−2; q)∞
(ba−1q; q)∞

(q, (ab)−1; q)n (ab)nq−n
2
δn,m (ab > 1, qb < a). (91)

This follows from (29) together with (14.12.2) and the completeness of the orthogonal systerm
of the little q-Jacobi polynomials, See also [79, §3]. An alternative proof is given in [64]. There
combine (3.82) with (3.81), (3.67), (3.40).

Normalized recurrence relation

xpn(x) = pn+1(x) + 1
2(a+ b)q−npn(x) + 1

4(q−n − 1)(abq−n+1 − 1)pn−1(x), (92)

where

Qn(x; a, b | q−1) = 2npn(x).
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14.10.1 Continuous q-ultraspherical / Rogers

Re: (14.10.17)

Cn(cos θ;β | q) =
(β2; q)n
(q; q)n

β−
1
2
n

4φ3

(
q−

1
2
n, βq

1
2
n, β

1
2 eiθ, β

1
2 e−iθ

−β, β
1
2 q

1
4 ,−β

1
2 q

1
4

; q
1
2 , q

1
2

)
, (93)

see [GR, (7.4.13), (7.4.14)].

Re: (14.10.21) (another q-difference equation). Let Cn[eiθ;β | q] := Cn(cos θ;β | q).

1− βz2

1− z2
Cn[q

1
2 z;β | q] +

1− βz−2

1− z−2
Cn[q−

1
2 z;β | q] = (q−

1
2
n + q

1
2
nβ)Cn[z;β | q], (94)

see [351, (6.10)].

Re: (14.10.23) This can also be written as

Cn[q
1
2 z;β | q]− Cn[q−

1
2 z;β | q] = q−

1
2
n(β − 1)(z − z−1)Cn−1[z; qβ | q]. (95)

Two other shift relations follow from the previous two equations:

(β + 1)Cn[q
1
2 z;β | q] = (q−

1
2
n + q

1
2
nβ)Cn[z;β | q] + q−

1
2
n(β − 1)(z − βz−1)Cn−1[z; qβ | q],

(96)

(β + 1)Cn[q−
1
2 z;β | q] = (q−

1
2
n + q

1
2
nβ)Cn[z;β | q] + q−

1
2
n(β − 1)(z−1 − βz)Cn−1[z; qβ | q].

(97)

14.17 Dual q-Krawtchouk

Symmetry
Kn(x; c,N | q) = cnKn(c−1x; c−1, N | q). (98)

This follows from (14.17.1) combined with [GR, (III.11)].

In particular,
Kn(x;−1, N | q) = (−1)nKn(−x;−1, N | q). (99)

14.20 Little q-Laguerre / Wall

Re: (14.20.11) The right-hand side of this generating function converges for |xt| < 1. We
can rewrite the left-hand side by use of the transformation

2φ1

(
0, 0

c
; q, z

)
=

1

(z; q)∞
0φ1

(
−
c

; q, cz

)
.

Then we obtain:

(t; q)∞ 2φ1

(
0, 0

aq
; q, xt

)
=

∞∑
n=0

(−1)n q
1
2
n(n−1)

(q; q)n
pn(x; a; q) tn (|xt| < 1). (100)
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Expansion of xn

Divide both sides of (100) by (t; q)∞. Then coefficients of the same power of t on both sides
must be equal. We obtain:

xn = (a; q)n

n∑
k=0

(q−n; q)k
(q; q)k

qnk pk(x; a; q). (101)

Quadratic transformations

Little q-Laguerre polynomials pn(x; a; q) with a = q±
1
2 are related to discrete q-Hermite I poly-

nomials hn(x; q):

pn(x2; q−1; q2) =
(−1)nq−n(n−1)

(q; q2)n
h2n(x; q), (102)

xpn(x2; q; q2) =
(−1)nq−n(n−1)

(q3; q2)n
h2n+1(x; q). (103)

14.21 q-Laguerre

Expansion of xn

xn = q−
1
2
n(n+2α+1) (qα+1; q)n

n∑
k=0

(q−n; q)k
qα+1; q)k

qk Lαk (x; q). (104)

This follows from (101) by the equality given in the Remark at the end of §14.20. Alternatively,
it can be derived in the same way as (101) from the generating function (14.21.14).

Quadratic transformations

q-Laguerre polynomials Lαn(x; q) with α = ±1
2 are related to discrete q-Hermite II polynomials

h̃n(x; q):

L−1/2n (x2; q2) =
(−1)nq2n

2−n

(q2; q2)n
h̃2n(x; q), (105)

xL1/2
n (x2; q2) =

(−1)nq2n
2+n

(q2; q2)n
h̃2n+1(x; q). (106)

These follows from (102) and (103), respectively, by applying the equalities given in the Remarks
at the end of §14.20 and §14.28.

14.27 Stieltjes-Wigert

An alternative weight function

The formula on top of p.547 should be corrected as

w(x) =
γ√
π
x−

1
2 exp(−γ2 ln2 x), x > 0, with γ2 = − 1

2 ln q
. (107)
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For w the weight function given in [Sz, §2.7]) the right-hand side of (107) equals const. w(q−
1
2x).

See also [DLMF, §18.27(vi)].
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