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1. Introduction

Identities for special functions often involve several variables, even if the special function itself
depends on only one variable. In general these variables are real or complex, so they commute with
each other. The theory of quantum groups has been quite successful in producing identities for
q-special funcions, in particular addition formulas, see e.g. the survey in Koelink [21, Section 1] and
further references given there. Although quantum groups themselves abound of non-commuting
variables satisfying certain relations, one usually does not find back a similar type of variables in
the resulting q-special function identities. I want to advertize here that special function identities
in non-commuting variables should be studied more extensively and systematically. They often
provide more elegant formulas than the corresponding identities in commuting variables, and they
may be closer to a quantum group theoretical origin and therefore have more canonical properties.
Another feature (which may be evaluated in a positive or negative sense) is that such identities are
often more algebraic and formal in spirit and further away from Weierstrass type analysis than the
identities in commuting variables. The most interesting and challenging cases with non-commuting
variables occur when formal infinite series and convergent infinite series mix with each other. One
has to be extremely careful there in order to avoid paradoxes, see Section 9.

The present paper surveys (and extends a little) special function theory involving q-commuting
variables x and y (i.e., satisfying the relation xy = qyx with q complex, usually taken between 0
and 1).

The contents are as follows. In Section 2 we discuss Schützenberger’s q-binomial formula.
Sections 3 deals with various functional equations for q-exponentials, and Section 4 gives some
extensions of these results to q-Heisenberg cases. Section 5 describes possible equivalence with
formulas involving commuting variables, via the operational interpretation. In Section 6 we discuss
the q-logarithm. The next four sections are much inspired by the paper by Kempf & Majid [19]. We
discuss translation invariance under a q-commuting translation variable for Jackson integrals over
a finite interval (Section 7) and over the interval (−∞,∞) (Section 9). In Section 8 we introduce
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a q-Fourier transform pair in connection with discrete q-Hermite polynomials. While this is in
commuting variables, it is related to two types of q-Fourier transforms involving non-commuting
variables which have been studied, respectively, by Kempf & Majid [19] and Finkelstein & Marcus
[12]. A deeper understanding of many of these results can be obtained by means of Majid’s [27]
braided quantum groups, in particular the braided line. This is the topic of Section 10. Finally,
two further directions are very briefly indicated in Section 11.

Conventions Z+ will denote the set of nonnegative integers. ¿From Section 3 on, whenever we
work with q, it is supposed that 0 < q < 1, unless said otherwise. The notation for q-hypergeometric
series follows the book by Gasper & Rahman [6].

2. The q-binomial formula

Newton’s binomial formula says:

(x+ y)n =

n∑

k=0

(
n

k

)
yn−kxk, n ∈ Z+. (2.1)

Here it is implicitly understood that x and y commute: xy = yx. A q-analogue of (2.1) for
q-commuting variables x, y, i.e., satisfying the relation

xy = qyx (2.2)

for some q ∈ C, first appeared in literature in Schützenberger [32], see also Cigler [7, (7)]:

Proposition 2.1 (q-binomial formula) Let q ∈ C. Let Cq[x, y] be the complex associative
algebra with 1 generated by x and y and with relation (2.2). Then the following identity is valid
in the algebra Cq[x, y]:

(x+ y)n =

n∑

k=0

[n
k

]

q
yn−kxk, n ∈ Z+. (2.3)

Here we used the q-binomial coefficient

[n
k

]

q
:=

(q; q)n

(q; q)k (q; q)n−k
=

(1 − qn)(1 − qn−1) . . . (1 − qn−k+1)

(1 − q)(1 − q2) . . . (1 − qk)
, (2.4)

while the q-shifted factorial is given by

(a; q)k := (1 − a)(1 − qa) . . . (1 − qk−1a), a ∈ C, k ∈ Z+. (2.5)

The recurrence relations below show that the q-binomial coefficient (2.4) is a polynomial in q and
therefore remains meaningful for q being a root of unity.

We will give a constructive proof of Proposition 2.1 which goes essentially back to Polya &
Alexanderson [29] and which was later written down by Askey [2]. It is straightforward that the
monomials ylxk (k, l ∈ Z+) form a basis for Cq[x, y] considered as a linear space and that (x+ y)n

will have a unique expansion of the form

(x+ y)n =

n∑

k=0

cn,k y
n−kxk (2.6)
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with the coefficients cn,k also depending on q. It follows immediately from (2.6) that cn,0 = 1 = cn,n.
Also, expansion of (x + y)n = (x + y)n−1(x + y) and (x + y)n = (x + y)(x + y)n−1, respectively,
yields for n > k > 0:

cn,k = qkcn−1,k + cn−1,k−1, cn,k = cn−1,k + qn−kcn−1,k−1. (2.7)

Elimination of cn−1,k from these two recurrence equations leaves us with the two-term recurrence

cn,k =
1 − qn

1 − qk
cn−1,k−1.

Iteration of this last recurrence yields the right-hand side of (2.4). This proves (2.3).
The advantage of this proof is that it is constructive. If one just wants to prove by induction

with respect to n that (2.6) holds with cn,k being given by (2.4) then it is sufficient to have only
one of the recurrences in (2.7). This is the way in which one usually works in case q = 1, where
the q-binomial formula (2.3) by continuity becomes the binomial formula (2.1). In that case the
two recurrences in (2.7) coincide and it is not possible to get a two-term recurrence formula by
elimination.

A second observation, due to Andrews, and written down in Askey [3], is that the q-binomial
formula (2.3) is equivalent to an identity in commuting variables. Note that, if the generators x, y
of Cq[x, y] satisfy the q-commutation relations (2.2), then −yx, y also satisfy these relations:

(−yx)y = qy(−yx).

Hence, we get from (2.3) that

(−yx+ y)n =
n∑

k=0

[n
k

]

q
yn−k(−yx)k. (2.8)

The left-hand side of (2.8) equals

y(1 − x)y(1 − x) . . . y(1 − x) (2n factors)

= yn(1 − qn−1x) . . . (1 − qx)(1 − x) = yn(x; q)n.

(Note that the definition (2.5) of q-shifted factorial remains valid for a in any complex associative
algebra with 1.) As for the right-hand side of (2.8) note that

yn−k(−yx)k = (−1)kq
1

2
k(k−1)ynxk

and [n
k

]

q
= (−1)k q−

1

2
k(k−1) qnk (q−n; q)k

(q; q)k
. (2.9)

Hence the identity (2.8) can be equivalently written as

yn(x; q)n = yn
n∑

k=0

(q−n; q)k

(q; q)k
(qnx)k.

Because of the earlier observation about a basis of monomials for Cq[x, y] we conclude that

(x; q)n =

n∑

k=0

(q−n; q)k

(q; q)k
(qnx)k.
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This is still an identity in the algebra Cq[x, y]. However, we can map it to an identity in C by using
the algebra homomorphism π:Cq[x, y] → C such that, for some z ∈ C, π(x) = qnz and π(y) = 0.
This yields the formula giving the evaluation of a terminating q-binomial series:

(q−nz; q)n =

n∑

k=0

(q−n; q)k

(q; q)k
zk, n ∈ Z+. (2.10)

This formula is well-known, see [16, (II.4)]. It was earlier observed by Cigler [7, (8)] that formula
(2.10) follows from (2.3). He used an operational interpretation of (2.3). We will discuss such
interpretations in a later section. Then we will also see that (2.10) is in fact equivalent to (2.3).

3. Identities for q-exponentials with q-commuting variables

The two q-exponentials are defined by

eq(z) :=

∞∑

n=0

zn

(q; q)n
=

1

(z; q)∞
, (3.1)

Eq(z) :=
∞∑

n=0

q
1

2
n(n−1)zn

(q; q)n
= (−z; q)∞ . (3.2)

Here we assume 0 < q < 1 and (a; q)∞ is defined as the (convergent) infinite product:

(a; q)∞ :=

∞∏

j=0

(1 − qja).

For convergence of the infinite series in (3.1), (3.2) with z ∈ C we need |z| < 1 in (3.1). However,
because of its product representation, eq has an analytic continuation to C\{q−k | k ∈ Z}. See [16,
Section 1.3] for the proofs of the second equalities in (3.1) and (3.2). The two q-exponential series
can also be considered as formal power series in the formal variable z. Of course, no convergence
condition is needed in that case. ¿From (3.1), (3.2) we have

eq(z)Eq(−z) = 1 (3.3)

for |z| < 1. ¿From the second equalities in (3.1) and (3.2) we see that

eq(qz) = (1 − z) eq(z), Eq(z) = (1 + z)Eq(qz). (3.4)

In general, algebraic identities for convergent power series remain valid for the corresponding formal
power series. In particular, this applies to (3.3) and (3.4).

Fix q ∈ (0, 1) and let Cq[[x, y]] be the complex associative algebra with 1 of formal power series

∞∑

k,l=0

ck,l y
lxk

with arbitrary complex coefficients ck,l and where x, y satisfy relation (2.2), i.e. xy = qyx. The
following Proposition generalizing the classical functional equation exey = ex+y for commuting
variables x, y, was given first by Schützenberger [32], see also Cigler [7, (10)].
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Proposition 3.1 In the algebra Cq[[x, y]] we have the identities

eq(x+ y) = eq(y)eq(x), (3.5)

Eq(x+ y) = Eq(x)Eq(y). (3.6)

Proof By means of the q-binomial formula (2.3) we can write the left-hand side of (3.5) as an
element of Cq[[x, y]], and next rewrite it as the right-hand side:

eq(x+ y) =

∞∑

n=0

n∑

k=0

1

(q; q)n

[n
k

]

q
yn−kxk =

∞∑

n=0

n∑

k=0

1

(q; q)n−k(q; q)k
yn−kxk

=

∞∑

k,l=0

1

(q; q)l(q; q)k
ylxk = eq(y)eq(x).

This settles (3.5). For the proof of (3.6) note that, in view of (3.3), Eq(x + y) is a left and right
inverse to eq(−x− y), and Eq(x)Eq(y) is a left and right inverse to eq(−y)eq(−x). Now use (3.5).

The reader is warned that the apparent symmetry in x and y in the left hand side of (3.5) does
not allow to conclude that eq(x + y) = eq(x)eq(y), since the relation xy = qyx is not symmetric
in x and y. The next Proposition gives a formula for eq(x)eq(y) in the algebra Cq[[x, y]], i.e. for
the right-hand side of (3.5) with the order of the two factors interchanged. It is a special case of a
more general result given first in operational form by Rogers [30], which we will discuss in the next
section. See also Gelfand & Fairlie [17, (46)], Floreanini & Vinet [13, formula (23d)], Faddeev &
Volkov [11, p.314, formula (2)], Faddeev & Kashaev [10, Section 2], A. N. Kirillov [20, Section 2.5,
Lemma 9], and McDermott & Solomon [28, (10)].

Proposition 3.2 In the algebra Cq[[x, y]] we have the identities

eq(x) eq(y) = eq(y − yx) eq(x) (3.7)

= eq(x+ y − yx) (3.8)

= eq(y) eq(−yx) eq(x) (3.9)

= eq(y) eq(x− yx), (3.10)

Eq(y)Eq(x) = Eq(x+ y + yx), (3.11)

= Eq(x)Eq(yx)Eq(y). (3.12)

Proof Because eq(x) is invertible as a formal power series (cf. (3.3)), formula (3.7) can equivalently
be stated as

eq(x) eq(y) eq(x)
−1 = eq(y − yx). (3.13)

For any two formal power series f(z) and g(z), with f(z) being invertible and g(z) =
∑∞

k=0 ckz
k,

we have

f(x)g(y)f(x)−1 =
∞∑

k=0

ck f(x) yk f(x)−1 =
∞∑

k=0

ck
(
f(x)yf(x)−1

)k
= g
(
f(x) y f(x)−1

)

as identities in Cq[[x, y]]. In particular,

eq(x) eq(y) eq(x)
−1 = eq

(
eq(x) y eq(x)

−1
)
. (3.14)
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Now, since xy = qyx and by (3.4) we have

eq(x) y eq(x)
−1 = y eq(qx) eq(x)

−1 = y (1 − x) eq(x) eq(x)
−1 = y (1 − x). (3.15)

Together with (3.14) this settles (3.13) and hence (3.7).

Next it follows from Proposition 3.1 that the right-hand side of (3.7) equals (3.8), since x(y −
yx) = q(y − yx)x. The equalities (3.9) and (3.10) also follow by application of Proposition 3.1.
Finally, (3.11) and (3.12) follow from (3.8) and (3.9) in a similar way as we obtained (3.6).

Note that the equalities (3.7)–(3.11) reduce to the classical identities exey = eyex = ex+y if we
replace x, y by (1 − q)x, (1 − q)y and let q ↑ 1 on using

lim
q↑1

eq((1 − q)z) = ez = lim
q↑1

Eq((1 − q)z), (3.16)

cf. [16, (1.3.17)].

As a corollary to both Proposition 3.1 and Proposition 3.2 we have a functional equation for
the q-Gaussians

gq(x) := eq2(−x2), Gq(x) := Eq2(−x2) (3.17)

in q-commuting variables. First note that that, for z ∈ C with |z| < 1, we have

eq2(−z2) =
1

(−z2; q2)∞
=

1

(iz; q)∞(−iz; q)∞
= eq(iz) eq(−iz).

Thus the equality

eq2(−z2) = eq(iz) eq(−iz) (3.18)

is also valid for arbitrary real z or as an identity for formal power series.

Corollary 3.3 In the algebra Cq[[x, y]] we have the identities

eq2(−(x+ y)2) = eq2(−y2) eq(−yx) eq2(−x2), (3.19)

Eq2(−(x+ y)2) = Eq2(−x2)Eq(−yx)Eq2(−y2). (3.20)

Proof We apply first (3.18), next Proposition 3.1 (twice), next Proposition 3.2 and finally (3.18)
again (twice):

eq2(−(x+ y)2) = eq(i(x+ y)) eq(−i(x+ y)) = eq(iy) eq(ix) eq(−iy) eq(−ix)

= eq(iy) eq(−iy) eq(−yx) eq(ix) eq(−ix) = eq2(−y2) eq(−yx) eq2(−x2).

This yields (3.19). Then formula (3.20) follows by taking the inverse on both sides and replacing
x, y by ix, iy, respectively.
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Let us next discuss generalizations of the previous results in this section for the case of non-
terminating q-binomial series

1φ0(a; ; q, z) :=
∞∑

k=0

(a; q)k

(q; q)k
zk =

(az; q)∞
(z; q)∞

, |z| < 1, a ∈ C, (3.21)

see [16, (II.3)]. Formula (3.21) can be rewritten as

1φ0(a; ; q, z) = Eq(−az) eq(z), (3.22)

and this remains valid as an identity for formal power series. The termwise limit for q ↑ 1 of

1φ0(q
a; ; q, z) is

1F0(a; ; z) :=

∞∑

k=0

(a)k

k!
zk = (1 − z)−a.

The functional equation (1 − x)−a(1 − y)−a = (1 − x− y + xy)−a in commuting variables x, y can
equivalently be written as

1F0(a; ;x) 1F0(a; ; y) = 1F0(a; ;x + y − yx). (3.23)

We now give two q-analogues of (3.23), valid in the algebra Cq[[x, y]].

Proposition 3.4 In the algebra Cq[[x, y]] (so xy = qyx) we have for a ∈ C the identities

1φ0(a; ; q, x) 1φ0(a; ; q, y) = 1φ0(a; ; q, x + y − yx), (3.24)

1φ0(a; ; q, y) 1φ0(a; ; q, x) = 1φ0(a; ; q, x + y − ayx). (3.25)

Proof In view of (3.22) the identities (3.24), (3.25) can be equivalently written as

eq(x)Eq(−ax)Eq(−ay) eq(y) = Eq(−a(x+ y − yx)) eq(x+ y − yx),

Eq(−ay) eq(y) eq(x)Eq(−ax) = eq(x+ y − ayx)Eq(−a(x+ y − ayx)).

In view of (3.6), (3.8), (3.5) and (3.11) these identities are in their turn equivalent to

eq(x)Eq(−a(x+ y)) eq(y) = Eq(−a(x+ y − yx)) eq(x) eq(y),

Eq(−ay) eq(x+ y)Eq(−ax) = eq(x+ y − ayx)Eq(−ay)Eq(−ax).

Once more, these identities can be rewritten into equivalent forms:

Eq(−a(x+ y)) = (eq(x))
−1 Eq(−a(x+ y − yx)) eq(x),

eq(x+ y) = eq(ay) eq(x+ y − ayx) (eq(ay))
−1.

By a similar argument as in the proof of Proposition 3.2 these two identities will follow if we can
show that

x+ y = (eq(x))
−1 (x+ y − yx) eq(x), (3.26)

x+ y = eq(ay) (x + y − ayx) (eq(ay))
−1. (3.27)

As for (3.26), its right-hand side can be rewritten as

x+ (eq(x))
−1 y(1 − x) eq(x) = x+ eq(x)

−1 y eq(qx) = x+ eq(x)
−1 eq(x) y = x+ y,

where we used (3.4). Formula (3.27) can be proved by a similar argument.
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Formula (3.25) was given by Faddeev & Volkov [11, p.315, multiplication rule for s(λ,w)], see
also Kirillov [20, Section 2.5, Exercise 3]. The terminating cases of (3.24), (3.25) (i.e. a = q−n, see
Kirillov [20, Section 2.5, Lemma 10]) are:

Corollary 3.5 In the algebra Cq[x, y] we have for n ∈ Z+ the identities

(x; q)n (y; q)n = (x+ y − qnyx; q)n, (y; q)n (x; q)n = (x+ y − yx; q)n. (3.28)

4. Identities for q-exponentials with q-Heisenberg relations

Proposition 3.2 can be generalized to an identity in the algebra CqHeis[[x, y, c]] of formal power
series

∞∑

k,l,m=0

ak,l,m cmylxk

with arbitrary complex coefficients ak,l,m and where x, y, c satisfy the q-Heisenberg relations

xy − qyx = (1 − q)c, xc = cx, yc = cy. (4.1)

Here q ∈ (0, 1) is fixed as before. Note that c is a central element of CqHeis[[x, y, c]]. Note that,
by adding the relation c = 0, we can map the algebra CqHeis[[x, y, c]] homomorphically onto the
algebra Cq[[x, y]]. It is also interesting to remark that the algebra CqHeis[[x, y, c]] is isomorphic to
the algebra of formal power series in x, y, z with relations

xy − yx = (1 − q)z, xz − qzx = 0, zy − qyz = 0. (4.2)

Just let z and c be related by
z = c− yx. (4.3)

We need the following identity in CqHeis[[x, y, c]], which is proved by induction with respect
to n:

xny = qnyxn + (1 − qn)cxn−1. (4.4)

The generalization below of Proposition 3.2 was first given by Rogers [30] (in operational
form, see Bowman [6] for a modern treatment). The same result was found later, independently,
by Gelfand & Fairlie [17, (46)], McDermott & Solomon [28, (10)] and Kashaev [18, (4.19)].

Proposition 4.1 In the algebra CqHeis[[x, y, c]] (i.e. with relations (4.1)) we have the identities

eq(x) eq(y) = eq(y − yx+ c) eq(x) (4.5)

= eq(y) eq(−yx+ c) eq(x) (4.6)

= eq(y) eq(x− yx+ c). (4.7)

Proof As in the previous proof we have equality (3.14). By (4.4) we see that

eq(x) y =

∞∑

n=0

xny

(q; q)n
=

∞∑

n=0

qnyxn

(q; q)n
+

∞∑

n=1

(1 − qn)cxn−1

(q; q)n
= y eq(qx) + c eq(x).

Hence, by (3.4),
eq(x) y = (y − yx+ c) eq(x). (4.8)

Now (4.5) follows from (3.14) and (4.8). The other two identities follow by application of Proposition
3.1.
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Remark 4.2 Because of (4.2) and (4.3), formula (4.6) can be rewritten as

eq(x) eq(y) = eq(y) eq

(
(1 − q)−1[x, y]

)
eq(x). (4.9)

After rescaling we have, still as an identity in CqHeis[[x, y, c]]:

eq

(
(1 − q)x

)
eq

(
(1 − q)y

)
= eq

(
(1 − q)y

)
eq

(
(1 − q)[x, y]

)
eq

(
(1 − q)x

)
. (4.10)

Replace x, y, c in (4.1) by X,Y, (1 − q)−1C, respectively, and let next q ↑ 1 in (4.1) and (4.10).
Then we obtain the identity

eXeY = eY eCeX or equivalently eXeY = eY +CeX (4.11)

in the algebra of formal power series in X,Y,C satisfying the Heisenberg relations

[X,Y ] = C, [X,C] = 0, [Y,C] = 0. (4.12)

Note that the second identity in (4.11) immediately follows from

eXY e−X = exp(adX)Y = Y + [X,Y ] = Y + C,

where (adU)V := [U, V ] = UV − V U . A slightly deeper identity in the Heisenberg algebra is
obtained by applying the Baker-Campbell-Hausdorff formula (see for instance Varadarajan [35,
Section 2.15]) to the case of relations (4.12). This yields

eY eX = eX+Y − 1

2
C or equivalently eX+Y = eY e

1

2
CeX . (4.13)

Formula (4.13) has often been observed in literature. A q-analogue of (4.13) in a q-Heisenberg
algebra (but not precisely the algebra CqHeis[[x, y, c]] with relations (4.1)) was found by Gelfand
& Fairlie [17, (49)]. In fact, the result follows easily from (3.5):

Proposition 4.3 In the algebra of formal power series in x,w, z under relations

xw − qwx = (1 − q)z2, xz = qzx, zw = qwz (4.14)

we have the identity

eq(x+ w) = eq(w) eq2 (z2) eq(x). (4.15)

Proof It follows from relations (4.14) that (x− z)(w + z) = q(w+ z)(x− z). Hence, by repeated
application of (3.5):

eq(x+ w) = eq(z + w) eq(x− z) = eq(w) eq(z) eq(−z) eq(x).

Now the result follows by application of (3.18).
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Remark 4.4 The algebra of formal power series in x,w, v under relations

xw − qwx = (1 − q)v, xv = q2vx, vw = q2wv (4.16)

is isomorphically embedded into the algebra of formal power series in x,w, z under relations (4.14)
by adding the relations v = z2 to relations (4.16). This is seen by observing that the algebra of
polynomials in x,w, v under relations (4.16) has a basis of elements wkxlvm (k, l,m ∈ Z+) and
that the algebra of polynomials in x,w, z under relations (4.14) has a basis of elements wkxlzm

(k, l,m ∈ Z+) (use Bergman’s [4] diamond lemma). Thus it follows from Proposition 4.3 that, in
the algebra of formal power series in x,w, v under relations (4.16), we have the identity

eq(x+ w) = eq(w) eq2 (v) eq(x). (4.17)

Remark 4.5 In relations (4.16) replace x,w, v by (1− q)X, (1− q)Y, (1− q)C and let q ↑ 1. Then
X,Y,C will satisfy the Heisenberg relations (4.12) and identity (4.17) becomes the second identity
in (4.13).

We may also rewrite (4.15) as an identity in CqHeis[[x, y, c]]. Just put w := y[x, y] in (4.2).
Then x,w, z satisfy relations (4.14). Thus (4.15) becomes in terms of x, y, z:

eq(x+ y[x, y]) = eq(y[x, y]) eq2

(
(1 − q)−1[x, y]2

)
eq(x). (4.18)

After rescaling we have, still under relations (4.2):

eq

(
(1 − q)(x+ y[x, y])

)
= eq

(
(1 − q)y[x, y]

)
eq2

(
(1 − q)[x, y]2

)
eq

(
(1 − q)x

)
. (4.19)

Now make substitutions of x, y, z into X,Y,C as we earlier did for (4.10). Next let q ↑ 1 in (4.1)
and (4.19). Then we obtain the identity

eX+Y C = eY C e
1

2
C2

eX

under Heisenberg relations (4.12). This identity is equivalent to (4.13).

Remark 4.6 It seems somewhat arbitrary that we stipulate relations (4.14) in order to obtain
identity (4.15). In fact, they arise from a much more general Ansatz. First rewrite (4.17) equiva-
lently as

Eq(−w) eq(x+ w)Eq(−x) = eq2(v).

Now we ask more generally under which minimal set of relations for x and w we have that

Eq(−w) eq(x+ w)Eq(−x) = f(v) (4.20)

for some formal power series f in one variable and some element v which is homogeneous of
degree 2 in x and w, i.e., a linear combination of x2, w2, xw,wx. Surprisingly, the answer is that
v = (1 − q)−1(xw − qwx), f = eq2 and that the relations are

x(xw − qwx) = q2(xw − qwx)x, (xw − qwx)y = q2y(xw − qwx), (4.21)

so we recover (4.17) under relations (4.16) as the unique solution of our problem. In fact, expansion
of the left-hand side of (4.20) up to quadratic terms yields 1 + (xw − qwx)/(q; q)2. It follows from
our Ansatz that all terms of homogeneous odd degree in the expansion of the left-hand side of
(4.20) must vanish. The vanishing of the third degree terms precisely yields the relations (4.21).
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5. Equivalence between identities in the non-commuting and the commuting case

In the previous sections we saw many examples of identities in non-commuting variables. It is
sometimes possible to rewrite these identities in terms of commuting variables, usually in various
different ways. The idea is always the following. Suppose our identity in non-commuting variables
lives in a certain algebra A. Let π be a representation of the algebra A on a suitable linear space F
of functions (for instance the space of polynomials or formal power series in one complex variable).
Suppose that there is a subset {fm} of F such that, for all a ∈ A, we have the implication:
π(a) fm = 0 for all m =⇒ a = 0. An identity a = b in A is then equivalent to the collection of
identities π(a) fm = π(b) fm for all m.

As an example, fix q ∈ (0, 1), let x, y be subject to the relation xy = qyx, and let A be the
algebra Cq[x, y] of polynomials in x, y (cf. Section 2) or the algebra Cq[[x, y]] of formal power series
in x, y (cf. Section 3). Let Cq[x, y] resp. Cq[[x, y]] act on the space F of polynomials resp. formal
power series in one complex variable z by an algebra representation π such that

(π(x)f)(z) := qz f(qz), (π(y)f)(z) := z f(z). (5.1)

Then π(x)π(y) = q π(y)π(x), so π preserves the relation xy = qyx.
By induction with respect to k we see that

(π(xk)f)(z) = q
1

2
k(k+1) zk f(qkz) (k ∈ Z+),

so
(π(ylxk)f)(z) = zl (π(xk)f)(z) = q

1

2
k(k+1) zk+l f(qkz) (k, l ∈ Z+).

Thus, by a little abuse of notation,

π(ylxk) zm = q
1

2
k(k+1)+km zk+l+m (k, l,m ∈ Z+). (5.2)

Now we let a formal power series in x, y act on a formal power series in z in a σ-additive way:

π



∑

k,l

ck,l y
lxk



∑

m

amz
m =

∑

k,l,m

ck,l am q
1

2
k(k+1)+km zk+l+m

=

∞∑

n=0

zn
∑

k+l+m=n

ck,l am q
1

2
k(k+1)+km.

We see that the result is again a well-defined formal power series in z.
The reader is warned that a σ-additive extension of a representation as we gave above, is not

always possible. Then one has to work with representations by unbounded operators on a Hilbert
space, and identities satisfied by formal series may no longer hold in the representation, see for
instance Woronowicz [36]. (I thank S. L. Woronowicz for pointing this out to me.)

Next we show that, if a =
∑

k,l ck,l y
lxk and π(a) zm = 0 for all m ∈ Z+, then a = 0. Indeed,

if ∑

k,l

ck,l π(ylxk) zm = 0 for all m ∈ Z+

then ∑

k,l

ck,l q
1

2
k(k+1)+km zk+l = 0 for all m ∈ Z+.
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Hence for all n ∈ Z+ we have

n∑

k=0

ck,n−k q
1

2
k(k+1) (qm)k = 0 for all m ∈ Z+.

This shows that the ck,n−k are 0.
Now we will see how we can rewrite the identities (2.3) and (3.5) involving noncommuting

variables into equivalent commutative form by means of the representation π of Cq[[x, y]] (or
Cq[x, y]). For fixed n ∈ Z+ the q-binomial formula (2.3) is equivalent to the set of identities

π
(
(x+ y)n

)
zm =

n∑

k=0

[n
k

]

q
π(yn−kxk) zm (m ∈ Z+). (5.3)

By induction with respect to n we see that

π
(
(x+ y)n

)
zm = (−qm+1; q)n z

m+n. (5.4)

By also using (5.2) and (2.9) we see that (5.3) is equivalent to

(−qm+1; q)n z
m+n =

n∑

k=0

(q−n; q)k

(q; q)k
(−qm+n+1)k zm+n (m ∈ Z+).

We can divide both sides of this last identity by zm+n. Thus we have shown that (2.3) is equivalent
to the terminating q-binomial sum (2.10) considered for all z = −qn+m+1 (m ∈ Z+), which in its
turn is equivalent to (2.10) considered for all z ∈ C.

Let us next handle identity (3.5) in this way. Observe first that (π(y)f)(z) = zf(z) implies
that (

π(g(y)) f
)
(z) = g(z) f(z) (5.5)

for any two formal power series f and g in one variable. Identity (3.5) is equivalent to the set of
identities

π (eq(x+ y)) zm = π
(
eq(y) eq(x)

)
zm (m ∈ Z+).

Now use (5.5) and expand eq(x+ y) and eq(x). We obtain that (3.5) is equivalent to

∞∑

n=0

π ((x+ y)n) zm

(q; q)n
= eq(z)

∞∑

k=0

π(xk)zm

(q; q)k
(m ∈ Z+).

By (5.4) and (5.2) this can be rewritten as

∞∑

n=0

(−qm+1; q)n z
m+n

(q; q)n
= eq(z)

∞∑

k=0

q
1

2
k(k+1)+km zk+m

(q; q)k
(m ∈ Z+).

On dividing both sides by zm and on using the first equality in (3.2) we see that (3.5) is equivalent
to the series of identities

1φ0(−q
m+1; ; q, z) = eq(z)Eq(q

m+1z) (m ∈ Z+),

i.e., to special cases of the evaluation of non-terminating q-hypergeometric series, cf. (3.22).
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I invite the reader to experiment with several other representations π of algebras Cq[x, y] or
Cq[[x, y]] on the space of polynomials or formal power series in z, for instance

(
π(x)f

)
(z) := f(qz),

(
π(y)f

)
(z) := z f(z), (5.6)

(
π(x)f

)
(z) := (Dqf)(z),

(
π(y)f

)
(z) := f(qz), (5.7)

(
π(x)f

)
(z) := f(z + log q),

(
π(y)f

)
(z) := ez f(z), (5.8)

(
π(x)f

)
(z) := ez f(z),

(
π(y)f

)
(z) := f(z − log q). (5.9)

In (5.7) we used the notation for the q-derivative

(Dqf)(z) :=
f(z) − f(qz)

(1 − q)z
. (5.10)

For instance, consider the q-binomial formula (2.3) in representation (5.6), with both sides acting
on eq(z), in order to arrive at a special case of the q-Chu-Vandermonde sum [16, (II.6)] (one
upper parameter zero). Also consider identity (3.9) in representation (5.8) or identity (3.12) in
representation (5.9), with both sides acting on functions eiµz, in order to arrive at an identity
in commuting variables which is equivalent to the summation formula (3.21) of non-terminating
q-binomial series. Here the infinite sum results from the action of the left-hand sides of (3.9) or
(3.12) on eiµz. Faddeev & Kashaev [10, Section 2] point out an alternative for the action of these
left-hand sides. They observe, in representation (5.9), that the action of g1(y)g2(x) (g1 and g2
suitable functions) on eiµz can be written as multiplication by a certain double integral involving
g1 and g2 (the symbol of the product of the operators π(g1(y)) and π(g2(y))). This argument looks
quite formal and the convergence of the resulting double integral is not clear.

A wealth of further results in the spirit of this section is contained in Cigler [7], [8]. He
also gives applications to continuous q-Hermite polynomials and to q-Laguerre polynomials and he
develops a q-analogue of Rota’s umbral calculus [31].

A well-known representation π of the algebra CqHeis[[x, y, c]] (see (4.1), (4.2), (4.3)) on the
space of formal power series is given by π(x) := (1 − q) cDq , (π(y)f)(t) := t f(t). See already
Rogers [30] for many results using this representation, or a modern treatment by Bowman [6].

6. The q-logarithm

Euler’s dilogarithm is defined by

Li2(z) :=

∞∑

n=1

zn

n2
, |z| < 1.

A. N. Kirillov [20, (2.52)] defines the following q-analogue (0 < q < 1 as before):

Li2(z; q) :=

∞∑

n=1

zn

n(1 − qn)
, |z| < 1. (6.1)

Formally we have the termwise limit

lim
q↑1

(1 − q)Li2(z; q) = Li2(z). (6.2)
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Kirillov [20, Section 2.5, Lemma 8] observes the following remarkable formula:

Li2(z; q) = log
(
eq(z)

)
, |z| < 1. (6.3)

For the proof note that
Li2(qz; q) = Li2(z; q) + log(1 − z)

(substitute the corresponding power series). Hence

exp
(
Li2(z; q)

)
=

exp
(
Li2(qz; q)

)

1 − z
= . . . =

exp
(
Li2(q

kz; q)
)

(z; q)k
.

On taking limits for k → ∞, the right-hand side tends to

exp
(
Li2(0; q)

)

(z; q)∞
= exp(0) eq(z) = eq(z).

A more precise formulation of (6.2) going back to Ramanujan (see Berndt [5, Ch. 27, Entry 6])
gives an asymptotic series for Li2(z; q) (or log(eq(z)) in rising powers of − log q as q ↑ 1. Kirillov
[20, Section 2.5, Corollary 10] and Ueno & Nishizawa [34] derive this asymptotic series by using
Euler-Maclaurin’s summation formula.

Faddeev & Kashaev [10, S2], see also Kirillov [20, Theorem I], indicate that Rogers’ five-term
identity for Euler’s dilogarithm can be obtained as a limit case as q ↑ 1 of (3.9) or (3.12). This
uses (6.3) and (6.2). Faddeev and Kashaev also use the representation (5.9) of the left-hand side of
(3.12) by means of a double integral (see the end of Section 5). Their arguments are quite formal.

Next we consider a q-analogue of

− log(1 − z) =

∞∑

n=1

zn

n
, |z| < 1.

We define and notate it as

logq(z) :=

∞∑

n=1

zn

1 − qn
(6.4)

and we consider it either as a convergent power series for |z| < 1 or as a formal power series. Note
that we have formally the termwise limit

lim
q↑1

(1 − q) logq(z) = − log(1 − z). (6.5)

It follows from (6.1) and (6.4) that

logq(z) = z Li′2(z; q).

Hence, by (6.3):

logq(z) =
z e′q(z)

eq(z)
. (6.6)

Another interesting formula is

logq(z) = −
∂

∂a
1φ0(a; ; q, z)

∣∣∣
a=1

. (6.7)
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It is the q-analogue of

− log(1 − z) =
∂

∂a
(1 − z)−a

∣∣∣
a=0

.

For the proof of (6.7) note that

∂

∂a

(
(az; q)∞
(z; q)∞

)
=

∂

∂a

(
eq(z)

eq(az)

)
= −

z eq(z) e
′
q(az)

eq(az)2
.

Hence
∂

∂a

(
(az; q)∞
(z; q)∞

)∣∣∣∣∣
a=1

= −
z e′q(z)

eq(z)
.

Now apply (3.21) and (6.6).
Note also the q-derivative (see (5.10)) of logq:

(1 − q) (Dq logq)(z) =
∞∑

n=0

zn =
1

1 − z
. (6.8)

The formulas (6.3), (6.6), (6.7) and (6.8) are of hybrid nature because they use classical objects
(the logarithm, the classical derivative and the function z 7→ (1 − z)−1, respectively) in a context
of q-special functions.

It is a natural question to look for the inverse function to logq, analogous to the function
x 7→ 1 − e−x being inverse to the function y 7→ − log(1 − y). However, the inverse function to logq

does not seem to have a nice explicit expression. (I thank C. Krattenthaler for checking this by use
of Maple.) Some alternative way to find a q-analogue is as follows. By the chain rule f(g(x)) = x
implies f ′(g(x))g′(x) = 1. Now the following q-analogue holds:

(Dqf)(g(x)) (Dqg)(x) = 1, g(x) := 1 − eq(−(1 − q)x), f(y) := (1 − q) logq(y). (6.9)

Note however that (Dqg)(f(y)) (Dqf)(y) 6= 1 for f and g as in (6.9).
The following Proposition gives a q-analogue of the classical functional equation

log(xy) = log x+ log y, or equivalently − log
(
(1 − x)(1 − y)

)
= − log(1 − x) − log(1 − y),

for commuting variables x, y. This Proposition was independently found by A. N. Kirillov [20,
Section 2.5, Exercise 11] and by the author.

Proposition 6.1 In the algebra Cq[[x, y]] we have the identity

logq(x+ y − yx) = logq(x) + logq(y). (6.10)

Proof Since (x− yx)y = qy(x− yx) we get by the q-binomial formula (2.3) that

(x+ y − yx)n =

n∑

k=0

[n
k

]

q
yn−k(x− yx)k

=

n∑

k=0

yn−k (y; q)k x
k.
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Hence

logq(x+ y − yx) =
∞∑

n=1

(
1

1 − qn
yn +

n∑

k=1

1

1 − qn

[n
k

]

q
yn−k (y; q)k x

k

)

= logq(y) +
∞∑

k=1

(
∞∑

n=k

1

1 − qn

[n
k

]

q
yn−k

)
(y; q)k x

k.

So we are done if we can show that
(

∞∑

n=k

1 − qk

1 − qn

[n
k

]

q
yn−k

)
(y; q)k = 1. (6.11)

It is sufficient to prove (6.11) for complex y with |y| < 1. Then

∞∑

n=k

1 − qk

1 − qn

[n
k

]

q
yn−k =

∞∑

m=0

1 − qk

1 − qm+k

[
m+ k

k

]

q

ym

=

∞∑

m=0

1 − qk

1 − qm+k

(qk+1; q)m

(q; q)m
ym =

∞∑

m=0

(qk; q)m

(q; q)m
ym =

(qky; q)∞
(y; q)∞

=
1

(y; q)k
,

where we used in the forelast identity the evaluation (3.21) of a non-terminating q-binomial series.

A somewhat formal, but very quick proof of Proposition 6.1 is obtained from (3.24). Just
differentiate both sides of (3.24) with respect to a, put a = 1 and use (6.7).

Yet another proof is obtained from (3.5), which we use in the form eq(t(x+ y)) = eq(ty) eq(tx)
with t ∈ R. Differentiate both sides with respct to t, put t = 1 and use (6.6) in order to obtain

eq(x+ y) logq(x+ y) = eq(y) (logq(y) + logq(x)) eq(x).

Replace next eq(x+y) by eq(y) eq(x) and pull the eq(x) factor through logq(x+y), on using (3.15).

7. Jackson integral in q-commuting variables

This section reviews results from Kempf & Majid [19, Section 1]. We start with a q-analogue of
Taylor series for q-commuting variables.

Fix q ∈ (0, 1). The q-derivative Dqf of a function f on R was already defined in (5.10). If

f(x) = xn then (Dqf)(x) =
1 − qn

1 − q
xn−1, so we can let Dq and its iterates Dk

q act on polynomials

or formal power series in x. We have

Dk
qx

n =
(qn; q−1)k

(1 − q)k
xn−k.

Hence, in the algebra Cq[x, y] we can rewrite the q-binomial formula (2.3) as

(x+ y)n =

n∑

k=0

(1 − q)k

(q; q)k
yk Dk

qx
n. (7.1)
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Now let f(x) :=
∑∞

n=0 cnx
n be a formal power series. Then, in the algebra Cq[[x, y]] of formal

power series in x, y under relation xy = qyx, we have

f(x+ y) =

∞∑

n=0

cn(x+ y)n =

∞∑

n=0

n∑

k=0

cn
(1 − q)k

(q; q)k
yk Dk

qx
n

=

∞∑

k=0

(1 − q)k

(q; q)k
yk

∞∑

n=k

cnD
k
qx

n =

∞∑

k=0

(1 − q)k

(q; q)k
yk Dk

q f(x).

Thus we have proved:

Proposition 7.1 Let f be a formal power series in one variable. Let xy = qyx. Then, in the
algebra Cq[[x, y]] we have for each m ∈ Z+ the identity

f(x+ y) =

∞∑

k=0

1

(q; q)k
yk ((1 − q)Dq)

k f(x) (7.2)

=
m−1∑

k=0

1

(q; q)k
yk ((1 − q)Dq)

k f(x) + ym gm(x, y) (7.3)

for a suitable element gm(x, y) of Cq[[x, y]].

If we write O(ym) instead of ym gm(x, y) then (7.3) implies in particular, for m = 2, that

f(x+ y) = f(x) + y Dq f(x) + O(y2) (xy = qyx), (7.4)

as a q-analogue in q-commuting variables of the classical formula

f(x+ y) = f(x) + yf ′(x) + O(y2) (xy = yx).

Fix q ∈ (0, 1). For a function f on R, the Jackson integral is defined by

∫ x

0

f(t) dqt := (1 − q)

∞∑

k=0

f(qkx) qkx, (7.5)

where x ∈ R, provided the sum on the right-hand side converges absolutely, for instance if f is
bounded near zero. The Jackson integral avant la lettre of f(t) := tn was already computed by
Fermat: ∫ x

0

tn dqt =
1 − q

1 − qn+1
xn+1. (7.6)

Thus, if

f(x) :=

∞∑

n=0

cnx
n (7.7)

is a formal power series in a formal (not necessarily real or complex) variable x then we obtain its
Jackson integral ∫ x

0

f(t) dqt =

∞∑

n=0

cn
1 − q

1 − qn+1
xn+1 (7.8)
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also as a formal power series.
Let now xy = qyx. Then we obtain in the algebra Cq[x, y] by (7.6) and a twofold appication

of the q-binomial formula (2.3):

∫ x+y

0

tn dqt =
1 − q

1 − qn+1
(x+ y)n+1

=
1 − q

1 − qn+1
yn+1 +

1 − q

1 − qn+1

n∑

l=0

[
n+ 1

l

]

q

ylxn+1−l

=
1 − q

1 − qn+1
yn+1 + (1 − q)

n∑

l=0

[n
l

]

q

1

1 − qn−l+1
ylxn−l+1

=
1 − q

1 − qn+1
yn+1 + (1 − q)

n∑

l=0

∞∑

k=0

[n
l

]

q
yl(qkx)n−l+1

=
1 − q

1 − qn+1
yn+1 + (1 − q)

∞∑

k=0

(qkx+ y)n qkx

=

∫ y

0

tn dqt+

∫ x

0

(t+ y)n dqt,

where we use the definition

∫ x

0

f(t+ y) dqt := (1 − q)
∞∑

k=0

f(qkx+ y) qkx.

Thus we have shown that

∫ x+y

0

tn dqt =

∫ y

0

tn dqt+

∫ x

0

(t+ y)n dqt (xy = qyx)

and therefore also for formal power series (7.7):

∫ x+y

0

f(t) dqt =

∫ y

0

f(t) dqt+

∫ x

0

f(t+ y) dqt (xy = qyx). (7.9)

Now recall the definition

∫ b

a

f(t) dqt :=

∫ a

0

f(t) dqt−

∫ b

0

f(t) dqt, (7.10)

where the two Jackson integrals on the right-hand side are defined by (7.5). Definition (7.10) can
also be used for formal variables a, b. Thus by (7.9) and (7.10) we have the following Proposition:

Proposition 7.2 Let f be a formal power series in one variable. Let xy = qyx. Then, in the
algebra Cq[[x, y]] we have ∫ x+y

y

f(t) dqt =

∫ x

0

f(t+ y) dqt. (7.11)
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Thus the translation invariance of the Riemann integral, which seemed to be destroyed when
q-deforming it to the Jackson integral, can be preserved when we work with q-commuting variables.

By way of example we give a fourth proof of the functional equation (6.10) for the q-logarithm
in q-commuting variables. First observe, by straightforward application of (7.8) and (6.4), that

logq(x) =

∫ x

0

(1 − t)−1 dqt. (7.12)

Now let us work in Cq[[x, y]]. Then

logq(x+ y − xy; q) − log(y; q) =

∫ x+y−yx

0

(1 − t)−1 dqt−

∫ y

0

(1 − t)−1 dqt

=

∫ x−yx

0

(1 − (t+ y))−1 dqt = (1 − q)

∞∑

k=0

(
1 − qk(x− yx) − y

)−1
qk(x− yx)

= (1 − q)

∞∑

k=0

(
(1 − y)(1 − qkx)

)−1
(1 − y)qkx = (1 − q)

∞∑

k=0

(1 − qkx)−1 qkx

=

∫ x

0

(1 − t)−1 dqt = logq(x),

where we applied (7.11) in the second equality. Thus we have given a new proof of (6.10).

8. q-Hermite polynomials and a q-Fourier transform pair

The discrete q-Hermite I polynomials (see Koekoek & Swarttouw [22, Section 3.28] and references
given there) are given by

hn(x; q) :=xn
2φ0(q

−n, q−n+1; ; q2, q2n−1x−2)

=(q; q)n

[n/2]∑

k=0

(−1)k qk(k−1) xn−2k

(q2; q2)k (q; q)n−2k
. (8.1)

They are orthogonal polynomials satisfying the orthogonality relations

∫ 1

−1

hm(x; q)hn(x; q)Eq2 (−q2x2) dqx = bq q
1

2
n(n−1) (q; q)n δm,n, (8.2)

where
bq := (1 − q) (q,−q,−1; q)∞. (8.3)

There is the following generating function:

(t2; q2)∞
(xt; q)∞

= Eq2(−t2) eq(xt) =

∞∑

n=0

hn(x; q)

(q; q)n
tn (|xt| < 1). (8.4)

Several useful formulas can be derived from this generating function. First we can expand a
monomial:

xn = (q; q)n

[ 1
2
n]∑

k=0

hn−2k(x; q)

(q2; q2)k (q; q)n−2k
. (8.5)
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For the proof, multiply both sides of (8.4) with eq2(t2) and next compare coefficients of t.
Next we have

m∑

k=0

(q−m; q)k

(q; q)k
qk hk(x; q)xm−k =

{
(−1)n q−n2

(q; q2)n if m = 2n,
0 if m = 2n+ 1.

(8.6)

For the proof, multiply both sides of (8.4) with Eq(−xt) and next compare coefficients of t.
¿From the generating function (8.4) together with the orthogonality relations (8.2) we obtain

∫ 1

−1

eq(−ixt)hn(x; q)Eq2 (−q2x2) dqx = bq q
1

2
n(n−1) i−n tn eq2(−t2). (8.7)

For the proof, replace t by −it in (8.4), multiply both sides with hn(x; q)Eq2 (−q2x2) eq2 (−t2) and
q-integrate both sides over [−1, 1].

The discrete q-Hermite II polynomials (see Koekoek & Swarttouw [22, Section 3.29] and ref-
erences given there) are given by

h̃n(x; q) :=xn
2φ1(q

−n, q−n+1; 0; q2,−q2x−2) (8.8)

=(q; q)n

[ 1
2
n]∑

k=0

(−1)k q−2nk qk(2k+1) xn−2k

(q2; q2)k (q; q)n−2k
. (8.9)

(There is a slight error in [22, (3.29.1)], which is corrected in formula (8.8) above.) They are related
to the discrete q-Hermite I polynomials by

hn(ix; q−1) = in h̃n(x; q). (8.10)

They are orthogonal polynomials satisfying orthogonality relations given by a Jackson integral over
(−∞,∞). Let us use the notation

∫ γ.∞

0

f(t) dqt := (1 − q)
∞∑

k=−∞

f(qkγ) qkγ (8.11)

for the Jackson integral over (0,∞) of a function defined on {qkγ | k ∈ Z} for some γ ∈ (0,∞), where
we suppose that the sum on the right hand side of (8.11) absolutely converges. So the definition is
dependent on γ but invariant under the transform γ 7→ qγ. For f defined on {±qkγ | k ∈ Z} we
can also define the Jackson integral of f over (−∞,∞), again depending on γ and invariant under
γ 7→ qγ:

∫ γ.∞

−γ.∞

f(t) dqt :=

(∫ γ.∞

0

f(t) dqt−

∫ −γ.∞

0

f(t) dqt

)
(8.12)

=(1 − q)
∞∑

k=−∞

(
f(qkγ) + f(−qkγ)

)
qkγ. (8.13)

We again suppose that the infinite sums are absolutely convergent.
The orthogonality relations for the discrete q-Hermite II polynomials are:

∫ γ.∞

−γ.∞

h̃m(x; q) h̃n(x; q) eq2 (−x2) dqx = cq(γ) q
−n2

(q; q)n δm,n, (8.14)
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where

cq(γ) :=
2(1 − q) (q2,−qγ2,−qγ−2; q2)∞ γ

(−γ2,−q2/γ2, q; q2)∞
. (8.15)

Note that the orthogonality measure is not uniquely determined. There is the generating function

(−xt; q)∞
(−t2; q2)∞

= eq2(−t2)Eq(xt) =

∞∑

n=0

q
1

2
n(n−1)

(q; q)n
h̃n(x; q) tn. (8.16)

Now we can obtain formulas analogous to (8.5)–(8.7), either by using (8.16) just as (8.4) was used
in the discrete q-Hermite I case, or by using (8.10):

xn = (q; q)n

[ 1
2
n]∑

k=0

q−2nk+3k2

(q; q)n−2k (q2; q2)k
h̃n−2k(x; q), (8.17)

m∑

k=0

(q−m; q)k

(q; q)k
qmk h̃k(x; q)xm−k =

{
(−1)n (q; q2)n if m = 2n,
0 if m = 2n+ 1,

(8.18)

∫ γ.∞

−γ.∞

Eq(iqxt) h̃n(x; q) eq2 (−x2) dqx = cq(γ) q
− 1

2
n(n−1) in tnEq2(−q2t2). (8.19)

Now we can combine formulas for cases I and II of the discrete q-Hermite polynomials. It
follows from (8.5), (8.7) and (8.9) that

∫ 1

−1

eq(−ixt)x
nEq2(−q2x2) dqx = bq q

1

2
n(n−1) i−n h̃n(t; q) eq2 (−t2) (8.20)

and it follows from (8.17), (8.19) and (8.1) that

∫ γ.∞

−γ.∞

Eq(iqxt)x
n eq2(−x2) dqx = cq(γ) q

− 1

2
n(n−1) in hn(t; q)Eq2 (−q2t2). (8.21)

By comparing (8.7) with (8.21) or (8.20) with (8.19), we arrive at the following pair of q-Fourier
transforms, which are inverse to each other when acting on suitable functions:

Theorem 8.1 Let

(Fqf)(y) :=
1

bq

∫ 1

−1

eq(−ixy) f(x) dqx, (8.22)

(F̃q,γg)(x) :=
1

cq(γ)

∫ γ.∞

−γ.∞

Eq(iqxy) g(y) dqy. (8.23)

Then the following two statements are equivalent:

(a) f(x) = polynomial(x) × Eq2(−q2x2) and g = Fqf ;

(b) g(y) = polynomial(y) × eq2(−y2) and f = F̃q,γg.
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In particular:

f(x) = hn(x; q)Eq2 (−q2x2) ⇐⇒ g(y) = q
1

2
n(n−1) i−n yn eq2(−y2); (8.24)

f(x) = xnEq2(−q2x2) ⇐⇒ g(y) = q
1

2
n(n−1) i−n h̃n(y; q) eq2(−y2). (8.25)

By q-integration by parts and by using (3.4) we can see how Fq and F̃q,γ send a q-derivative
operator to a multiplication operator and a multiplication operator to a q-derivative operator. For
this purpose we also need a variant D+

q , called forward q-derivative, of the (backward) q-derivative
Dq = D−

q as defined in (5.10):

(D−
q f)(x) :=

f(x) − f(qx)

(1 − q)x
, (D+

q f)(x) :=
f(q−1x) − f(x)

(1 − q)x
. (8.26)

Proposition 8.2 If f is continuous at 0 and f(q−1) = 0 = f(−q−1) then

(1 − q) (Fq(D
+
q f))(y) = iy (Fqf)(y).

If g is continuous at 0 and limn→∞ Eq(±ixγq
−n+1) g(±γq−n) = 0 then

(1 − q) (F̃q,γ(D−
q g))(x) = −ix (F̃q,γg)(x).

It follows from (8.24), (8.25) and Proposition 8.2 that (with D±
q acting on functions of x):

(1 − q)D+
q

(
hn(x; q)Eq2 (−q2x2)

)
= −q−n hn+1(x; q)Eq2 (−q2x2), (8.27)

(1 − q)D−
q

(
h̃n(x; q) eq2 (−x2)

)
= −qn h̃n+1(x; q) eq2 (−x2). (8.28)

These two formulas can also be proved independently. Thus, if (8.27) and (8.28) are given then the
general case of (8.24) and (8.25) follows from the special case n = 0 by means of Proposition 8.2.

Note that iteration of (8.27), (8.28) yields Rodrigues type formulas

hn(x; q) = (−1)n q
1

2
n(n−1) eq2(q2x2) (1 − q)n (D+

q )nEq2(−q2x2), (8.29)

h̃n(x; q) = (−1)n q−
1

2
n(n−1) Eq2(x2) (1 − q)n (D−

q )n eq2(−x2). (8.30)

All formulas, given in this section, involving discrete q-Hermite polynomials until now are
analogues of formulas for classical Hermite polynomials: just take limits as q ↑ 1 (after possibly
some rescaling). However, there are some other nice formulas for classical Hermite polynomials for
which the q-analogue can be better given with q-commuting variables. For instance, in the algebra
Cq[x, y] (xy = qyx) we have:

hn(x+ y; q) =

n∑

k=0

[n
k

]

q
yn−k hk(x; q) (8.31)

For the proof, let t be scalar and use the generating function (8.4) and the functional equation
(3.5):

∞∑

n=0

hn(x+ y; q)

(q; q)n
tn = eq((x+ y)t)Eq2 (−t2) = eq(yt) eq(xt)Eq2 (−t2)

=

∞∑

l=0

yl

(q; q)l
tl

∞∑

k=0

hk(x; q)

(q; q)k
tk =

∞∑

n=0

(
n∑

k=0

[n
k

]

q
yn−k hk(x; q)

)
tn

(q; q)n
.
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Another example of a formula for Hermite polynomials without q-analogue in commuting
variables is the formula expanding Hn(λx) in terms of a series of Hm(x):

Hn(λx) = n!

[ 1
2
n]∑

k=0

(−1)k (1 − λ2)k λn−2k

(n − 2k)! k!
Hn−2k(x). (8.32)

This formula can be proved by use of the generating function

e2xt−t2 =

∞∑

n=0

Hn(x) tn

n!
.

Just write

e2λxt−t2 = e2λxt−λ2t2 e−(1−λ2)t2 ,

expand all factors in terms of powers of t and compare coefficients of tn on both sides. Note that
we used that e−t2 = e−λ2t2 e−(1−λ2)t2 , which strongly suggests to use q-commuting variables for a
q-analogue.

Suppose now that λ, µ satisfy the relation λµ = q
1

2µλ and let x and t be scalar. Then
λ2µ2 = q2µ2λ2, so, by (3.6):

eq(λxt)Eq2 (−(λ2 + µ2)t2) =
(
eq(λxt)Eq2 (−λ2t2)

)
Eq2(−µ2t2).

Now expand factors in terms of powers of t by using the generating function (8.4) and compare
coefficients of tn on both sides. Then we obtain a q-analogue of (8.32):

[ 1
2
n]∑

k=0

(−1)k qk(k−1) λn−2k (λ2 + µ2)k xn−2k

(q; q)n−2k (q2; q2)k
=

[ 1
2
n]∑

k=0

(−1)k qk(k−1) λn−2k µ2k hn−2k(x; q)

(q; q)n−2k (q2; q2)k
. (8.33)

The left-hand side of (8.33), after multiplication by (q; q)n, can be considered as hn(x; q) being kind
of rescaled by means of λ and µ. Formula (8.33) can be used in order to arrive at a q-analogue

of the Fourier transform sending Hn(x) e−
1

2
x2

to a constant multiple of this, or more generally

Hn(x) e−ax2

to a constant multiple of Hn((4a(1 − a))−
1

2x) e−x2/(4a) (see [9, (1.10.8), (2.10.10)]).
Just combine (8.21) with (8.33). I do not give details, but the reader should compare with very
related results in Finkelstein & Marcus [12], where the quantum group SUq(2) is also brought into
the game.

The q-Fourier transform F̃q,γ (see (8.23)) also occurs in Kempf & Majid [19, Section VIB].
However, the Fourier kernel is written there as eq(iyx) with x and y q-commuting. Their discussion
is tied up very much with the notion of translation invariant Jackson integral over (−∞,∞) and
with Cq[x] considered as a braided Hopf algebra, see the next two sections for a few more details.

As far as I know, a purely analytic approach to the q-Fourier transform pair in Theorem 8.1
has not earlier appeared in literature. Of course, there are many natural further questions, e.g.
extension of the transforms to a bigger class of functions and continuity properties of the transforms.
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9. Translation invariance of Jackson integral over (−∞,∞)

The results of this section are essentially due to Kempf & Majid [19, Section IV], but the approach
is different.

In (8.12), (8.13) we gave the definition of a Jackson integral over (−∞,∞). We cannot extend
this definition to the case

∫ x.∞

−x.∞
f(t) dqt where f is a formal power series and x is a formal variable

(compare with (7.8) for the Jackson integral from 0 to x), since the Jackson integral of f(t) := tn

over (−∞,∞) is not well-defined.
Still, in view of the classical formula

∫ ∞

−∞

f(t) dt =

∫ ∞

−∞

f(t+ y) dt (y ∈ R),

valid for absolutely convergent integrals, we would like to find an extension of the Jackson integral
translation invariance (7.11) on finite intervals for q-commuting variables to the case of an infinite
interval. So we would like to have that

∫ x.∞

−x.∞

f(t) dqt =

∫ x.∞

−x.∞

f(t+ y) dqt (xy = qyx) (9.1)

for suitable formal power series f for which both sides of (9.1) have meaning.
Let me first give a completely formal proof of (9.1), as a limit case of (7.11). For r ∈ Z+ it

follows from (7.11) that

∫ q−r(x+qry)

−q−r(x+qry)

f(t) dqt =

∫ q−rx

−q−rx

f(t+ y) dqt (xy = qyx).

Now let r → ∞. Then equality (9.1) is obtained as a formal limit case.
Evidently this argument gives only heuristic evidence for the validity of (9.1). Let me give next

a still formal, but more satisfactory proof of (9.1) for suitable functions f . By formal substitution
of (8.13) in the right-hand side of (9.1) and by (7.2) we have

∫ x.∞

−x.∞

f(t+ y) dqt = (1 − q)
∞∑

k=−∞

(
f(qkx+ y) + f(−qkx+ y)

)
qkx

=

∞∑

m=0

ym (1 − q)

∞∑

k=−∞

(
fm(qkx) + fm(−qkx)

)
qkx

=
∞∑

m=0

ym

∫ x.∞

−x.∞

fm(t) dqt, (9.2)

where

fm(z) =
1

(q; q)m
((1 − q)Dq)

m f(z). (9.3)

If f is a function on R then so is fm. So the Jackson integrals
∫ x.∞

−x.∞
fm(t) dqt will have concrete

meaning for x ∈ R and if the sums defining the Jackson integral are convergent. However, x must
q-commute with y, so x cannot be in R. We can circumvent this dilemma by passing to a suitable
representation of the relation xy = qyx. Let us take a slight extension of the representation (5.6),
now using the dot notation instead of π:

x.g(z) := γ g(qz), y.g(z) := z g(z). (9.4)
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Here γ ∈ R\{0} is fixed and g(z) is a formal power series. Thus

x.zk = γqkzk (k ∈ Z+),

which we will formally extend to

f(x).zk = f(γqk) zk (k ∈ Z+)

if f is a function on R. Hence

(∫ x.∞

−x.∞

f(t) dqt

)
. zk =

(∫ γqk.∞

−γqk .∞

f(t) dqt

)
zk =

(∫ γ.∞

−γ.∞

f(t) dqt

)
zk

provided that the sums defining the Jackson integral

If (γ) :=

∫ γ.∞

−γ.∞

f(t) dqt

converge absolutely. Note that If (γ) = If (qγ). For such f we conclude that, for any formal power
series g: (∫ x.∞

−x.∞

f(t) dqt

)
. g(z) = If (γ) g(z). (9.5)

Now take up (9.2) again in the representation (9.4). We find
(∫ x.∞

−x.∞

f(t+ y) dqt

)
. g(z) =

∞∑

m=0

Ifm
(γ) ym.g(z) =

∞∑

m=0

Ifm
(γ) zm g(z),

while (∫ x.∞

−x.∞

f(t) dqt

)
. g(z) = If (γ) g(z).

So formula (9.1) in the representation (9.4) is equivalent with the vanishing of Ifm
(γ) (m = 1, 2, . . .).

It is easy to find a class of functions f for which these numbers vanish. Note that each fm (m ∈ Z+)
is a q-derivative of another function.

Lemma 9.1 Let γ ∈ R\{0} and let f be a function on {±γqk | k ∈ Z} such that limk→∞ f(qkγ) =
limk→∞ f(−qkγ) and limk→∞ f(±q−kγ) = 0. Then

∫ γ.∞

−γ.∞
(Dqf)(t) dqt = 0.

Proof It follows by summation by parts that
∫ γ.∞

−γ.∞

(Dqf)(t) dqt = lim
m,n→∞

(
f(q−mγ) − f(qnγ) − f(−q−mγ) + f(−qnγ)

)
.

Proposition 9.2 Let γ ∈ R\{0} and let f be a function on {±γqk | k ∈ Z} ∪ {0} such that, for
all m ∈ Z+, Dm

q f is continuous at 0 and

|(Dm
q f)(±q−kγ)| = O(q(1+ε)k) as k → ∞ (9.6)

for certain ε > 0. Then f satisfies the translation invariance (9.1) in the representation (9.4). If,
moreover, the estimate (9.6) is satisfied for all ε > 0 (so f and all its q-derivatives are rapidly

decreasing on the domain of definition), then f multiplied with any polynomial also satisfies the
translation invariance (9.1) in the representation (9.4).

Proof Because of (9.3) and the estimate on Dm
q f , the Jackson integrals defining the Ifm

(γ)
converge absolutely. For each m > 0, fm is a q-derivative, so Ifm

(γ) = 0 by Lemma 9.1 and the
estimate for Dm−1

q f . For the proof of the last statement use the q-Leibniz rule (Dq(fg))(x) =

f(x) (Dqg)(x) + (Dqf)(x) g(qx).
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Note that the continuity at 0 in the Proposition is satisfied if f is the restriction of a function
which is C∞ on a neighbourhood of 0.

As an example we consider Jackson integrals involving the q-Gaussian gq(x) = eq2(−x2) (cf.
(3.17)). This function satisfies the conditions of the Proposition (including the rapid decreasing
property). In fact, it follows by induction with respect to m that (Dm

q gq)(x) = pm(x) eq2 (−x2)
with pm a polynomial of degree m (more concretely a discrete q-Hermite II polynomial, see (8.30)).
Now observe that

|eq2(−x2)| =

∞∏

k=0

|1 + q2kx2|−1 ≤ (1 + q2nx2)−n = O(|x|−2n) as x→ ±∞

for all n ∈ Z+. Thus we know that (9.1) in the representation (9.4) is valid for f(x) := xm eq2(−x2).
Let us see the implications of this result for q-special functions, by which we can make contact with
the results of Section 8.

It follows from (8.1) that

hm(0; q) =

{
(−1)n qn(n−1) (q; q2)n if m = 2n,
0 if m = 2n+ 1.

(9.7)

Hence the case t = 0 of (8.21) yields

∫ γ.∞

−γ.∞

tm eq2(−t2) dqt =

{
cq(γ) q

−n2

(q; q2)n if m = 2n,
0 if m = 2n + 1

(9.8)

where cq(γ) is given by (8.15). In fact, the case m = 2n of (9.8) is a consequence of Ramanujan’s

1ψ1 summation formula, see [16, (II.29)].
Consider (9.1) with f(x) := xm eq2(−x2). The left-hand side of (9.1), when acting as an

operator on a formal power series g(z) in the representation (9.4), can be evaluated as

(∫ x.∞

−x.∞

tm eq2(−t2) dqt

)
. g(z) =

{
cq(γ) q

−n2

(q; q2)n g(z) if m = 2n,
0 if m = 2n+ 1

(9.9)

We expand the right-hand side of (9.1), still formally, as

∫ x.∞

−x.∞

eq2(−(t+ y)2) (t+ y)m dqt

=

m∑

k=0

[m
k

]

q
eq2(−y2)

∫ x.∞

−x.∞

eq(−yt) eq2(−t2) ym−k tk dqt

=
m∑

k=0

q−(k+1)(m−k)
[m
k

]

q
eq2(−y2)

(∫ x.∞

−x.∞

eq(−yt) eq2(−t2) tk dqt

)
ym−k, (9.10)

where we used (2.3) and (3.19) for the first equality, while the second equality follows from (8.13)
and the q-commutation of x and y. Now we give meaning to the right-hand side of (9.10) as an
operator acting on a formal power series g(z) in the representation (9.4). Consider first:

(∫ x.∞

−x.∞

eq(−yt) eq2(−t2) tk dqt

)
. g(z)
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=

∞∑

l=0

(−1)lq
1

2
l(l−1)yl

(q; q)l

(∫ x.∞

−x.∞

eq2(−t2) tk+l dqt

)
. g(z)

=

∞∑

l=0

(−1)lq
1

2
l(l−1)zl

(q; q)l

(∫ γ.∞

−γ.∞

eq2(−t2) tk+l dqt

)
g(z)

=

(∫ γ.∞

−γ.∞

Eq(−zt) eq2(−t2) tk dqt

)
g(z)

= cq(γ) q
− 1

2
k(k−1) ik hk(iq−1z; q)Eq2(z2) g(z). (9.11)

Here we used (9.5) and (8.21). After substitution of this result in (9.10) we obtain that the right-
hand side of (9.10) acting on g(z) becomes:

cq(γ)

m∑

k=0

(q−m; q)k

(q; q)k
qk i−m hk(iq−1z; q) (iq−1z)m−k g(z). (9.12)

We know, at least formally, that (9.9) and (9.12) must be equal to each other. But this equality
can equivalently be written as (8.6), which we had already proved in an elementary way.

Let us next consider whether (9.1) holds when f equals the second q-Gaussian (cf. (3.17))

Gq(x) := Eq2(−x2) = (x2; q2)∞.

Note that Gq(±q
−m) = 0 for m ∈ Z+. So Gq(±γq

−m) = 0 for m a sufficiently large integer if γ is
an integer power of q. However, if γ is not an integer power of q then |Gq(γq

−m)| increases faster
than Cm for any C > 1 as m → ∞. Indeed, take n ∈ Z such that γ2q−2n−2 − 1 ≥ C. Then, for
m ≥ n:

|Gq(γq
−m)| ≥ (γ2q−2n−2 − 1)m−n |G(γq−n)|.

So the Jackson integral
∫ γ.∞

−γ.∞
Gq(t) t

m dqt (the analogue of (9.8)) only converges absolutely for ±γ

being an integer power of q and then it turns down to computing the Jackson integral over [−q, q].
It follows from (8.9) that

h̃m(0; q) =

{
(q; q2)n (−1)n qn−2n2

if m = 2n,
0 if m = 2n+ 1.

(9.13)

Hence the case t = 0 of (8.20) yields

∫ q

−q

Eq2(−t2) tm dqt =

{
bq q

2n+1 (q; q2)n if m = 2n,
0 if m = 2n+ 1,

(9.14)

where bq is given by (8.3). Alternatively, formula (9.14) can also be obtained by a completely
elementary computation.

Since Gq is a C∞-function and since it vanishes on the set {±q−m | m ∈ Z+}, it clearly
satisfies all conditions of Proposition 9.2 for γ = 1. So the function f(x) := xmEq2(−x2) will
satisfy (9.1) in the representation (9.4) for γ = 1, i.e. in the representation (5.6). In order to see
the implications of this, we can imitate what we did for the other q-Gaussian gq. The left-hand
side of (9.1), when acting as an operator on a formal power series g(z) in the representation (5.6),
can be evaluated as

(∫ x.∞

−x.∞

tmEq2(−t2) dqt

)
. g(z) =

{
bq q

2n+1(q; q2)n g(z) if m = 2n,
0 if m = 2n+ 1

(9.15)
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by using (9.14). We expand the right-hand side of (9.1), still formally, as
∫ x.∞

−x.∞

(t+ y)m Eq2(−(t+ y)2) dqt

=

m∑

k=0

[m
k

]

q
ym−k

∫ x.∞

−x.∞

tk Eq2(−t2)Eq(−yt)Eq2(−y2) dqt

=

m∑

k=0

[m
k

]

q
ym−k

(∫ x.∞

−x.∞

tk Eq2(−t2)Eq(−yt) dqt

)
Eq2(−q−2y2). (9.16)

Here we used (2.3) and (3.20). Now we give meaning to the right-hand side of (9.16) as an operator
acting on a formal power series g(z) in the representation (5.6). First derive, analogous to the proof
of (9.11) but now using (8.20), that

(∫ x.∞

−x.∞

tk Eq2(−t2)Eq(−yt) dqt

)
. g(z) =

(∫ q

−q

tk Eq2(−t2) eq2 (−q−2zt) dqt

)
g(z)

= qbq i
−k q

1

2
k(k+1) eq2(q−2z2) h̃k(−iq−1z; q) g(z).

After substitution of this result in (9.16) we obtain that the right-hand side of (9.16) acting on g(z)
becomes

qbq

m∑

k=0

(q−m; q)k

(q; q)k
q(m+1)k ik zm−k h̃k(−iq−1z; q) g(z). (9.17)

The right-hand side of (9.15) must be equal to (9.17). But this equality can equivalently be written
as (8.17), which we had already proved in an elementary way.

Thus we have seen in this section that the translation invariance (9.1) for the case that f(t) =
tmgq(t) or tmGq(t) turns down to the identities (8.6) and (8.17) for discrete q-Hermite polynomials.

10. Braided Hopf algebras

In this section we introduce braided Hopf algebras and show the relevance of this structure for the
results of Section 8. First we recall the notion of an ordinary Hopf algebra (see for instance Abe
[1], Sweedler [33], Koornwinder [25, Section 1]).

We will work over the field of complex numbers, so a linear space will mean a complex linear
space. If V and W are linear spaces then the tensor product V ⊗W will be the linear space which
is the algebraic tensor product of V and W , so V ⊗W will be spanned by the elements v ⊗ w
(v,w ∈ V ). The tensor products V ⊗ C and C ⊗ V will be naturally identified with V .

By an algebra we will mean a complex associative algebra with identity element 1. The
field of complex numbers is an algebra in an evident way. If A is an algebra then the mapping
m:A⊗A → A will denote the linear extension of the bilinear mapping (a1, a2) 7→ a1a2:A×A → A.
If A and B are algebras then an algebra homomorphism φ:A → B is a linear mapping satisfying
φ(a1a2) = φ(a1)φ(a2) and φ(1) = 1.

If V is a linear space then the flip operator is the linear operator σ:V ⊗ V → V ⊗ V such
that σ(v ⊗ w) = w ⊗ v. If A is an algebra then we give an algebra structure to A⊗A by putting
(a ⊗ b)(c ⊗ d) := ac ⊗ bd and by extending this to a bilinear mapping of (A ⊗ A) × (A ⊗ A) to
A⊗A. Let mA⊗A:A⊗A⊗A⊗A → A⊗A be the linear operator m corresponding to this algebra
structure. Thus mA⊗A acting on a⊗ b⊗ c⊗ d can be written as the composition of two operators:

a⊗ b⊗ c⊗ d −→ a⊗ c⊗ b⊗ d −→ ac⊗ bd,

so
mA⊗A = (mA ⊗mA) ◦ (id ⊗ σ ⊗ id). (10.1)
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Definition 10.1 A Hopf algebra is an algebra A equipped with three additional operators ∆:A →
A⊗A (comultiplication), ε:A → C (counit) and S:A → A (antipode), where ∆ and ε are algebra
homomorphisms and S is a linear mapping, and where the following additional properties are
satisfied:

(∆ ⊗ id) ◦ ∆ = (id ⊗ ∆) ◦ ∆ (coassociativity ), (10.2)

(ε⊗ id) ◦ ∆ = id = (id ⊗ ε) ◦ ∆, (10.3)(
m ◦ (S ⊗ id) ◦ ∆

)
(a) = ε(a) 1 =

(
m ◦ (id ⊗ S) ◦ ∆

)
(a) (a ∈ A). (10.4)

It can be shown as a consequence of this definition that the antipode is anti-multiplicative and
anti-comultiplicative:

S(ab) = S(b)S(a), S(1) = 1,

(S ⊗ S) ◦ σ ◦ ∆ = ∆ ◦ S, ε ◦ S = ε.
(10.5)

In the definition of Hopf algebra the flip operator σ entered in the specification (10.1) of the
algebra structure of A⊗A, and this algebra structure is needed since ∆:A → A⊗A is required to
be an algebra homomorphism. In a braided Hopf algebra the role of σ is taken over by some other
bijective linear mapping Ψ:A⊗A → A⊗A, the so-called braiding. The multiplication in A⊗A
is now defined by

(a⊗ b)(c⊗ d) := (m⊗m)(id ⊗ Ψ ⊗ id)(a⊗ b⊗ c⊗ d). (10.6)

The braiding Ψ has to satisfy some further axioms such that multiplication in A⊗A is associative
and comultiplication in A⊗ A is coassociative, which I will not give here. The definition of Hopf
algebra is now precisely as in Definition 10.1, but with modified multiplication rule in A ⊗ A.
Braided Hopf algebras were introduced by Majid, see [27] and references given there. I refer to his
papers for further details.

By way of example consider the braided line A := Cq[x] (see Koornwinder [23, Section 6.8],
Majid [26]). As an algebra it is just the algebra C[x] of polynomials in one variable x, generated
by the element x, and with basis 1, x, x2, . . . . Now let q ∈ (0, 1) and introduce the braiding Ψ by
specifying it on a basis of A⊗A:

Ψ(xk ⊗ xl) := qkl xl ⊗ xk (k, l ∈ Z+).

So for multiplication in A⊗A we will have:

(xk ⊗ 1)(1 ⊗ xl) = xk ⊗ xl,

(1 ⊗ xk)(xl ⊗ 1) = qkl xl ⊗ xk,

(xk1 ⊗ xk2) (xl1 ⊗ xl2) = qk2l1 xk1+l1 ⊗ xk2+l2 .

Hence

(
(xk1 ⊗ xk2) (xl1 ⊗ xl2)

)
(xm1 ⊗ xm2) = qk2l1+k2m1+l2m1 xk1+l1+m1 ⊗ xk2+l2+m2

= (xk1 ⊗ xk2)
(
(xl1 ⊗ xl2) (xm1 ⊗ xm2)

)
,

which proves the associativity.
Note that A ⊗A can be considered as the algebra with generators 1 ⊗ x and x ⊗ 1 and with

relation (1 ⊗ x)(x ⊗ 1) = q(x ⊗ 1)(1 ⊗ x), so it is isomorphic with the algebra Cq[x, y] under the
isomorphisms xl ⊗ xk 7→ ylxk.
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More generally we can make the n-fold tensor product ⊗nA into an algebra by the rule

(xk1 ⊗ · · · ⊗ xkn)(xl1 ⊗ · · · ⊗ xln) = q

∑
i>j

kilj xk1+l1 ⊗ · · · ⊗ xkn+ln .

A simple computation shows that the multiplication is associative. Futhermore, the linear subspace
of ⊗nA spanned by the elements

1 ⊗ · · · ⊗ 1 ⊗ xk1 ⊗ 1 ⊗ · · · ⊗ 1 ⊗ xk2 ⊗ 1 ⊗ · · · · · · ⊗ 1 ⊗ xkr ⊗ 1 ⊗ · · · ⊗ 1

(non-zero powers of x only allowed at positions i1, i2, . . . , ir) is a subalgebra of ⊗nA isomorphic to
⊗rA.

Since the comultiplication ∆:A → A⊗A has to be an algebra homomorphism, it is sufficient
to define it on the generator x of A:

∆(x) := x⊗ 1 + 1 ⊗ x.

Then (
(∆ ⊗ id) ◦ ∆

)
(x) = x⊗ 1 ⊗ 1 + 1 ⊗ x⊗ 1 + 1 ⊗ 1 ⊗ x =

(
(id ⊗ ∆) ◦ ∆

)
(x),

so the coassociativity, being valid on the generator x ∈ A, will be valid in general. If f is a
polynomial in one variable then

∆(f(x)) = f(x⊗ 1 + 1 ⊗ x). (10.7)

For the comultiplication applied to a general basis element xn ∈ A we find

∆(xn) =

n∑

k=0

[n
k

]

q
xn−k ⊗ xk. (10.8)

Indeed, by rewriting the two sides of (10.8) we have to prove that

(x⊗ 1 + 1 ⊗ x)n =
n∑

k=0

[n
k

]

q
(x⊗ 1)n−k (1 ⊗ x)k,

and this is true by the q-binomial formula (2.3) since (1 ⊗ x)(x⊗ 1) = q(x⊗ 1)(1 ⊗ x).
In order to find the counit ε:A → C we appply the first identity of (10.3) to xn and we use

(10.8):

xn = (ε⊗ id)(∆(xn)) =

n∑

k=0

[n
k

]

q
ε(xn−k)xk,

which yields

ε(xn) =
{

0 if n > 0,
1 if n = 0.

(10.9)

Finally we look for the existence of an antipode S:A → A. It turns out that S(xn) is uniquely
found by letting one the identitities of (10.4) (say the second one) act on the basis elements xn of
A. We obtain

S(xn) := (−1)n q
1

2
n(n−1) xn. (10.10)
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Indeed, the second identity of (10.4) yields

n∑

k=0

[n
k

]

q
xn−k S(xk) =

(
m ◦ (id ⊗ S) ◦ ∆

)
(xn) = ε(xn) 1 = δn,0 1, (10.11)

so S(xn) is obtained by recurrence with respect to n. Now the left-hand side of (10.11) with S(xk)
given by (10.10) becomes

n∑

k=0

[n
k

]

q
(−1)k q

1

2
k(k−1) xn =

n∑

k=0

(q−n; q)k

(q; q)k
qnk xn = 1φ0(q

−n; ; q, qn)xn = (1; q)n x
n,

which equals the right-hand side of (10.11). The proof that the first identity of (10.4) acting on xn

also holds, amounts to the same computation as we just gave.
Observe that

S(xm+n) = qmn S(xm)S(xn),

∆(S(xn)) =

n∑

k=0

[n
k

]

q
qk(n−k) S(xn−k) ⊗ S(xk).

Hence
S ◦m = m ◦ (S ⊗ S) ◦ Ψ, ∆ ◦ S = (S ⊗ S) ◦ Ψ ◦ ∆. (10.12)

This can be considered as an analogue of (10.5) for the braided case, where the flip σ is replaced
by the braiding Ψ.

We can reformulate formula (8.31) by using the above comultiplication:

∆(hn(x; q)) =

n∑

k=0

[n
k

]

q
xn−k ⊗ hk(x; q). (10.13)

When we apply m ◦ (S ⊗ id) ◦ ∆ to both sides of (10.13) then we obtain

hn(0; q) =

n∑

k=0

[n
k

]

q
(−1)n−k q

1

2
(n−k)(n−k−1) xn−k hk(x; q).

In view of (9.7) this is just (8.6).
We can extend the above braided Hopf algebra structure of Cq[x] to the algebra Cq[[x]] of

formal power series in x. Then ∆, ε and S are well-defined in a termwise way on Cq[[x]], by using
(10.8), (10.9) and (10.10). For ∆(f(x)), f being a formal power series, we can still use (10.7). In
particular, for ∆, ε and S acting on eq(x) we obtain

∆(eq(x)) = eq(x) ⊗ eq(x), ε(eq(x)) = 1, S(eq(x)) = Eq(−x). (10.14)

The first identity, which was already observed in Koornwinder [23, Section 6.8], follows from (and
is equivalent to) (3.5) since ∆(eq(x)) = eq(x⊗ 1+ 1⊗x) and (1⊗x)(x⊗ 1) = q(x⊗ 1)(1⊗x). Now
it follows from (10.4) and (10.14) that

1 = ε(eq(x))1 =
(
m ◦ (S ⊗ id) ◦ ∆

)
(eq(x)) = S(eq(x)) eq(x) = Eq(−x) eq(x),
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i.e., we have reobtained (3.3).
Formula (9.1) (the translation invariance of the Jackson integral over (−x.∞, x.∞)) can also

be rephrased in terms of the above comultiplication. We will work in a very formal way. Let
∫

be
the linear operator defined by

∫
(f(x)) :=

∫ x.∞

−x.∞

f(t) dqt.

If y is an element with the property that xy = qkyx for some integer k, then y commutes with∫
(f(x)), so

∫
(f(x)) may be considered as a scalar. Now we can rewrite (9.1) as

(
(id ⊗

∫
) ◦ ∆

)
(f(x)) =

∫
(f(x)) 1. (10.15)

Indeed, the left-hand side can formally be written as
∫ x.∞

−x.∞

f(x⊗ 1 + 1 ⊗ t) dqt

and (1 ⊗ t)(x⊗ 1) = q(x⊗ 1)(1 ⊗ t) if t = qkx for some integer k.
Next we will consider the q-Fourier transform Fq defined by (8.22) from the point of view of

this comultiplication. We fix q ∈ (0, 1) and we rewrite (8.22) very formally as

Fy(f(x)) :=

∫ x.∞

−x.∞

eq(−ity) f(t) dqt (y ∈ R).

Then the linear operator Fy, like
∫

, will map to a space of scalars. It follows from (10.15) and
(3.5) that

Fy(f(x)) 1 = (id ⊗
∫
)
(
∆(eq(−ixy))∆(f(x))

)

= (id ⊗
∫
)
((
eq(−ixy) ⊗ eq(−ixy)

)
∆(f(x))

)

= (id ⊗Fy)(∆(f(x)) eq(−ixy)

Now multiply the left-hand side and the right-hand side both by Eq(ixy). Then we obtain

(id ⊗Fy)(∆(f(x)) = Fy(f(x)) Eq(ixy). (10.16)

This formula is a q-analogue of the well-known property of the Fourier transform that
∫ ∞

−∞

e−ity f(x+ t) dt = eixy

∫ ∞

−∞

e−ity f(t) dt.

Formula (10.16) can also be written as

(id ⊗
∫

)
(
(1 ⊗ eq(−ixy)) ∆(f(x))

)
= (id ⊗

∫
)
((

(S ⊗ id) ◦ ∆
)
(eq(−ixy)) (1 ⊗ f(x))

)
.

More generally we have

(id ⊗
∫
)
(
(1 ⊗ g(x)) ∆(f(x))

)
= (id ⊗

∫
)
((

(S ⊗ id) ◦ ∆
)
(g(x)) (1 ⊗ f(x))

)
, (10.17)

which is a q-analogue of
∫ ∞

−∞

g(t) f(x+ t) dt =

∫ ∞

−∞

g(t− x) f(t) dt.

Formula (10.17) is given by Kempf & Majid in [19, (139)] with diagrammatic proof in their Figure
2(b). See this paper also for many further results about Jackson integral and q-Fourier transform
in connection with the braided line.
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11. Further results

In this final section I very briefly mention three further results.
1. Special function identities involving non-commuting variables satisfying relations which may be

more complicated than q-commutation occur very naturally as addition formulas obtained from
quantum groups. A prototype of this is the addition formula for little q-Legendre polynomials,
in the context of SUq(2). See Koornwinder [24], where the formula with non-commuting
variables is next equivalently rewritten in commuting variables. In the context of Uq(n) a
similar but more complicated addition formula in non-commuting variables was obtained by
Floris [14] for q-disk polynomials. Next Floris & Koelink [15] found an equivalent form in
commuting variables of this addition formula. See Koelink [21] for other examples involving
SUq(2) of rewriting addition formulas from non-commutative form into commutative form.

2. Some q-hypergeometric series which are not summable when parameters and argument com-
mute, may suddenly become summable when these variables do not commute but satisfy
certain relations. G. Andrews (private communication) showed me a surprising example of
this involving a m+1φm. Many further results in this direction, often in operational form, can
be found in Bowman [6].

3. The following was communicated to me by A. Yu. Volkov. The second part of formula (3.28)
nicely generalizes to an identity in x, y, c with q-Heisenberg relations (4.1):

(y; q)n (x; q)n =
n−1∏

k=0

(1 − qk(x+ y − yx+ c) + q2kc).

The proof is by induction with respect to n. On letting n→ ∞ and taking the inverse on both
sides, we obtain an addition to Proposition 4.1.

Acknowledgements This paper was written while the author was a guest at the Institute Mittag-
Leffler, Djursholm, Sweden during October, November 1995. I am grateful to the director of the
Institute and to the organizers of the special year “Analysis on Lie Groups” for hospitality. I also
thank G. Andrews, R. Askey, D. Bowman, A. N. Kirillov, C. Krattenthaler, A. Yu. Volkov and S.
L. Woronowicz for helpful remarks.

References

[1] E. Abe, Hopf algebras, Cambridge University Press, 1980.

[2] R. Askey, Abstract of “Extensions of Hermite polynomials and other orthogonal polynomials”,
SIAM Newsletter “Orthogonal Polynomials and Special Functions” 5 (1994), no.1, p.14.

[3] R. Askey, A brief introduction to the world of q, in Symmetries and integrability of difference

equations, D. Levi & P. Winternitz (eds.), CRM Proceedings and Lecture Notes 9, Amer.
Math. Soc., Providence, 1996.

[4] G. M. Bergman, The diamond lemma for ring theory, Advances in Math. 29 (1978), 178–218.

[5] B. C. Berndt, Ramanujan’s notebooks, Part IV, Springer, 1994.

[6] D. Bowman, q-Difference operators and symmetric expansions, in preparation.

[7] J. Cigler, Operatormethoden für q-Identitäten, Monatsh. Math. 88 (1979), 87–105.
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