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1. INTRODUCTION

The expansion of differential (and difference) operators in terms of other
(sometimes more elementary) operators is very old and many authors devoted
a great deal of work to the subject. To give a few examples we consider the
derivative operator D = d/dx and the difference operator 17, 17f(x) = f(x) ­
- f(x-1).

We first recall that most elementary texts on differential equations mention
Boole's identity

(1.1) x nDn=xD(xD-1)(xD-2)"'(xD-n+ 1).

Its finite difference analog is

(1.2) (x)n17 n=xl7(xl7 - 1)(xl7 - 2)· .. (xl7 - n + 1)

where (x), =x(x-l)(x- 2) .. ·(x- n + 1) for n = 1,2, ... , (x)o = 1.
Let ° represents operator composition. Then recently Carlitz [10] proved

n n ~
(1.3) n (xD-x+a+ j) =x-aeXDno(xn+ae-X) = n! L - L(a+k)(x)Dk.

j=l k=O k! n-:«

W.A. Al-Salam [3] showed that if O=x(1 +xD) then

(1.4)

n

on{xae-Xf(x)} =xn+ae- x n (xD-x+ a + j)f(x)
j=l



(1.7)

(1.9)

Gould and Hopper gave [15]

(1.5) j~l (xD+a+j)=x-oDnoxn+o= kt (~)(:~~)(n-k)!XkDk

Burchnall [9] proved

(1.6) (D-2x)n =ex2Dnoe-x2 = kt (_1)n-k(~)Hn_k(X)Dk.

Osipov [23] showed that

{D(x+a)Dr=Dno(x+a)noDn= £ (n) n: (x+a)kDk+n.
k=O k k.

This was later generalized by AI-Salam and Ismail in [6].
N. Meller constructed in [22] an operational calculus for the "Bessel"

operator

d 2 d
(1.8) B=x-uDxu+ID=x - +(a+ 1)-

dx2 dx

Koornwinder [21] in the course of giving an analytical proof of the addition
theorem for the Jacobi polynomial used the operator

d 2 2P+l d
Q --+---

e> dx2 x dx'

which is related to (1.8) by the change of variable x 2 = u. He showed, among
other results, that

(1.10) 22nn !(n + a + l)n(1-x2)UP~u.P)(2x2-1)=Q;;<I-x2)2n+u.

and

Relations of this type are also implied by (1.3), (1.4), and (1.6), namely,

(1.11)

(1.13)

and

(1.12) Hn(x) = (2x - D)n. 1

In addition, Viskov [25] proved that

L(u)(x) = (_1)n eXBne-x
n n!
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and the present writer [2] that

(1.14) L~a)(x)= (_l)n e-Bxn.
n!

Recently there has been an intense interest in q-series and functions. Thus it is
natural to try to obtain q-analogs for some of these operators and their
expansions as well as their relations to some special function. This subject is
also not new. For example Jackson [19] considered (with slightly different
notation) the q-derivative operator

where '1!(X)=!(qx). He proved a q-analog of (1.1) that may be stated in the
form

(1.16)

The last equality follows from a well known theorem of Euler and where we
have used the familiar q-notation

(a; q)o= 1,(a; q)n=(1-a)(1-qa)"'(1_qn-la) for n= 1,2,3, ... ,

(q; q)n

We shall also use the notation

(a; q)oo = ii (1- aqk) for Iql < 1.
k=O

A q-analog of (l.12) was obtained by Cigler [12]

(1.17) hn(x) = (x- qn-1Dq)(x_ qn- 2D
q)· .. (x- D q).l

and the more general formula

(1.18) s~a)(x) = (x- qnb(Dq))(x- qn-1b(Dq)) ... (x- b(Dq)). 1

where b(u) = au + b, a, b are constants. These polynomials are essentially the
polynomial set {U~a)} due to Al-Salam and Carlitz [5]. hn(x) = U~ -l)(x) is a
q-analog of the Hermite polynomials (see [5]).

The present writer gave in I2] a q-analog of the Bessel operator

B=x-aDxa+1D,

namely,

(1.19)
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and showed that

(1.20) B;(a)=(qu+ll1;q)nD; for n=0,1,2, ...

The results (1.3)-(1.7) are combinations of operator identities and Leibniz
formulas. They, as well as (1.10)-(1.14), (1.17), and (1.18), give Rodrigues type
formulas for orthogonal polynomials. In this paper we shall investigate and
obtain similar results that involve sets of orthogonal polynomials that are of
recent interest. In § 2 we define a q-analog of the operator x 2D , study it and
apply it to the q-Laguerre polynomials. Next in § 3 we study a q-analog of the
operator l/xD and then, in § 4 apply it to the q-Bessel functions and q-Bessel
polynomials. In § 5 we apply a fractional power of the operator introduced in
§ 3 to a q-analog of the ultraspherical polynomials. Finally, in § 6, we give a
q-analog of the operator (1.9) that Koornwinder used and give q-analogs of
some of his results.

2. SOME OPERATORS

We consider here a q-analog of the operator x 2D and the more general
operator x(a+xD), namely,

(2.1) Ou=x{(1-qU)+qUxDq } =x(I- qul1)

so that

(2.2) O~x).=(qu + ).;q)nx).+n n=0,1,2, ...

The following formulas can be proved by induction.

(2.3)

(2.4)

(2.5)

(2.6)

Formula (2.3) is a Leibniz formula. (2.4) is a q-analog of a formula, for
a = 0,1, due to H .W. Gould [14]. Formulas (2.5) and (2.6) are consequences of
the identity F(I1)(Xng(x» =xnF(qnl1)g(x).

The operator ()u is particularly useful in dealing with the q-Laguerre poly­
nomials

(qU+1. q) n (q -n. q) q+k(k+I )+k(u+n)
L(u)( I )= ' n ~ , k ~n X q ... ( u+I) .(q; q)n k =O (q; qh q ; q k

4



We get

(2.7)

3. THE OPERATOR ~ o,
x

(3.1)

(3.2)

This is aq-analog of (l.I1) and may be compared with formulas (2.9) and (2.11)
of [2]. These formulas, as is the case with (4.5) and (6.12) but not with (6.6),
have the advantage that they express a special function by a Rodrigues' type
formulas in which the nth power of the respective operators acts on an
elementary function which is independent of n.

Formulas (2.7) and (2.3) imply

(2.8) L~a+P+I)(xlq)=qn(p+l) kt [P;k]q-k(p+l)L~alk(xlq).

A more general formula than (2.7) is

(2.9) 08(X
a+:(X»)= t [n] (q;.q)k xa+k+IL~a)(xlq)08-k",,!(x).

(-x,q)"" k=O k (-x,q)""

1 d
We consider now a q-analog of the operator - -, namely,

x dx

1 1
i5 = - D = - (1 - ,,).

q x q x 2

We show that

-n(n-I) [ ]
i5;f(x) = q 2n t (_I)k n q(n-k)(n-k-I)"kf(x)

x k=O k q2

_ -tn(n-I) -2n ~ (q-n+l; q)k(qn; q)k k n-kDn- k! ( )
-q X I.J q X q X.

k=O (q; qM - q; q)k

The fractional version of (3.1) is

(3.3) i5gf(x)=x- 2a ~ (q-:a; f)k q2k",,!(X)
k~O (q; q )k

where a is any complex number. When a=n a non-negative integer then (3.3)
reduces to (3.1). We remark that fractional powers of the operator i5 are related
to the fractional powers of the q-derivative operator Dq = lIx (1- ,,), which
were considered earlier in several works (see for example [1] and [4]). More
exactly if (see [1])

Iq-af(x)= x-a a ~ qk (q-a; q)k f(xqk),
(1 - q) k~O (q; q)k
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then

0:f(x)=(1-q2)aTx l q-Z af(VX),

where Tuf(u) = f(u 2).

It is easy to verify that

(3.4) oa0/3 =oa+/3q q q

(3.5)

(3.7)

(3.6) o:{f(x)g(x)}= k~O [~t2{tlkO;-kf(x)}{0:g(X)}

where rq(z) is a q-analog of the gamma function which maybe defined by

F. (z) = (q; q)oo (1- q)l-z.
q (qZ; q)oo

All the formulas above can be proved directly. As a sample we give a proof
of (3.4).

Indeed operating on (3.3) by ot we get

otogf(x) = E(q-:a; l()k q2kot{x-2af(xqk)}
k=O (q; q )k

=X- 2a- 2/3 Eq2nf(xqn) I: (q-2a; q2)k(q-2/3; q2)j _20

n=O (q2; q2)n k+j=n (q2; q2)Aq2; q2)k q

_ -2a-2/3 co q2"f(xqn)(q-2a; q2)n [q-2/3,q-2n; q2,q2]
-x I: ( 2. 2) 2f/J1 2a-2n+2 .

n=O q , q n q

The 2f/J1 can be summed by the q-analog of Gauss' theorem

lq - n, b ; q,q ] _ (clb;q)nbn
2 f/J 1 - -'-------'~-

C (c; q)n

and thus we get (3.4).
Another formula that follows from (3.5) is the q-analog of the shift operator

co qk(k-I) (tlx2. q2)
(3.8) Eq 2(tOq )XA= I: (_l)k tkokXA=xA ' 00.

k=O (q2; q2)k q (tqAIx2; q2)00

4. THE q-BESSEL POLYNOMIALS AND FUNCTIONS

Ismail (18] introduced an interesting q-analog of the Bessel polynomials. He
defined them as

(4.1) Yn(xlq2)=qtn(n-I)2f/J1 [ q-n,qn+~;qq, -2qX].
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Let us recall Jackson's q-Bessel functions [18], [20], [24]

(I). _(qv+l;q)oo 00 (_I)k(z/2)v+2k
(4.2) t: (z: q)- L v+I'

(q; q)oo k=O (q; qMq ; q)k

q-Analogs of the sine and cosine functions can be defined in terms of the
q-Bessel functions.

sin (x; q2) = --!.. (q2; q2)00 rJ~I)(X; q2)1
(4.3) x V2 (q; q2)00 t xt J

• 2 _ --!.. (q2; q2)00 [J~~(X; q2)j
(4.4) cos (x, q ) - ,Pi 2 -t

v2(q;q)"" x

Ismail showed that the q-Bessel polynomials are orthogonal and bear the same
relationship to the q-Bessel function (4.2) as the ordinary Bessel polynomials
are related to the ordinary Bessel functions. It is easy to show that

lim Yn('-!-; q) = Yn(x)
q_1 l-q

where Yn(x) are Bessel polynomials.
Using our t5q operator we can immediately prove the following

THEOREM. Let Yn(x; q) be the q-Bessel polynomials defined above, we have

t5n[eq(ax)j = _n2 eq(ax) n (-11 2)(4.5) q q n+ I a Yn 2 q
x x ax

(4.6)

(4.7)
00 t

n
2 ( - 1 ) 00 (2tqx; q2)00 ( - 1)j

L 2. 2 Yn(X; q ) = -; q L. j. 2 -.
n=O (q ,q )n 2x 00 j=o (q, qM2xtq ,q)oo 2x

where eq(x) is a q-analog of the exponential function eX and is defined by
eq(x)= {(x; q)oo}- I. We note that (4.5) is a q-analog of the following formula
of Hadwiger [16]

(4.8) (--!.. !!-)n eax = (_ --!..)neaxx-2n-IL~-2n-I)(-2ax)
x dx x 2

to which it goes as q-+ 1. Formulas (4.5) and (4.7) are new. Formula (4.6) was
obtained by Ismail [18] using different methods.

We first prove (4.5). Consider the left hand side of (4.5), expand eq(ax) and
l/eiax) then use (3.5) and (1.16), we get

x
n

+ I t5nreq(ax)1=
eq(ax) qt x J

00 (-l)jajxj+ n+ IqtjU-I) 00 ak
L L -- t5nxk - 1

j=O (q; q)j k=O (q; q)k q

7



00 qmn(ax)m - n
_(_ )n _n2

'"" {Dm m-n-I( I-m . 2)}- a q i.. qX q x, q n x=1
m=O (q; q)m

2 (-1 )=anq-n Yn _; q2 .
2ax

Since xm- n- l(ql-mx;q2)n is a polynomial of degree m-l then the fourth
equality shows that the infinite series in m stops after m = n. The next equality
is then calculated by term by term q-differentiation then putting x = 1. The
resulting series can then be summed by the use of the q-analog of Gauss'
theorem.

Now to prove (4.6) we see that

Next we consider

(4.10) on+ I \ x 2 ei
ax)l

= aqon{e (ax)} +(1- q)on \ eq(ax)l.

q t x J q q qt x J
Now (4.6) follows if we use Leibniz formula (3.6) on the left hand side of (4.10)
and the relations (3.15) and (3.12).

Finally to prove (4.7) we use (3.5) to show that

00 (- Ilqk(k-l) [e (ax)] 00 a'x!':' (tlx2; q2)""
'"" tksk

-q-- = '""i.. 2 2 u q i.. -.- }-I 2. 2 .
k=O (q; q )k X j=o (q, q)} (tq lx, q )""

This and (4.5) imply (4.7).
For the q-sine and q-cosine functions we have from (4.3), (4.4), and (3.5)

THEOREM

(4.11)

and

(4.12)
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Formulas (4.11) and (4.12) reduce, when q = 1, to similar formulas for the
ordinary sine and cosine functions in terms of the Bessel function [26, p. 364],
[16].

5. A q-ANALOG OF BILODEAU'S FORMULA

Another interesting application of the l5q-operator is to find a q-analog of
the following formula for the ultraspherica polynomials due to Bilodeau [8]

(_l}n+lx(n+3),'1r ( 1 )A.+n++
(5.1) pA.(x) = V" -D [(1_x)n+lxA.++n-I]

n 2A.-+(n+1)!T(A) x x

valid for A> -1/2, A*0 and where D; is the fractional differentiation
operator which, in this case, may be defined as

A. P T(fJ+ 1) p-..1.Dx= x
x T(fJ-A+l} ,

We show in this section that a q-analog of this formula exists. It is

(5.2)

where p~A.)(x; q) is a q-analog of the ultraspherical polynomials due to An­
drews and Askey [7].

To prove the assertion stated after formula (5.2) we consider

x" + 3l5~ +A. +t[xn+2A. -2(xq -n-A. + +; q)n+ rl

which appears on the right hand side of (5.2). Expand (xq-n-A.+t; q)n+1 using
Euler's formula

(a;q)n= k~O (_l)k[;]qtk(k-l)ak,

then operate term by term by l5~+A.-+ and use (3.5) we get that the above ex­
pression is

n+l [1] (q-l-n+k. q2)
~ (_l)k n+ q+k(k-2n-2A.) ''''' xk

k=O k (qk+n+2A.; q2)""

i (_l}n-k[n+1] t<n-k)(-k-n-2..1.) (q-l-k;q2)"" xn-k
k=O k+ 1 q (q2n+2A.-k; q2)"" .

The infinite product in the numerator vanishes unless k is even. After some
simplifications and reductions we can now show that

(5.3)
( 2A.. 2) [-n -n+l. 21/ 2]p(A.)(x. ) _ q ,q n x" '" q , q , q, X

n ,q - ( ) 2'1'1 2-2n-2A. .q; q n q
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This polynomial satisfy the three term recurrence relation

(5.4)

(1 - q" + I )p~).ll (x; q) = (1 - qU + 2n)Xp~).)(X; q)­

_(I_qu+n-l}qu+n-2p~).~I(x;q)

l_ q 2)'

pf/)(x; q) = 1, P~).)(x; q} = -1-- x.
-q

This can be verified by equating coefficients of x" in (5.4).
It is now easy to see that these polynomial set is a special case of the big

q-Jacobi polynomials of Andrews and Askey [7]. Indeed we have

-n( u. q) [-n n+U . ](5.5) p().)(.)- q q, n l/J q,q .qx; q,q
n x, q - (q; q)n 3 2 qA+!, _q).+!

which also satisfy (5.4) and the initial values.
I am indebted to a referee for pointing out that they can also be given in terms

of the little q-Jacobi polynomials (6.4). In fact we have

(qu. q2) qn(n+2).-2)
P~n(x;q)= ' ( n 2) Pn(X2q3-U,A-t,-t;q2)

q;q n

( U. 2) n(n +U - 2)
). . _ q , q n+lq 2 3-2), 1 1 I. 2

P2n+I(X,q)- ( . 2) XPn(X q ,A-2,2,q ).
q, q n+1

For orthogonal polynomials that are built in a similar fashion from two other
sets of orthogonal polynomials see [11, pp. 40-43].

6. THE q-JACOBI POLYNOMIALS

We get now a q-analog of Koornwinder's formula (1.10). We start from our
formula (1.20) which is a q-analog of (1.8). We define

[
1 q2c+I J 1

(6.1) A (c) = q2c+ID2+ - D = - (1- «": I,,)D .
q q x q x q

So that

To realize the relationship between A q and Bq operators we note that, in
particular, Tq,,=,,2. We also have Tx Dq2=1/xDqTx and Tx"2=,,Tx '

Thus
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Using this relation we get

(6.3) A;(c)Tx =t; iI (l_q2c+2k'1 2)D;2.
k=1

We next recall the little q-Jacobi polynomials [17]

. _ (_l)n(qP+l; q)n [q-n,qn+a+p+l; q,X]
(6.4) Pn(x, a, P, q) - (.) 2f/>1 P+1 •

q, q n q

This is a q-analog of the Jacobi polynomial p~a·P>(2x-I).

We now give the following formulas for the little q-Jacobi polynomials.

(6.5)

(6.6)

Iterating (6.6) we get

(6.7)

Formula (6.7) is a q-analog of (1.10). Formulas (6.5)-(6.6) are q-analogs of the
formulas [21, (2.4), (2.5)] that Koornwinder also gave.

Next we note that since

P
(

I - X2) (1 +a) [ -n -n-p· _X2]
(I+x2)np<a. ) __ = n F ' , ,

n 1+x 2 n! 2 1 a + 1

we may take for its q-analog the polynomial

(6.8)

(q2a+2; q2)"" [q-2n,q-2n-2P; q2, _X2]
fn(x; a,p,q) = ( 2. 2) ( 2a+2n+2. 2) 2f/>1 2a+2

q,qnq .a»; q

(_l)n 2 • 2
= 2a+2n+2. 2 Pn(-x,-2n-a-p-I,a,q).

(q ,q )""
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(6.9)

From this we immediately obtain

{

Aq(a)!n(x; a, P, q) =

= _q-4n-2P(l_q2n+2a)(l_q2n+2P)!n_I(X; a,p,q),

which is a q-analog of [21, (2.10)]. To get a q-analog of

(6.10) (l +x2)-n-a-p-Ip~a.PlC:;~)

we first transform the 2¢1 in (6.8) by means of the Heine's transformation

'" [a, b; q, Z] _ (abz/c; q)oo [c/a, c/b; q, abZ/c]
20/1 - 2¢1 •

c (z; q)oo c

We thus get a q-analog of the function (6.10)

(_x2; q2)00

(
2 -4n-2a-2p-2. 2) !n(X; a,p,q)

-xq ,q 00

(q2a+2 q2)00

This formula now leads to

which is a q-analog of [21, (2.11)].
Lastly if we iterate (6.11) we get the q-analog of (1.l0b), namely,
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