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Abstract

We translate the concept of succession rule and the ECO method into matrix notation, introducing
the concept of groduction matrix Among other things, we show that certain operations on pro-
duction matrices correspond to well-known operations on the numerical sequences determined by
them.

0 2004 Elsevier Inc. All rights reserved.

1. Introduction

Infinite matrices are the forerunner of many branches of classical mathematics (infi-
nite quadratic forms, integral equations, summability, etc.) and modern operator theory.
Moreover, the idea of translating a combinatorial theory into a theory of infinite matrices
is nowadays a current trend in discrete mathematics. To confirm this statement, we cite Ri-
ordan arrays [13,22,24,25,27], recursive matrices [8], Aigner’s admissible matrices [1,2].
In this paper, we propose yet another inseotthis bent; namely, we propose a possible
translation of the concept of succession rule, and hence of the ECO method, into matrix
notation.
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The ECO method, introduced by Renzo Pinzani and his collaborators, is a constructive
method to produce all the objects of a given class, according to the growth of a certain
parameter (theizg of the objects. The roots of the ECO method can be traced back to the
paper [11], where the authors study Baxter permutations: for the first time, a combinatorial
construction is presented which can be described by means of a generating tree (see below),
as it usually happens for every ECO construction. Basically, the idea is to perform local
expansions on each object of sizethus constructing a set of objects of the successive
size. This construction should induce a partition of all the objects of any given size (that
is, through the ECO construction, all the objects of a given size are produced exactly once
from the objects of immediately lower size). If an ECO construction is sufficiently regular,
then it is often possible to describe it usingw@ccession rulewhose definition is given
in Section 2. This concept has been first introduced by Julian West in [29,30], and only
later it has been recognized as an extremely useful tool for the ECO method. Intimately
related to the concept of succession rule is the notiageokrating treewhich is the most
common way of representing a succession rule. The main applications of the ECO method
are: enumeration [6], random generation, [@hd exhaustive generation [3,12] of various
combinatorial structures. For all these topics we refer the reader to the rich survey [5].

A significant contribution to the study of succession rules from the point of view of
generating functions has been given in [4]. The authors focus on the relationship between
the form and the generating function of a succession rule, and then provide a classification
of rules asrational, algebraig or transcendentalaccording to their generating function
type. More recently, some algebraic propestid succession rules have been determined
in [14,15,20].

The main idea of our work is to define and study the properties of at least two kinds
of matrices associated with a succession rule. The first one, qatbeldiction matrix is
directly deduced from the succession rule, whereas the second orleC@enatrix is
essentially the matrix describing the distribution of the labels within the generating tree of
the rule. Whereas an ECO matrix has a deep internal structure, a production matrix can
be quite freely chosen among the infinite matrices with nonnegative entries. Moreover, the
knowledge of the production matrix related to a succession rule allows us to easily find the
associated ECO matrix. For these reasons, our attention will focus mainly on production
matrices and their properties.

We wish to point out that this is not the first attempt to define a matrix counterpart of
the notion of succession rule. West [29,30] first perceived the idea of a production matrix
(he speaks dfransfer matriy, but never made use of it, nor gave a precise definition. The
concept of ECO matrix was first introduced in [18] (under the namA&®F matri®, where
some properties were also studied, mainly from the point of view of Riordan matrices. We
intend to investigate the relationship between the Riordan theory and production matrices
in a forthcoming publication.

The main goal of our approach is to provide a representation of succession rules that
is more suitable for computations. In Section 3 we define some operations on production
matrices in order to reproduce well-known operations on the numerical sequences they
represent. This leads to the determination of the generating functions of such sequences,
often more easily than it was previously done by other methods (see [4,5,15]). Throughout
the whole paper, a huge amount of examples are described or just sketched. We believe
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that the possibility of dealing with so many concrete cases is a peculiarity of our matrix
approach and a good reason to pursue this investigation.

We will use the following more or less stdard notations for the generating functions
of the Catalan, large Schréder, and small Schréder numbers:

1- V1%
CzTZ=1+z+212+513+14z4+42z5+---,

Catalan numbers (A000108);

1-7-Vi—6:+22
R=2_% - 142 4+6:2 4223+ 904 43945+ ...,

large Schréder numbers (A006318);

14z-+/1-6z422
B 4z
small Schréder numbers (A001003);

s =1+424+37+113+ 45+ 197+ -,

Throughout the paper thesAsx*x number between parentheses following a sequence
is the identification number of that sequenn [26]. Most of the matrices we are going
to consider are infinite; their lines (rows and columns) will be indexed by nonnegative
integers, and we will write “line 0” to mean the first line, “line 1” to mean the second line,
and so on.

2. Basic definitions

A succession rule is a formal system consisting of&iom (a), a € NT, and a set of
productions

{(k) ~ (extkn) (e2(kp)) - -~ (ex, (kn)): 1 €NJ,

wheree; :NT — NT, which explains how to derive th&uccessorges (k)), (e2(k)), ...,
(ex (k)) of any given labekk), k € N*. In general, for a succession rui2, we use the
more compact notation:

@
2: { k)~ (e100)) (e2(k)) - - (ex (). @

(a), (k), (ej(k)), are called thdabelsof 2 (wherea, k, ¢; (k) are positive integers). The
rule £2 can be represented by means géaerating treethat is a rooted tree whose vertices
are the labels of2; () is the label of the root and each node labgledchask sons labeled
by e1(k), ..., ex (k) respectively, according to the production (@} in (1). A succession
rule 2 defines a sequence of positive integers),, >0, a, being the number of the nodes
at leveln in the generating tree determined 2 By convention the root is at level 0, so
ao = 1. The functionfg (x) = 2,120(1,1)6" is thegenerating functiomletermined by2.
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In this paper we propose a different approach for the study of succession rules, based
on linear algebra tools.

Instead of representing succession rules &yegating trees, we represent them by ma-
trices P = (pi,i)x,i>0. Assume that the set of the labels of a succession ru{€ig,
and in particular thafp is the label of the axiom. Then we defipg ; to be the number
of labels/; produced by labél,. We call P the production matrixof the given succession
rule. Observe that the first row of a production matrix gives precisely the production of the
axiom.

The labels do not occur explicitly in this matrix representation of the succession rule.
However, they are the row sums of the matrix. In particular, the lgtefithe axiom is the
first row sum ofP.

Example. To the succession rule

%)
2~ (32 (2)
(k) ~ )@ - - (k) (k + 1)2

there corresponds the production matrix

3)

- OO0 OO0
TR R RPN
PP DNO
P NOO
"N OOoOOo

Writing the succession rule as

2) ~ (2232,
(3 ~ 2°3)1»7?,
% ~ 2°3)1 (@152,

the matrix P is nothing but the matrix of the exponents (where an exponentis zero if and
only if the label it refers to does not appear in the production).

In the generating tree (see Fig. 1) at level zero we have only one node withidabel
(=2). This is represented by the row vector

ro=(1 0 0 0 0 0 0 ...).

At the next levels of the generating tree, the distribution of the lahels, . .. is given
by the row vectors
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(3)/ (2)\(3)
(3)/ (4)\(4) (3)/ (4)\ 4)
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Fig. 1. The first levels of the generatingerassociated with the succession rule in (2).

rn=rpP=(0 2 0 0 0 0 0 ...,
rp=riP=(0 2 4 0 0 0 0...),
r3=r2P=(0 6 8 8 0 0 0 ...),

Stacking these row matrices, we obtain the matrix

Ap=

-oo0o0o0opRr
"Nonvrvo
-gooboo
"Noooo
‘P oooo

The row sums of the above matrix are2l6, 22, 90,394, 1806..., i.e. the large
Schrdéder numbers. This is the sequenceasponding to the succession rule of our ex-
ample. The enumerative properties of thiecession rule have been examined in detalil
in [5]. We also recall that matrices likap (where the entry(n, k) gives the number of
nodes labelled, at leveln of the generating tree) were also studied in [18], where they
have been called AGT matrices. In general, we will refet joas theECO? matrixinduced

by P.

Remarks. Let P be the production matrix of a given succession leThroughout the
whole paper we will denote by the row vector1 00...) and bye the column vector
(111...)7 of appropriate sizes. The following facts are easy to verify, so many of them
will be stated without any further explanation.

2 ECO stands for Enumeration of Combinatorial Objects (see [5]).
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(i) The labels of the nodes of the corpemding generating tree are the row sumsPof
If two row sums happen to be equal, then, as labels, they will be considered to be
distinct. This can be achieved by using, for example, distinguishing subscripts; in the
vocabulary of succession rules, these are caltddred succession rulg$4].

(i) The distribution of the nodes having various labels at the various levels is given by
the ECO matrix

MT

ul P
APZ MTPZ

(indeed, we haveg = u',r1 =rgP =u' P,ro =riP =u' P2,...). The same fact
can be expressed in a concise way by the matrix equality

DAp=ApP, (4)

whereD = (§; j11);,j>0 (6 is the usual Kronecker delta). In some sources [19,24] the
matrix P is also called thé&tieltjes transform matrix od p.

(iif) The sequencéa,),>o induced by the succession rule is givendyy= u' P'e.

(iv) The bivariate generating function of the matry is

1

t
Gt,)=u"(I—zP)"*| 2

(v) The sequence corresponding to thecgssion rule has generating function
fr()=u'(I—zP) Le.

The above expression for the generating functjpriz) can also be derived with a
graph-theoretic argument. Consider the directed graph whose nodes are the labels of
£2 and havingP as its adjacency matrix. The paths in this graph that start at the
root-vertex (corresponding to the first row sum®¥ are basically the walks in the
combinatorial interpretation of generating trees proposed in [4] (i.e. walks on the
integer half-line starting at a fixed point and such that the only allowable transitions
are those specified by the rule). Then, taking into account the well-known property of
the adjacency matrix of a directed graphdonnection with the number of paths of

a given length between two vertices, it follows at once thaP"e is the number of
nodes at leveh in the generating tree. Namely, tkg j)-entry of P" is the number

of noded/; at leveln. Since we are interested only in walks that start at the root, we
retain only the first row of the matriR” forn =0, 1, 2, . ... From these rows we have
formed the matrixA p.
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(vi) The sequence corresponding to the sgs@n rule has exponential generating func-
tion

Fp(z)=u' expzP)e.

Example. We intend to find the sequence induced by the production matrix

e NeoNoNoNo
c OO0k
O ONNO
T O WwWwoOo
A BMAOOO

Denoting by P, the upper leftn by n submatrix of P, it is not difficult to compute
the exponential of the matrixP,, since it is an upper triangular matrix. The eigenval-
ues of P, are easily seen to be the nonnegative numbets®3,...,n — 1, each with
multiplicity 1. Thus we have immediately egpP,) = C exp(zD,)C 1, whereD, is the
diagonalization ofP,, so that exfxD,) = (8,-,je"1)0<,~,,-<,,, andC is a suitable invertible
matrix. More precisely, simple computations show tas an upper triangular matrix in
which the(i, j)-entry is the binomial coefficient). This implies that alse ~* is upper
triangular and itgi, j)-entry has the forng—1)/* ({) Now the computation of the first
row of exp(z P,) is immediate, and we find for it

(1 -1 (€-1% (-1 ... (-1 1.

Taking the sum of these entries and letting> oo, for the exponential generating func-
tion induced byP we obtainGp(z) = 1/(2 — €%).

The corresponding sequence jd.13, 13, 75,541, 4683 47293 ... (A000670; ordered
Bell numbers) and counts the number of ortkepartitions of a set. The succession rule
corresponding t&® has the form

1)
L%+nvw%+nh%+$ﬂ¥

This rule suggests a simple ECO-construction for ordered set partitions. Take a positive
integern and consider an ordered partition [@fl = {1, 2, ...,n}, saynr = (B1,..., By)
(the B;’s are the blocks of the ordered partition). We can construet 2 ordered partitions
of [n + 1] starting fromyr in the following way:

e addn + 1 to each of thé blocks ofr, so obtainingc ordered partitions offn + 1];
e insert the blockB = {n + 1} either betweerB; and B;1, for i < k, or beforeB; or
after By, so obtainingc + 1 ordered partitions dfz + 1].
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For instance, starting from the ordered partitiofl, 2}, {5}, {3, 4}), we get the
seven ordered partitionil, 2, 6}, {5}, {3, 4}), ({1, 2}, {5, 6}, {3, 4}), ({1, 2}, {5}, {3, 4, 6}),

({6}, {1, 2}, {3}, {3,4}), ({1, 2}, {6}, {5}, {3, 4}), ({1, 2}, {5}, {6}, {3, 4}), ({1, 2}, {5}, {3, 4},
{6}).

It is immediate to verify that, if we perform this construction on all the ordered parti-
tions of [n], we obtain all the ordered partitions pf + 1] exactly once. This provides a
combinatorial interpretation of the production matfAxFor the ECO method and the idea
of an ECO-construction, we refer the reader to [5].

We close this section by recalling a concept first defined in [15] which is closely related
to that of the production matrix. Given a succession M@les in (1), therule operator
associated witl®2 is the linear operatat = L; defined on the vector space of polynomials
in one variable with coefficients in a given field as follows:

L. 1 x%,
xk s xaa® g e ®)

x" — hx", ifthe label(h) does not appear if2

(then extend by linearity). It is easy to see that the production magif §2 is the matrix

of Lo with respect to the basis};, wherek runs over the set of labels @2. In other
words, Pg; is the matrix of the restriction df ;; to the subspace generated by those powers
of x whose exponents are the labels®f Therefore, the theory of production matrices is
a sort of concrete counterpart of the theoryweéroperators. The main advantage in using
matrices lies in a better possibility for computations.

3. Operationson production matrices

In this section we will define some operations to be performed on production matrices
in order to describe usual operations on humerical sequences. For instance, we will give
an explicit expression of the production matrix of the sum of two sequences in terms of
the production matrices of the starting sequences. The same thing will be done for many
other operations. Many ideas developed in this section have been suggested by [14,20];
we provide a translation into the vocabulary of production matrices, as well as a probably
more rigorous presentation, of the results proved in the above mentioned articles; we also
propose some new ones.

In the sequel we will writeP — ag, a1, az, . .. to mean thata,),>o is the numerical
sequence determined by the production mafRixLikewise, expressions such & —
(an)n=0, P — fp(z), have similar meanings.

Proposition 3.1. If P — ag, a1, az, ..., then

def (O u'
M_<O P)—)l,ao,al,az,....
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First proof. The powers of can be immediately computed:

n_ 0 uTPnfl
M _<0 pn , n>0.

Hence, for the ECO matrid ), induced byM we obtain

ul 1 0
u' M 0 u'
Ap=|uaTm2|=|0 uTP
ul M3 0 u'P?
From here it follows at once that the row sumsAyf are 1 ag, a1,a2,.... O
Second proof. We have
_ 1 zu'(I—zP)™t
[—zM) 1=
( Z ) <O (I—ZP)il

Now, fy(z) =1+ ' (I — zP)_le =1+4+zfp(z). O
Proposition 3.2. If P — fp(z) andk is a positive integer, thekhP — fp(kz).
Proof. Using generating functions, we haygp (z) =u' (I — zkP) " te = fp(kz). O

Proposition 3.3. If P — (ax)n>0, then

n
def n
M=P+1 E s
L (k—O <k)ak)

the binomial transform ofa,,),, >o0.

Proof. Thenth term of the sequence determined Myis u ' (P + I)"e. Expanding the
binomial, we obtain

n n
uT(P+I)"E=Z(Z>MTPke=Z(Z>ak. O
k=0 k=0
Example. We intend to find the sequence induced by the production matrix

1100

Q

Il
- oo0o
-oopRr
TORN
B wo
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We remark that the succession rule corresponding twas been studied in [4,15]. Let
us consider the production matrix

P=Q-1I=

[cNeoNeoNe
OO0
O ONO
T O WwWoo

It is easy to find the matrix/ — zP)~L. Its first row is(0! 1!z 2!z2 3!z3 ...) and,
consequently, the induced generating function is the formal power @jg@n!z”.

Clearly, the corresponding sequen¢e),>»o has exponential generating function
1/(1 - z). Applying the above proposition, we cdode that the exponential generating
function induced by the production matr@X= P + I is ¢*/(1 — z). Here we use the fact
that, if the exponential generating function of a sequenci(ig, then the exponential
generating function of the binomial transformeisf'(z).

Therefore theith term of the sequence determined by the production matrig the
total number of injections into atrset, also calledrrangementsThe statistic determined
by the matrixAy associated withQ gives thefalling factorials (), = k!(}}) (number of
injections of ak-set into am-set).

Proposition 3.4. If P — ag,a1,az, ..., then P! — ag,aq,az,, az,, . ... In particular,
P2—>ao,a2,a4,....

Proof. Let A and B be the matrices induced by and P4, respectively. Then the rows of
Bareu',u" P4,u" P2 .. . which are rows 0g, 2g, ... of the matrixA. Consequently,
the row sums oB areag, a,, azy,azg,.... O

Example. We take the production matrik = (2 1) which induces the Fibonacci sequence
1,1,2,3,5,8,13, 21, 34, 55, ...0A0045). This example was first considered in [29,30].
Then P? = (17) induces the odd-subscripted Fibonacci numbers 1, 2, 5, 13, 34, 89, 233,
610, 1597, 4181,..(A001519).

Proposition 3.5. If P — ag, a1, az, ..., then

0 u'P
0 p2 —1,a1,a3,as, . ...

Proof. This is a straightforward consequence obpositions 3.1 and 3.4, since the block
matrix in this proposition is the squaoéthe block matrix of Proposition 3.1.00
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Example. Starting again with the production matrix of the Fibonacci sequence (see the
previous example), we obtain that the production matrix

0 0 1
(0 1 1)
01 2

induces the sequence 1, 1, 3, 8, 21, 55, 144, 377, 987, 2584A001906), i.e. the se-
guence of the even-subscripted Fibonacci numbers preceded by a 1.

Until now we have considered one numerical sequence and we have performed some
“manipulations” on it, leading to anoth@umerical sequence. For each of these “manip-
ulations” we have determined the corresponding algebraic operation to be performed on
the production matrix of the sequence. In the sequel we will deal with two numerical se-
guences, and we would like to describe what happens to production matrices when we
consider usual algebraic operations on trgusaces (like, e.g., sum, various products, and
so on). To do so, we need to tackle a technical problem. If the production matrices of the
sequences under consideration are both infinite, it could be meaningless to consider block
matrices in which some of the blocks are the production matrices above. For exaniple, if
andQ are infinite production matrices, then the expression

0O P
(0 Q) (5)

does not define a matrix (not even an infindtee), because of the presence of the infinite
matrix P as a block in the upper part of the array. We will make up for this predicament by
reshuffling the lines of the two production matrices. Observe that a sequence defined by a
given production matrixP is determined up to a permutation of its rows, provided that

(i) the first row remains fixed,
(i) every permutation of the rows is followed by the same permutation of the columns.

Indeed, the first row must not be moved, since its sum denotes the label of the axiom of
the associated succession rule or, equivalently, the second term of the associated sequence
(after the starting 1). Moreover, since the lines (rows and columns) of a production matrix
are indexed by the labels of the associated succession rule, it is clear that we can list them
in any order.

Therefore, every time we will be faced with an expression like (5), it will be tacitly
understood that we consider the matrix obtained by suitably shuffling the lireswod Q.
More precisely, we define a matrix as in (5) to be the one obtained by alternating the lines
of P andQ.

After these considerations we can start dealing with binary operations.
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Proposition 3.6. If P — 1,a1,a2,...andQ — 1, b1, by, ... then

def O u'P u'Q
M=e<0 P 0 >—>1,a1+b1,a2+b2,.... (6)

0 0 ©

Remark. Observe that, in general, the matrix in (6) makes sense only thanks to the above
considerations. More preciselyf is constructed as follows. The first line &1 starts
with a zero, then the (possibly infinite) row vectar§P andu ' Q are shuffled. Next, the

submatrix(g 8) is constructed by stacking:2 2 blocks of the form( "/ l](i)j ), wherep;;
andg;; are the(i, j)-entries of the matrice® and Q, respectively.

First proof. Taking into account thak ' M* = (0 u"P* uT Q%), for the matrix Ay,
induced byM we obtain

1 0 0
0 u'P u'Q
AM = 0 MT P2 MT Q2
From here it follows at once that the row sumsAf are 1 a1 + b1, a2+ bo,.... O

Second proof. We have

1 u'ld—zP)1=11 u"[I-z0)1~1]
(I—zM)71= (* * * >,
* * *

where the entries not shown are irrelevant. Now, taking the first row sum of this matrix, we
obtain at once that

m@=utd—zP) te+u’(I—2Q)re—1=fp(@)+ fo() -1 O
Example. Consider the production matrices

0 0 1
P:(i ;) and Q:(O 1 1>
01 2

from the previous two examples, inducing the sequences 1, 2, 5, 13, 34, 89, 233, 610, 1597,
... of odd-subscripted Fibonaccinumbersand 1, 1, 3, 8, 21, 55, 144, 377,987even-
subscripted Fibonacci numbers preceded by alike®rve that, in this particular case, both

P andQ are finite matrices. So it is not necessary to shuffle the lings afd Q, and the
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block matrixM in (6) can be interpreted as usual, without further assumptions. Therefore
we have immediately that the production matrix

01 100 2
011000
01 2 000
0 00 0O 1
0 00 011
0 00 01

induces the sequence 3 8, 21,55, 144, ... of the even-subscripted Fibonacci numbers
(that is, almost the same as the sequence induce@)byhe row sums of this matrix are

3, 2, 3, 1, 2, 3 and, therefore, the labels g (2), (3), (1), (2), (3). Note that nodes of
label 1 are not produced at all (the corresponding column, i.e. column 3, contains only Q's)
and, consequently, we can delete row 3 and column 3 of the above matrix.

In this very simple case, however, we can easliigw that the succession rule associated
with the production matrix is unnecessarilynaplicated. In fact, the form of the rule is the
following:

@ L
2~20d,  @~Q@0., . (M
@~ 23B. B~23B, @~QOO.

Therefore, it is clear that we can avoid the use of colors, thus obtaining the rule

{ 3
2~ @R, ~2AM),
corresponding to the production mat(i% i)

Proposition 3.7. If P — ag, a1, az, ... and Q — by, b1, b2, ... then

def [ P euTQ
M_(O 0 >—>co,c1,cz,...,

where(c,), >0 is the convolution of the sequendes),>o and (b,),>0.

Proof. Set(/ —zM)~1=(¥"). From the simple equality/ — zM)~*(I —zM) =1, it
follows thatX (I — zP) =1, —zXeu' Q + Y (I —zQ) = 0. Solving these equations, we
obtainX = (I —zP)™%, and

Y=z(I —zP) teu' QU —z0) 1=U —zP) teu" (zQ — I+ DI —z0) L
= —zP) teu' [ —zQ) Tt~ 1].

Now,
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fu@=u"(I—zM) e

T O)((I_ip)l (I—zP)1euT[(1—zQ)l—1]>(z)

*
=u' (I —zP) reu" (I —zQ)Ye = fp(2) fo(2),

the generating function of the convolution@f,),>0 and(b,),>0. O

Example. Taking for bothP and Q the matrix(g 1) corresponding to the Fibonacci se-
guence 11,2, 3,5, 8, 13,21, ..., we obtain the production matrix

that induces the convolution of the Fibonacci sequence with itself, i.e. 1, 2, 5, 10, 20, 38,
71, 130, 235, 42Q,.. (A001629).

Proposition 3.8. If P — ag, a1, az, ..., then

def(1 u'P
M=e<O uP )—)ao,ao+a1,ao+a1+a2,...,

the sequence of the partial sums@f),,>o.

Proof. This statement can be viewed as a dany of Proposition 3.7. Indeed, the se-
guence of the partial sums of a sequenges the convolution of that sequence with the
sequencél, 1,1, ...), the latter having1) as its production matrix. O

Example. We take the production matrik = ((1) 1) which induces the Fibonacci sequence
1,1,2,3,5, 8,13, 21, 34, 55,. (A000045). Then

1 01
M:(O 0 1)
011

induces the sequence of partial sums 1, 2,4, 7, 12, 20, 33, 54, 88, 1¢48)00071). Note
that these are the Fibonacci numbers minus 1, as it is well known.

Proposition 3.9.If P — ag, a1, az,...andQ — b, b1, b2, ..., thenP ® Q — agbo, a1b1,
azbs, ..., where® denotes Kronecker product.

Proof. Once again, observe that the Kronecker product is well-defined only if atdeisst
finite. Otherwise we have to reshuffle the linesifas we have already done for sum and
convolution. In terms of rule operators,fifand N are the rule operators associated with
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P and Q, respectively, therd/ is the matrix of the Kronecker produtt® N defined on
the tensor produck [x] ® K [x] as follows:

L®N:K[x]® K[x] — K|[x]

" @ x* — LN 5.

For the proof we recall some simple properties of the Kronecker product, namely that
(U®V)"=U"® V" and that the first row sum of a Kronecker proddtt V is the
product of the first row sum off and the first row sum o¥ (both these facts are easy to
show, and have a counterpartin terms of linear operators). Now,)if o is the sequence
induced byP ® Q, then

h=u' (PRQ)V'e=u'(P"® Q")e= (MTP”E) (MTQ”e) =auby. ]

Example. Taking for bothP and Q the matrix(g 1) corresponding to the Fibonacci se-
guence, we obtain the production matrix

000 1
001 1
PoP={y 1 01
111

of the sequence 1, 1, 4, 9, 25, 64, 169, 441, 1156, 30254A007598) of the squared
Fibonacci numbers. However, we can perform a sort of “contraction” on thi$ dhatrix to
obtain an equivalent 3 one (to mean that, as production matrices, they induce the same
sequence). More precisely, we can procasdollows. Given any production matrig,
consider two rows having equal sum. In terms of succession rules, this means that we have
two different labels denoted by the same positive integer but having different productions,
say (k) and(k) (in other words, we are dealing with a colored rule; see [14] for a detailed
description of colored rules). Next sum up the two columnsPoforresponding tak)
and(k). In this way we obtain a matrix which describes a rule identical to the previous one,
except that nowk) and (k) become indistinguishable when they appear in the production
of any other label. Now, if it happens that, in the modified matrix, the rows corresponding
to (k) and (k) are identical, it means that they are indistinguishable even as “fathers,” so it
is possible to delete one of the two rows from the matrix. In the present example, rows 1
and 2 have equal sum, so we sum up columns 1 and 2, obtaining the matrix

mOoOOoOo
N R RO
PR R
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Now, since rows 1 and 2 af’ happen to be identical, we can delete one of them. This

leads us to the matrix
0 0 1
P’ = (0 1 1) ,
1 2 1

which is smaller than but equivalent B® P.
Theorem 3.1. If P — fp(z) andk is an integer, then

fr(2)

M=P+keu — —2°
1—kzfp(z)

Remark. Here P is modified by adding to each entry in the first column; it is assumed
that in the case thdtis negative P + keu " is still a nonnegative matrix.

Proof. DenotingX = (I —zP) Y, Y = (I — zP — kzeu")™1, we havefp(z) = u' Xe,
fu@ =u'Ye.ltiseasytoseethat (I —zP)=1,1+kzeu'Y = (I —zP)Y. Now, we
have successively
kzfp(z) fu(z) =kzu' Xeu'Ye = uTX[(I —zP)Y — I]e
= uTX(I —zP)Ye — u'Xe=u'Ye— uTXe,

i.e. kzfp(2) fu(z) = fm(z) — fp(z), which is equivalent to the assertion of the theo-
rem. O

Remark. Using the previous theorem and making use of the identities

S S-1 R c-1 C

T 1-2z8 z  1—2zR’ 7z  1—zC

one can easily derive production matrices inducing the left-hand sides of these relations
from production matrices fa$, R, andC, respectively.

Proposition 3.10. If P — fp(z) then

2y 2 (O u' L1
“\0 P+eu' 1—zfp

Proof. This follows at once from the previous theorem (ko 1) and Proposition 3.1.
Indeed, the previous theorem gives a production matrix indugi1l — zfp) and then
Proposition 3.1 gives the production matik, inducing 14z fp /(1 — zfp). O
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Example. We take the production matriR = (1) which induces the sequencelll, ...
having generating function/11 — z). Applying Proposition 3.10 t@, we find that

01y _1
0 2) 1=

1z
By iteration we obtain that
010
ot 1 forio),
012 Tz 0 1 1 1) 1-p—=—"
1=z 0 1 1 -1
and so on. In the limit,
01 00 0.
0110 0.
011 10. def 1 —+/1—4z
01111.. |>C@=—7F—
01 1 1 1.

the generating function of the Catalan numbers 1,1, 2, 5, 14, 42, 132,.428000108).
The generating functions induced by the finite production matrices of érdep (dis-
played above fok: < 4) count the number of ordered trees of height at noiee, for
example, [10,23]), or of Dyck paths of height at magsee [21]). For an interpretation of
the Catalan functiod'(z) as a continued fraction, see [16].

The next result uses the techniques developed throughout the paper to provide a new
class of operations on production maés$ (and so also on succession rules).

Theorem 3.2. Letb, ¢, andr be nonnegative integers. K — fp(z) then

def (b ru' 1+rzfp(z)
M = — .
ce P 1—bz—rcz2fp(z)

Proof. Let (I —zM) 1= (f >:) where the entries not shown are irrelevant. By consid-
ering the trivial equality/ — zM)~1(I — zM) = I, we obtain:

a(l—bz) — czyTe =1, —arzu' + yT(I —zP)=0,
from where

1 T rz

T -1
- , - [—zP)L.
1—bz—rcz2fr(2) Y 1—bZ—VCZ2fP(Z)M U —zP)

o
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Now,

14+7rzfp(2)
1—bz—rcz2fp(z)

fu@=a+yle=

The above theorem has numerous applications.

Example. Consider the production matrix

SN
S =)
‘PR OO

R R R R

It can be written ag/ = (226 “PT), where

e el
R R R R
PR RO
B Rk OO

However, it is known thaP induces the generating functio@i(z) — 1)/z of the Catalan
numbers 1, 2,5, 14, 42,., whereC(z) = (1 — v/1—4z)/(2z). Now, takingb = 2,¢c = 2,
r=1,andfp(z) =(C(z) — 1)/z in Theorem 3.2, after some elementary computations we
obtain

7 ()_1—«/1—4z
M(z —7& T

the generating function of the sequer(@é;l) of half the central binomial coefficients.

Example. We consider again the production mat¢xof the example after Proposition 3.3.
We can write

1 u' .
Q_( Ql)’ with

1 24" 1 3’ 1 47
Q1=(0 Qz)’ Q2=(O Q3>’ Q3=<O Q4>’

Applying Theorem 3.2 to thise matrices, we obtain

¥ _1+zfo, 1+ 2zfp, f 1+ 3zf0,
0= 1_Z ’ 01— 1_Z ’ 02 = 1_Z
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From here we obtain easily

PR S 222
CE T T T a2 T a—?

It follows that the sequence induced By is the binomial transform of the sequence
11,21, 3!, ..., i.e. the sequence of the arrangements (A000522).

Remark. It can be interesting to rephrase Theorem 3.2 in terms of succession rules. Con-
sider the rule

| k)~ (kGD) ™ (k(@2) 7% - (k)™
having f2 (z) as its generating function. Then the succession rule
b+r)
o [ (b+7r)~ (b+7r)P(c+k(0) ' . (9)
(c+ k) ~ (b +1)(c +kGi1)"™ - (¢ + klim))™

has

1+rzfo(z)
1—bz—rcz2fo(z)

fo@) =

as its generating function.
Theorem 3.2 has two important immediate corollaries.
Corollary 3.1. Let P be an infinite production matrix of the formA = ( b ”;DT), where

b, ¢, r are nonnegative integers. Then the induced generating fungtmfae) satisfies the
quadratic equatiomcz? 2 — (1 — bz —rz) fp + 1=0.

Examples.
b=0,c=1r=1 yields 11,24,921... (theMotzkin numbers; AO01006);
b=1 c=1r=1 yields 125,14,42 132... (the Catalan numbers; AO00108);
b=3,¢c=3, r=1 yields 14,19 100562 3304... (see[9]; A007564);
b=4,c=4,r=1 yields 15,29 185 1257 8925... (number of Dyck-like paths,

using steps of the forrtk, k) and(k, —k), for any positive integerk; A059231).
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Coroallary 3.2. If the generating functiory (z) of a sequence satisfies an equation of the
form

rez?f?—(1—bz—rz)f+1=0 (10)

with b, ¢ andr nonnegative integers then

pP= (Z’e ”;j) (11)

defines recursively a production matixinducing f (z).

Example. The sequence 1, 3, 10, 36, 137, 543,(A002212) that counts restricted hexag-
onal polyominoes [17] satisfies the equatifr= 1 + 3zf + zf2. This agrees with (10)
whenrc =1 andb + r = 3, which has a solution=c =1, b = 2. Consequently, a pro-
duction matrix inducingf is

SRR RN
TR R NR
BN RO
NP OO

Example. The generating functiorf (z) of the sequence 1, 3, 11, 45, 197, (A001003)
of the little Schréder numbers satisfies the equafiea 1+ 3zf + 222 2. This agrees with
(10) whenrc = 2 andb + r = 3, which has two solutiongi=1,c=1,r =2 andb = 2,
¢ =2,r =1. Consequently, we obtain two production matrices

1200 2 100
1120 2 2 10
p=|1 11 2 and 0=[2 2 2 1
1111 2 2 2 2

Corollaries 3.1 and 3.2 have higher-ordeabbgues. Here we give only one counterpart
of Corollary 3.1.

Coroallary 3.3. Let P be an infinite production matrix of the form

bo rn O 0
c1 b1 r 0
c1 ¢2 by rau
cie cpe c3e P

P == T N
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wherebo, b1, b2, c1, c2, ¢3, 71, 2, r3 are nonnegative integers. Then the induced generating
function fp (z) is obtained by eliminating and/ from the following three relations

_ 1+ rizg _ 1+ rozh he 1+ r3zf
1—boz — ric1z2g’ SR Y Sp— T 1— bz —rac3z2f’

f

Proof. We can write

_( bo ru " . (b1 rou " [ b2 r3uT
P_<c1e 0 ) WIthQ_<cze R and R= e P )
and now Theorem 3.2 yields the three equalities of the corollary.

Example. We intend to find the generating function induced by the production matrix

110000000
101000000
100100000
100110000
100101000

P=l1 00100100
100100110
1001000101
100100100

We can write

110 0
101 0
P=11 0 0 47
e 0 0 P

and now we have to eliminaggand# from the relations

1+zg
1—z7—z2g’

f= g=1+zh, h=1+zf,

leading toz* f2 — (1 —22)(1+z + 22 f + 1+ z+22=0.

The functionf obtained from here is the generating function of the sequence 1, 2, 4, 8,
17, 37, 82, 185, 423,.. (A004148) enumerating secondary structures of RNA molecules
[28].
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