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Abstract

Visualizing permutations as labelled trees allows us to to specify restricted permutations,
and to analyze their counting sequence. The asymptotic behaviour for permutations that
avoid a given pattern is given by the Stanley-Wilf conjecture, which was proved by Marcus
and Tardos in 2005. Another interesting question is the occurence of generalized patterns, i.e.
patterns containing subwords. There are good asymptotic results for consecutive patterns
and certain variations, but only specific results for patterns with subwords of length exactly
2. The goal of the project is to fully understand the analysis performed by Elizalde and Noy
on such patterns, and to try to extend these results to other cases.

1 Introduction

Let σ ∈ Sk and π ∈ Sn be two permutations of length k and n, such that k ≤ n. The
permutation π is said to contain the permutation τ if and only if there exists a subsequence
1 ≤ i1 ≤ i2 . . . ≤ ik ≤ n such that the ordered sequence of elements (πi1 , πi2 , . . . , πik) is order-
isomorphic to σ. Consequently, π avoids σ if no such subsequence exists.

Babson and Steingrimsson proposed a different definition of containment by introducing gen-
eralized patterns [1]. Their definition included the added restriction of having certain elements
in the pattern appear consecutively in the permutation. The enumeration and asymptotic
behaviour of permutations avoiding these generalized patterns was studied by Elizalde [2, 3],
Noy [2] and Kitaev [4], and many of their results are included in this paper.

The paper is divided into seven sections, including the introduction. Section 2 introduces the
concepts of generalized patterns and Wilf-equivalence, and also lays down the notation used
in the paper. Section 3 works on the enumeration of certain classes of consecutive patterns,
and puts forward the asymptotic results for the same. Section 4 focuses on the analysis of
non-consecutive patterns, and includes some results that are used later in the paper. Section
5 studies permutations avoiding the pattern 12 − 34, and Section 6 gives a similar analysis of
permutations avoding 1−σ−k. Section 7 considers the open questions in the field, and proposes
a direction of further research.
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2 Definitions and notations

2.1 Generalized patterns

For two positive integers m ≤ n, let σ = σ1σ2 . . . σm ∈ Sm and π = π1π2 . . . πn ∈ Sn be
two permutations, where Sk represents the symmetric group of order k. A generalized pattern
is obtained from σ by denoting the permutation by σ1ε1σ2ε2 . . . εm−1σm, where each εj , j ∈
{1, 2, . . . ,m− 1}, is either empty or a dash(−). Then, the permutation π is said to contain the
generalized pattern [1] σ if there exist indices i1 < i2 < . . . < im marking positions of π such
that:

(i) for each j ∈ {1, 2, . . . ,m− 1}, if εj is empty, then ij+1 = ij + 1.

(ii) the order-conserving reduction ρ (πi1πi2 . . . πim) = σ1σ2 . . . σm holds true.

The subsequence πi1πi2 . . . πim is called an occurence of σ in π. The first condition imposes
the restriction that the elements corresponding to adjacent numbers in the pattern must also
be adjacent in the permutation π. The second condition is the classical pattern containment
condition. For example, π = 3542716 contains the generalized pattern σ = 12 − 4 − 3 in the
form 35− 7− 6, but does not contain the pattern σ = 12− 43.

If all the εj in a generalized pattern are dashes, then we get the definition of a classical pattern.
The structure of permutations avoiding them is well studied, and the behaviour of the counting
sequence of such permutations is given by the Stanley-Wilf conjecture. Consecutive patterns, in
which there are no dashes, are of special interest because they provide a structure for defining
classes of permutations that avoid other generalized patterns. The bivariate generating function
for permutations that avoid a large class of consecutive patterns has been explored by Elizalde
and Noy [2]. From these structures, it is easy to extend to permutations that avoid these
patterns.

If σ is a generalized pattern, and Sn (σ) is the class of permutations of length n that avoid σ,
then, fixing the notation An (σ) = |Sn (σ) |, we define the exponential generating function [5] of
patterns avoiding σ by:

Aσ (z) =
∑
n≥0

An (σ)
zn

n!

2.2 Equivalence classes in patterns

Two classical patterns σ and τ are said to be equivalent if the bivariate generating function
counting the number of occurences of σ and τ are the same [2]. Equivalence can also be
established through these operations:

(i) Reversal: Given σ = σ1σ2 . . . σk, the pattern σ̄ = σkσk−1 . . . σ2σ1 is equivalent to it.

(ii) Complementation: Given σ = σ1σ2 . . . σk, the pattern σ̃ = (k + 1− σ1) (k + 1− σ2) . . .
. . . (k + 1− σk) is equivalent to it.

(iii) Inversion: Given σ and σ−1, such that σ−1σ = I, where I is the identity map, both σ and
σ−1 are equivalent.
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The equivalence can be explained by the fact that if π contains σ, then π̄ must contain σ̄, π̃
must contain σ̃, and π−1 must contain σ−1.

A special case of this is when two classes of permutations avoiding distinct patterns are counted
by the coefficients of the same generating function. These classes are said to be Wilf equivalent.

2.3 Representations of permutations as increasing binary trees

A labelled binary tree in which the labels along any path from the root are increasing is called
an increasing binary tree. Every permutation π can be split about its smallest element i into
the set σiτ , where σ and τ are expanded permutations. Then, we can create a binay tree T (π)
with the root having label i, the left child labelled with T (σ), and the right child with T (τ) [5].
The empty permutation yields the empty tree. This construction also establishes a bijection
between the set of trees on n nodes and the number of permutations of size n.

2.4 Specification of increasing binary trees

Given the labelled class of increasing binary trees T , we can recursively define its specification
as follows:

T = E + Z� ? T ? T

Here, E is the empty element, and Z is the unit element. The boxed product restricts the root
to have the smallest label. So, the exponential generating function [5] is:

T (z) = 1 +

∫ z

0
T 2 (t) dt

⇔ T ′ (z) = T 2 (z) T (0) = 1

⇔ T (z) =
1

1− z

The specification confirms our bijection with the permutations by giving us a counting sequence
of n!. Such a specification allows the introduction of another variable that keeps track of
the occurence of a certain pattern. In particular, this is a very useful construct for counting
consecutive patterns.

3 Consecutive patterns

The distribution of consecutive patterns proves crucial to our understanding of the wider case
of generalized patterns. Consecutive patterns are modelled by increasing binary trees, and this
representation allows a direct application of the symbolic method to obtain the exponential
generating function of the said class of permutations. Certain classes of consecutive patterns
are easy to enumerate, and their asymptotic behaviour follows directly from their specification.
Noy and Elizalde found the following results for two classes of patterns, whose proofs we have
outlined.
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Theorem 1. [2] Given a consecutive increasing pattern σ ∈ Sk+2, the bivariate generating
function P (z, u) where z counts the number of permutations containing the pattern, and u
counts the number of occurences of σ, is given by P (z, u) = 1/ω (z, u), where:

ω(k+1) + (1− u)
(
ω(k) + ω(k−1) + . . .+ ω

)
= 0

with the initial conditions ω (0) = 1, ω′ (0) = −1, ω(i) (0) = 0∀ i ∈ {2, 3, . . . , k}

Proof. (Sketch) Let P be the class of all permutations, and let Ki be the class of permutations
not beginning with 1, 2, . . . , k + 2 − i. Then, we can specify the class of all permutations as
follows:

P = E + Z� ? P ? [K1 + µ (P −K1)]

i.e. the class of permutations consists of the empty permutation, or consists of elements that can
be recursively broken up into an increasing binary tree. If so, the left child contains an element
from the same class, and the right child contains either a class of permutations beginning with
1, 2, . . . k + 1, in which case we mark it by the element µ as an occurence of σ along with the
label 1 on the root, or not, in which case we do not mark it.

Once we have this, we can define the following specification on each Ki, where i ∈ {1, 2, . . . , k},
to get a set of k + 1 specifications.

Ki = E + Z� ? (Ki − E) ? [K1 + µ (P −K1)] + Z� ?Ki+1

Here, the first term is the empty permutation, the second counts every occurence of the per-
mutation σ, and the last term exludes all the permutations that begin with the smallest label,
followed by a labelling which is order isomorphic to 1, 2, . . . , k + 1− i.

Since each of these specifications translates to an integral equation, we can differentiate them
with respect to z to get k + 1 differential equations.

P ′ = P (K1 + u (P −K1))

K ′i = (Ki − 1) (K1 + u (P −K1)) +Ki+1

After making a suitable substitution, these can be solved with the initial conditions P (0) =
1,Ki (0) = 1 ∀ i to get the specification mentioned.

A very similar result exists for a consecutive pattern of the form σ = 1, 2, . . . , a, τ, a+ 1 ∈ Sk+2,
where τ is an arbitrary permutation of {a + 2, a + 3, . . . , k + 2}. Since both a and τ can be
varied, this covers a large class of permutations.

Theorem 2. [2] For any consecutive pattern σ = 1, 2, . . . , a, τ, a + 1 ∈ Sk+2, τ defined as
above, the bivariate generating function P (z, u) of permutations, where u marks the number of
occurences of σ, is given by P (z, u) = 1/ω (z, u), where:

ω(a+1) + (1− u)
zk+1−a

(k + 1− a)!
ω′ = 0

with the initial conditions ω (0) = 1, ω′ (0) = −1, ω(i) (0) = 0∀ i ∈ {2, 3, . . . , a}
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3.1 Avoiding subwords of length three

3.1.1 Permutations avoiding 123

123 is an increasing subword. Using the equation stated in Theorem 1, we get the following
specification for permutations without the pattern 123 by setting u to 0[2, 3].

P (z, 0) =

√
3

2

ez/2

cos
(√

3z
2 + π

6

)
As expected, the pattern 321 also gives us the same generating funtion, since it corresponds to
a decreasing subword.

3.1.2 Permutations avoiding 132

The patterns 132, 231, 213, 312 are all Wilf-equivalent. Using Theorem 2 and setting u = 0, we
get the following solution[2, 3].

P (z, 0) =
1

1−
∫ z
0 e
−t2/2dt

=
1

1−
√

π
2 erf

(
z√
2

)
3.2 Avoiding subwords of length 4

There are 7 Wilf classes among consecutive patterns of length 4. The classes for which we can
get an explicit generating function for permutations avoiding the patterns are [2]:

A1234 (z) =
2

e−z + cos z − sin z

A1432 =
1

1−
∫ z
0 e
−z3/6dt

A1243 =
1

ω

where ω is the solution to the differential equation ω′′′+zω′ = 0, ω (0) = 1, ω′ (0) = −1, ω′′ (0) =
0.

3.3 Asymptotic enumeration for permutations avoiding consecutive patterns

The explicit generating functions obtained above allow us to use first degree asymptotics to
estimate the growth of the coefficients. For patterns of length 3, the asymptotic behaviour of
the coefficients is given as follows[2, 3]:

A123 ≈ n!γ1ρ
−n
1 A132 ≈ n!γ2ρ

−n
2

where γ1 = 3
√
3eπ/3

√
3

2π , ρ1 = 2π
3
√
3
, and γ2 = eρ

2
2/2

ρ2
, ρ2 =

√
2erf−1

(√
2
π

)
.
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For the known results of permutations avoiding patterns of length 4, the following relations
hold [2].

A1234 ≈ n!γ1ρ
−n
1 γ1 ≈ 1.16063 ρ1 ≈ 1.03842

A1342 ≈ n!γ2ρ
−n
2 γ2 ≈ 1.83052 ρ2 ≈ 1.04755

A1243 ≈ n!γ3ρ
−n
3 γ3 ≈ 1.60433 ρ3 ≈ 1.04944

Figure 1: Plot of the value of n
√
An (σ) /n!, n ≤ 120 for various consecutive patterns

The main observation here is that for each of these patterns, if we take limn→∞
n

√
An(σ)
n! , we get

a finite, non-zero value. Elizalde proved this result in the following theorem.

Theorem 3. [3] Let k ≥ 3, and σ ∈ Sk be a consecutive pattern.

(i) There exist constants c, d ∈ (0, 1) such that

cnn! < An (σ) < dnn! ∀ n ≥ k
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(ii) There exists a constant 0 < w ≤ 1 such that

lim
n→∞

n

√
An (σ)

n!
= w

Proof. Consider the number of permutations of length m+ n that avoid σ. We can choose any
n consecutive elements of a permutation from this class, and those n elements, when placed in
order, must avoid σ, as should the m elements that are left over. Since we can choose these
elements in

(
m+n
m,n

)
ways, we get an upper bound on the number of permutations of length m+n

that avoid σ.

Am+n (σ) ≤ Am (σ)An (σ)

(
m+ n

n

)

Now, we can use induction on n ≥ k, assuming that An (σ) < dnn! for some 0 < d < 1. This
gives us the following expression.

Am+n (σ) < dmm!dnn!

(
m+ n

n

)
= dm+n (m+ n)!

This proves the upper bound.

For the lower bound, we observe that any occurence of σ would automatically induce an oc-
curence of a pattern of length 3 through reduction of the first three elements. Let us call this
reduction τ . Thus, avoiding τ is a sufficient, but not necessary, condition for avoiding σ. So,
An (τ) ⊆ An (σ), and An (τ) ≤ An (σ). Since we know that An (τ) has first degree asymptotics
of the form n!γρ−n, we immediately have our lower bound.

cnn! < An (132) ≤ An (σ)

where c = 1
√
2erf−1

(√
2
π

) .

The second part of the proof involves the use of Fekete’s lemma.

Lemma 1. [6] Let f : N→ N be a function for which f (m+ n) ≥ f (m) f (n) for all m,n ∈ N.

Then, limn→∞ (f (n))1/n exists.

Using the same upper bound on the number of permutations of length m + n avoiding σ, we
can rearrange the terms to get the following:

m!n!

Am (σ)An (σ)
≤ (m+ n)!

Am+n (σ)

By Fekete’s lemma, then, limn→∞
n

√
An(σ)
n! exists, and it is bounded by 1, according to the first

part of the theorem.

This is the major result for consecutive patterns, and forms a base for the study of simple
non-consecutive generalized patterns.
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4 Non-consecutive patterns

4.1 Classical patterns

Classical patterns are simply generalized patterns in which we have a dash between every two
characters. The asymptotic behaviour of permutations avoiding classical patterns is described
by the Stanley-Wilf conjecture, which was proved by Marcus and Tardos.

Theorem 4. [7] For every classical pattern σ = σ1 − σ2 − . . .− σk, there exists a constant λ
which depends only on σ, such that:

An (σ) < λn ∀ n ≥ 1

The theorem is equivalent to the statement that limn→∞
n
√
An (σ) exists [8]. Determining this

limit for various classes of patterns is a major thrust area, and this is known to be (k − 1)2

for the pattern 1 − 2 − . . . − k [9], while it is 4 for patterns of length 3. The corresponding
lower bound for classical patterns is given by the counting sequence of permutations avoiding
the permutation 1− 2− 3, i.e. which have at most one ascent. This is counted by the Catalan
numbers [10].

4.2 Non-classical patterns

The class of permutations avoiding non-consecutive, non-classical patterns are, in general, hard
to enumerate. These patterns can be divided into two categories according to the ease of
analysis.

• Patterns having three consecutive elements, i.e. σ = . . . σi−1σiσi+1.

Theorem 5. [3] Let σ ∈ Sk be a generalized pattern having three consecutive elements.
Then, there exist constants 0 < c, d,< 1 such that

cnn! < An (σ) < dnn! ∀ n ≥ k.

Proof. Any occurence of the consecutive pattern obtained by removing all the dashes in
σ must also indicate an occurence of σ. This gives us an upper bound on the number of
permutations that avoid σ, and by Theorem 3, we have an upper bound on this. This
proves the upper bound.

For the lower bound, the three consecutive elements must correspong to some consecutive
permutation on 3 elements, given by τ , and so An (σ) ≥ An (τ). Since we have a bound
for this in the form of An (132) > cnn!, we can say that An (σ) > cnn!.

• Patterns having at least one occurence of two consecutive elements, but never having
three consecutive elements. The asymptotic behaviour of permutations avoiding them is
not known in general. There are a few cases that are well studied. The following result is
by Claesson.

Proposition 1. [11] Let σ ∈ S3 be a generalized pattern with one dash.

(i) If σ ∈ {1− 23, 3− 21, 32− 1, 12− 3, 1− 32, 23− 1, 3− 12, 21− 3}, then An (σ) = Bn.

(ii) If σ ∈ {2− 13, 2− 32, 31− 2, 13− 2}, then An (σ) = Cn.

where Bn is the nth-Bell number and Cn is the nth-Catalan number.
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4.2.1 Patterns of the form 1− σ

The generating function of permutations avoiding patterns of the form 1− σ, where σ is a con-
secutive pattern, can be described in terms of the generating function of permutations avoiding
σ. The following results was given independently by Kitaev and Elizalde.

Proposition 2. ([3, 9]) Let σ = σ1σ2 . . . σk−1 ∈ Sk−1 be a consecutive pattern, and let 1− σ be
the generalized pattern 1− (σ1 + 1) (σ2 + 1) . . . (σk−1 + 1). Then,

A1−σ (z) = exp

(∫ z

0
Aσ (t)dt

)
Proof. Assume we have a permutation π. Let m1 > m2 > . . . > mr be its left-to-right minima,
where πi is a left-to-right minima of π if, for every j < i, πi < πj . Thus, π can be written as
m1w1m2w2 . . .mrwr, where each wi consists of elements that are strictly greater than mi. Also,
by the definition of a left-to-right minimum, these elements must be greater than mi+1. This
decomposition is unique for every permutation, and imposes an order on the minima.

Now, if wi contains σ, then, since mi is strictly less than each element in wi, this must correspond
to an occurence of 1− σ. Furthermore, σ must be strictly contained in a single block wi, since
it cannot contain the smallest label and all the elements that reduce to σ must be adjacent.
Conversely, if each wi avoids σ, there cannot be an occurence of 1−σ. Thus, we get the following
set construction.

A1−σ = SET
(
Z� ?Aσ

)
where the Z corresponds to the left-to-right minima mi, and Aσ corresponds to an expanded
permutation wi avoiding σ. The set construction arises from the unique ordering of the minima,
giving us a set of blocks miwi. The box product confines the minimum label to the element
corresponding to the minima. Thus, we get A1−σ (z) = exp

(∫ z
0 Aσ (t)dt

)
.

4.2.2 Patterns of the form σ − k

The generating function of patterns of the form σ − k is the same as that of 1− σ. The result
was given by Kitaev. We shall derive the same result through a process inspired by Elizalde’s
proof for the pattern 1− σ.

Proposition 3. [4] Let σ ∈ Sk−1 be a consecutive pattern. Then, the generating function for
the generalized pattern σ − k is given by:

Aσ−k (z) = exp

(∫ z

0
Aσ (t)dt

)
Proof. Consider the permutation π. A right-to-left maximum of a permutation π is an element
πi such that πi > πj for each j > i. Let us decompose π as w1M1w2M2 . . . wrMr, where
M1 > M2 > . . .Mr are the right-to-left maxima of π, and each wi consists of elements that are
strictly less than Mi−1. Also, since Mi−1 > Mi, by the definition of a right-to-left maximum,
each element of wi is less than Mi. This imposes an order on the occurence of the maxima, and
gives us a unique decomposition for each permutation. An occurence of σ in wi, along with Mi,
would correspond to an occurence of σ − k in π. Also, the elements corresponding to σ have
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to be adjacent, and must lie in the same block. Conversely, to avoid 1− σ, each block wi must
avoid σ. This gives us the following construction.

A1−σ = SET
(
Aσ ? Z�)

where the Z corresponds to the right-to-left maxima Mi, and Aσ corresponds to an expanded
permutation wi avoiding σ. The set construction arises from the unique ordering of the maxima,
giving us a set of blocks wiMi. The max-box product confines the maximum label to the element
corresponding to the maxima. Thus, we get Aσ−k (z) = exp

(∫ z
0 Aσ (t)dt

)
.

4.2.3 Asymptotic behaviour of permutations avoiding 1− σ or σ − k

The case of permutations avoiding 1−σ or σ−k is interesting because their asymptotic behaviour
is equivalent to the behaviour of permutations avoiding σ.

Corollary 1. [3] Let σ be a consecutive pattern. Then, defining the generalized patterns 1− σ
and σ − k as before,

lim
n→∞

(
An (1− σ)

n!

)1/n

= lim
n→∞

(
An (σ − k)

n!

)1/n

= lim
n→∞

(
An (σ)

n!

)1/n

= w

where 0 < w ≤ 1, by Theorem 3.

Proof. This can be easily see from the fact that the exponential is an entire function, and the
singularities of Aσ (z) are preserved during the operation. Thus, A1−σ (z) and Aσ−k (z) have
the same radius of convergence as Aσ (z), and thus, the coefficients grow in the same way.

The symmetry of the patterns points towards a classification of generalized patterns of a certain
length by the limiting constant. We shall expand on this in Section 6.

5 Permutations avoiding the pattern 12− 34

While we do not have an explicit expression for permutations avoiding the pattern 12 − 34,
Elizalde proved an upper and a lower bound for the counting sequence.

Proposition 4. [3] For k ≥ 1, define

bk (z) =

k∑
i=0

(
k

i

)2

[z + 2 (Hk−i −Hi)] eiz

ck (z) =
e(k+1)z

k + 1
−

k∑
i=0

(
k

i

)(
k + 1

i

)[
z + 2 (Hk−i −Hi) +

1

k + 1− i

]
eiz

S (z) =
∑
k≥1

bk (z) +
∑
k≥1

ck (z)

where Hk is the harmonic sum up to k terms. Then,

[zn] eS(z) < [zn]A12−34 (z) < [zn] eS(z)+e
z+z−1
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Numerical results by Elizalde suggest that limn→∞
n
√
An (σ) /n! = 0, but this result has not

been proved.

Proof. A permutation avoiding 12− 34 has no two ascents such that the the start of the second
ascent is at a value higher than the end of the first. To construct this, we describe π as
B0a1B2a2 . . ., where each ai and the element preceding it form an ascent, B0 is a non-empty
decreasing word, and each Bi is composed of words wi,0wi,1 . . . wi,ri that satisfy the following
conditions.

(i) Each wi,j is a decreasing word.

(ii) If ri = 0, then wi,0 must be non-empty.

(iii) For each j ≥ 1, wi,j is non-empty and its first element is larger than ai.

(iv) The last element of each wi,j is less than ai.

(v) The last element of wi,ri is less than ai+1.

This ensures that the decomposition is unique.

To get an upper bound, we remove the restriction that the last element of wi,ri must be less than
ai+1. Thus, we also count some permutations that contain 12− 34, giving us an overestimate.
Now, we get a set of blocks aiBi. In Bi = wi,0wi,1 . . . wi,ri , assume that wi,0 is empty. If so, then
consider the case when ri = 0, i.e. the block only has ai, and when ri = 1, i.e. we get the block
aiwi,1, and both the smallest and the largest labels must lie in wi,1. Since wi,1 is a decreasing

word, it can be represented as a set, and the specification for the block becomes Z ?SET (Z)�,
where the double box product ensures that both the largest and the smallest label lie in wi,1.
The generating function for this block becomes:∫ z

0

∫ t

0
u
d2eu

du2
du dt = z (ez − 2) + z + 2 = b1 (z)

For ri = 2, we get the block aiwi,1w1,2. The largest and the smallest labels may lie in either
wi,1 or wi,2. We can split each wi,j into a part w+

i,j , whose elements are all greater than ai, and

w−i,j , whose elements are less than ai. Now, we separately consider the case in which the largest

label lies in either w+
i,1 or w+

i,2, and in which the smallest label lies in either w−i,1 or w−i,1. This
gives us 4 cases. If we had both labels in wi,2, we would simply get the generating function∫ z
0

∫ t
0 b1 (u) d

2eu

du2
du dt. But we can permute the different sections of both wi,1 and wi,2 without

losing the structure specified. So, the generating function becomes:

4

∫ z

0

∫ t

0
b1 (u)

d2eu

du2
du dt = b2 (z)

Now, for any bk−1 (z),

k2
∫ z

0

∫ t

0
bk−1 (u) eudu dt = k2

∫ z

0

∫ t

0

(
k∑
i=0

(
k

i

)2

[u+ 2 (Hk−i −Hi)] eiu
)
eudu dt = bk (z)

Thus, bk (z) is the generating function of the block aiwi,1wi,2 . . . wi,k. In case wi,0 is non-empty,
the base case become the generating function of the block aiwi,0, which is c0 (z) = ez − 1 − z,
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since we have a decreasing word of at least 2 elements. If ri = 1, then we split wi,1 into two
parts as before. The smallest label can lie in either wi,0 or w−i,1. We permute w−i,1 with wi,0 to
get another valid permutation. This gives us the following generating function.

2

∫ z

0

∫ t

0
c0 (u)

d2eu

du2
du dt = c1 (z)

We can then use induction to get the following case for the generating function ck (z) of a block
aiwi,0wi,1wi,2 . . . wi,k.

k(k + 1)

∫ z

0

∫ t

0
ck (u) eudu dt = ck (z)

Our permutation π, with the restriction wi,ri < ai+1 removed, and without counting the block
B0, is simply a set of blocks of arbitrary size in which wi,0 may or may not be empty. Thus, we
get the following generating function.

exp

∑
k≥0

(bk (z) + ck (z))

 = exp

ez − 1 +
∑
k≥1

(bk (z) + ck (z))


Now, the initial non-empty decreasing word B0 will contribute ez to this generating function to
give us the desired upper bound.

For the lower bound, let us look at a block aiwi,0wi,1wi,2 . . . wi,ri . If we split the last word into
w+
i,ri

and w−i,ri , whose elements are greater and less than ai respectively, then we can form a

valid permutation w−i,riaiwi,0wi,1wi,2 . . . w
+
i,ri

, since the last element of wi,ri is smaller than ai.
In effect, we are trying to impose the condition that the last element of wi,ri−1 must be less than
ai. Similarly, we can do the same if wi,0 is empty. Clearly, this requires that ri ≥ 1. However,
while this substitution gives us a unique permutation, not every permutation can be obtained
through this process, since ri may be 0 if wi,0 is non-empty. Thus, we are undercounting, and
will only get a lower bound. The nth coefficient of the generating function for this class of
permutations becomes:

[zn] exp

∑
k≥1

(bk (z) + ck (z))

 < [zn]A12−34 (z)

which completes our proof for the proposition.

The decomposition given for 12 − 34 also works for patterns of the form 12 − σ, where σ is a
consecutive pattern.

6 Permutations avoiding 1− σ − k

We saw that the class of permutations avoiding 1 − σ, σ − k and σ, where σ is a consecutive
pattern of size k − 1, exhibit the same asymptotic behaviour. We now consider the class of
permutations avoiding 1− σ − k, where σ is a consecutive pattern of size k − 2. The counting
sequence of permutations avoiding the pattern 1−σ−k is characterized by the following limits,
again due to Elizalde.
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Proposition 5. [3] Let σ ∈ Sk−2 be a consecutive pattern of length k− 2, and let 1− σ− k be
the pattern obtained by adding 1 to each element of σ. Let Cexp (z) be the exponential generating
function counting the Catalan numbers. Then

[zn]

∫ z

0

∫ u

0
ey+2

∫ y
0 Aσ(t)dtdydu < [zn]A1−σ−k (z) < [zn]Cexp

(∫ z

0
Aσ (t) dt

)
Proof. Consider the permutation π, and split it into blocks bookended by its left-to-right minima
{a1, a2, . . . , ar} and right-to-left-maxima {b1, b2, . . . , bs}. We can write π as c1w1c2w2 . . . wmcm,
where each ci is a left-to-right minimum or right-to-left maximum, and each wi is a permutation
of elements larger than the nearest left-to-right minimum to the left, and smaller than the nearest
right-to-left maximum to the right. To avoid 1− σ − k, each wi must avoid σ.

To get the lower bound, consider the case in which all the minima occur before the maxima.
So, π = a1w1a2w2 . . . arwrb1wr+1b2 . . . wr+s−1bs, where wi is permutation avoiding σ, with
all elements lying between ai and b1 when 1 ≤ i ≤ r, and lying between ar and bi when
r + 1 ≤ i ≤ r + s − 1, and wr is a decreasing word. So, we have a set of blocks with the
specification Z� ? Aσ, followed by a set of blocks of the type Aσ ? Z�, and an intermediate
decreasing word specified by SET (Z). Also, the smallest label lies in the first set, and the
largest lies in the second set, giving us the following lower bound.∫ z

0

∫ u

0
e
∫ y
0 Aσ(t)dt

(
dy

dy

)
e
∫ y
0 Aσ(t)dt

(
dy

dy

)
eydydu =

∫ z

0

∫ u

0
ey+2

∫ y
0 Aσ(t)dtdydu

which is the generating function of the lower bound.

To get the upper bound, consider the case when all the wi’s are empty. If every element is
either a right-to-left maxima or a left-to-right minima, these permutations must avoid 1−2−3,
and are counted by the Catalan numbers [10]. If we replace each minima ci by a block ciwi ,
the block wi must avoid σ, and must be composed of elements greater than ci. Alternately, if
ci is a maxima, we replace it by wici, where each element of wi is less than ci. Such a block
corresponds to the generating function

∫ z
0 Aσ (t) dt, and we get an upper bound to the count

by taking the composition, since we have eliminated the requirement of having no decreasing
word after the last right-to-left maximum. Thus, the upper bound is given by the coefficients
of Cexp

(∫ z
0 Aσ (t) dt

)
.

Since we are only dealing in exponentials, we have the following result.

Corollary 2. [3] For a consecutive pattern σ ∈ Sk−2

lim
n→∞

(
An (1− σ − k)

n!

)1/n

= lim
n→∞

(
An (σ)

n!

)1/n

A second, direct result through Wilf equivalence is the following.

Corollary 3. [3] For σ, τ ∈ Sk−2, if Aτ (z) = Aσ (z), then A1−τ−k (z) = A1−σ−k (z).

In particular, we know the explicit results for the pattern 1− 23− 4.

Proposition 6. [3] For the generalized pattern 1− 23− 4,

[zn]
1

2

∫ z

0
e2e

t−2dt− z

2
< [zn]A1−23−4 (z) < [zn]Cexp (ez − 1)
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Also, the asymptotic result for the pattern is known.

Corollary 4. [3] For the pattern 1− 23− 4

lim
n→∞

(
An (1− 23− 4)

n!

)1/n

= 0

Proof. We can bound the coefficients of the Catalan generating function by the coefficients of
e4z. Since this converges for all z, limn→∞ [zn] e4z = 0. This proves the result.

7 Open problems

As seen in this paper, the asymptotic behaviour of generalized patterns has been hard to
characterize, and we have mostly settled for bounds that we can work with. It might be useful
to see if limn→∞

n
√
An (12− 34) /n! goes to 0 as conjectured [3]. The most obvious approach

would be to loosen the upper bound. In general, the problem of finding limn→∞
n
√
An (σ) /n!

for generalized patterns, and limn→∞
n
√
An (σ) for classical patterns is still under research.

One pattern that is currently being studied is 3 − 14 − 2, since its subpatterns of length 3
correspond to patterns counted by the Catalan numbers, as given in Proposition 1. An analogous
pattern is 3− 21− 4, whose subpatterns of length 3 correspond to patterns counted by the Bell
numbers. Also, neither of these patterns has subpatterns in the other class.

In [12], Elizalde proposed enumerative results for some generalized patterns by looking at
rightward generating trees. The paper also considers permutations avoiding more than one
pattern, as well as permutations avoiding barred patterns. Kitaev [4] studied a class of gener-
alized patterns called partially ordered generalized patterns, and produced some general results
that might be applied to the study of generalized patterns. More importantly, the definition of
pattern containment offered in [4] can be used in formal languages.

A good research direction would be to study the property exhibited by the patterns 1−σ,σ−k,
1−σ−k and σ, where σ is a consecutive pattern. Since these are counted by the same sequence,
it might be worth asking the question if increasing patterns of the form w1 − w2 − w3,w1 − w2

and w2 − w3 behave in a similar manner.

References

[1] E. Babson and E. Steingrımsson. Generalized permutation patterns and a classification of
the mahonian statistics. Sém. Lothar. Combin, 44:B44b, 2000.

[2] S. Elizalde and M. Noy. Consecutive patterns in permutations. Advances in Applied
Mathematics, 30(1-2):110–125, 2003.

[3] S. Elizalde. Asymptotic enumeration of permutations avoiding generalized patterns. Ad-
vances in Applied Mathematics, 36(2):138–155, 2006.

[4] S. Kitaev. Partially ordered generalized patterns. Discrete Mathematics, 298(1):212–229,
2005.

[5] P. Flajolet and R. Sedgewick. Analytic combinatorics. Cambridge Univ Pr, 2009.

14



[6] J.H. van Lint and R.M. Wilson. A course in combinatorics. Cambridge Univ Pr, 2001.

[7] A. Marcus and G. Tardos. Excluded permutation matrices and the stanley-wilf conjecture.
Journal of Combinatorial Theory, Series A, 107(1):153–160, 2004.

[8] R. Arratia. On the stanley-wilf conjecture for the number of permutations avoiding a given
pattern. Electron. J. Combin, 6(1):1–4, 1999.

[9] A. Regev. Asymptotic values for degrees associated with strips of young diagrams. Advances
in Mathematics, 41(2):115–136, 1981.

[10] D. Richards. Ballot sequences and restricted permutations. Ars Combin, 25(83):C86, 1988.

[11] A. Claesson. Generalized pattern avoidance. European Journal of Combinatorics,
22(7):961–971, 2001.

[12] S. Elizalde. Generating trees for permutations avoiding generalized patterns. Annals of
Combinatorics, 11(3):435–458, 2007.

All symbolic calculations were done using Wolfram Alpha and MapleSoft. Graphs were plotted
using MATLAB.

15


