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Abstract

Riordan paths are Motzkin paths without horizontal steps on the x-axis. We establish a correspondence between Riordan paths
and (321, 31̄42)-avoiding derangements. We also present a combinatorial proof of a recurrence relation for the Riordan numbers in
the spirit of the Foata–Zeilberger proof of a recurrence relation on the Schröder numbers.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The Riordan numbers have many combinatorial interpretations, see [1] and The On-Line Encyclopedia of Integer
Sequences [8, A005043]. For example, the nth Riordan number rn equals the number of plane trees with n edges in
which no vertex has outdegree one, which are called short bushes. Let Bn denote the set of short bushes with n edges
(see Fig. 1). The first few Riordan numbers are 1, 0, 1, 1, 3, 6, 15, 36, 91, 232. In general, rn is given by the formula

rn = 1

n + 1

n−1∑
k=1

(
n + 1

k

) (
n − k − 1

k − 1

)
, (1.1)

see [8, A005043].
The first result of this paper was motivated by the question of finding a combinatorial interpretation of the Riordan

numbers in terms of permutations with forbidden patterns. In this aspect, we find that the Riordan numbers are closely
related to the Motzkin numbers. The authors have obtained a combinatorial proof of the fact that permutations avoiding
the patterns (321, 31̄42) are counted by the Motzkin numbers. In this paper, we show that the Riordan number rn equals
the number of derangements on [n]= {1, 2, . . . , n} that avoid the patterns (321, 31̄42). Thus, the Riordan numbers can
be considered as a derangement analogue of the Motzkin numbers.

The second result of this paper is a combinatorial proof of a recurrence relation on the Riordan numbers in the spirit
of the Foata–Zeilberger proof of a recurrence on the Schröder numbers [6], see also [10–12].
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Fig. 1. Short bushes and Riordan paths.

2. Riordan paths

In this section, we give a brief review of the Riordan numbers and the Riordan paths. We first give a combinatorial
derivation of formula (1.1) by using the decomposition algorithm obtained in [2]. Let Fn be the set of labelled plane
trees with n edges in which no vertex has outdegree one. Moreover, let Fn,k be the set of trees in Fn with k internal
vertices. Suppose that the set of children of each internal vertex forms a block. Using the decomposition algorithm in
[2], we obtain a bijection between Fn,k and the set of forests with k small plane trees with n + k vertices such that the
roots of the small trees belong to {1, 2, . . . , n + 1}, and each small tree contains at least two children. Recall that a

small tree is a tree containing only the root and at least one child. So |Fn,k| can be computed as follows: we have
(

n+1
k

)
choices for the roots, and the remaining n different labels are partitioned into k blocks with each block containing at
least two elements. Thus, we have

|Fn,k| =
(

n + 1

k

) (
n − k − 1

k − 1

)
n!,

which implies formula (1.1) because of the relation |Fn| = (n + 1)!rn.
Recall that a Motzkin path of length n is a lattice path in the plane from (0, 0) to (n, 0), consisting of up steps

U = (1, 1), down steps D = (1, −1), and horizontal steps H = (1, 0), and never going below the x-axis [1,5,9].
The height of any step is defined to be the y-coordinate of its starting point. A 2-Motzkin path is a Motzkin path
where the horizontal steps can be of two kinds: straight or wavy. Motzkin paths are counted by the Motzkin numbers
[8, A001006] and 2-Motzkin paths are counted by the Catalan numbers [8, A000108]; see, for example, [4,5].

The Riordan number rn counts Motzkin paths of length n with no horizontal steps of height 0 [8, A005043]. This fact
follows from a bijection of Deutsch and Shapiro between plane trees and 2-Motzkin paths [4]. For any short bush T, let
the leftmost and rightmost edges of a vertex correspond to up and down steps, respectively, and let the remaining edges
correspond to horizontal steps. Then we obtain a Motzkin path without horizontal steps on the x-axis by traversing T
in preorder.

A Motzkin path of length n without horizontal steps on the x-axis will be called a Riordan path of length n, and let
Rn be the set of Riordan paths of length n. Fig. 1 is an illustration of the correspondence between short bushes and
Riordan paths.

The Riordan numbers rn are related to the Catalan numbers cn = (1/(n + 1))
(

2n
n

)
by the relation

cn =
n∑

k=0

(n

k

)
rk , (2.1)
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which leads to the following formula:

rn =
n∑

k=0

(−1)n−k
(n

k

)
ck . (2.2)

The above formula (2.2) has been derived by Bernhart [1] using a difference operator. Here we present a combinatorial
interpretation of (2.1).

Combinatorial Proof of (2.1). Let P =p1p2 · · · p2n be a Dyck path of length 2n. We divide the path P into n segments
Q1Q2 · · · Qn such that Qi = p2i−1p2i . For each Qi , there are four possible combinations: UU, UD, DU, and DD.
Suppose we use the four kinds of steps of a 2-Motzkin path to encode UU, UD, DU, and DD, that is, UU is represented
by an up step, UD is represented by a wavy horizontal step, DU is represented by a straight horizontal step, and DD is
represented by a down step. Then we get a 2-Motzkin path M without straight horizontal steps on the x-axis. Suppose
that M contains n − k wavy horizontal steps. Note that if we remove all the wavy horizontal steps, we are led to a
Riordan path of length k. Conversely, given a Riordan path of length k, we can reconstruct

(
n
k

)
2-Motzkin paths without

straight horizontal steps on the x-axis by inserting n − k wavy horizontal steps. �

The above proof implies the following interpretation of the Catalan number.

Corollary 2.1. The number of 2-Motzkin paths of length n without straight horizontal steps on the x-axis equals the
Catalan number cn.

3. Riordan paths and derangements

In this section, we give a correspondence between Riordan paths and derangements with forbidden patterns (321, 31̄42).
This is motivated by the recent work of the authors [3] on the bijection � between Motzkin paths of length n and
Sn(321, 31̄42), where Sn denotes the set of permutations on [n], and Sn(321, 31̄42) denotes the set of permutations
avoiding the patterns (321, 31̄42). We say that a permutation �=�1�2 · · · �n avoids the pattern 321 if it does not contain
any subsequence �i�j�k such that �i > �j > �k for 1� i < j < k�n. Moreover, we say that � avoids the pattern 31̄42 if
any subsequence �i�j�k (i < j < k) of pattern 231, namely, �j > �i > �k , can be extended to a subsequence of pattern
3142; in other words, there exists i < m < j such that �j > �i > �k > �m.

It was shown by Gire [7] that |Sn(321, 31̄42)| equals the Motzkin number mn (see [8, A001006]). The authors
[3] established a correspondence between Motzkin paths of length n and reduced decompositions of permutations
in Sn(321, 31̄42). In order to make a connection between Riordan paths and permutations with forbidden patterns,
we are led to the consideration of further restrictions on Sn(321, 31̄42) so that we may get a subset of permutations
Sn(321, 31̄42) that are in one-to-one correspondence with Riordan paths of length n with m horizontal steps on the
x-axis.

We now recall the definition of � which is given in terms of reduced decompositions of permutations in Sn.

Definition 3.1. For any 1� i�n − 1, define the map si : Sn → Sn such that si acts on a permutation by interchanging
the elements in positions i and i + 1. We call si the simple transposition, and write the action of si on the right of the
permutation, denoted by �si . Therefore we have �(sisj ) = (�si)sj .

The canonical reduced decomposition of � ∈ Sn has the following form:

� = (1 2 · · · n)� = (1 2 · · · n)�1�2 · · · �k , (3.1)

where

�i = shi
shi−1 · · · sti , hi � ti (1� i�k) and

1�h1 < h2 < · · · < hk �n − 1.

We call hi the head and ti the tail of �i . For short, we say that � has the canonical reduced decomposition �1�2 · · · �k .
For example, � = 315264 has the canonical reduced decomposition (s2s1)(s4s3)(s5). It is shown in [3] that

permutations in Sn(321, 31̄42) can be characterized by their reduced decompositions.
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Fig. 2. The (x + y)-labeling and strip decomposition.

Theorem 3.2. Let � be a permutation in Sn with the reduced decomposition as given in (3.1). Then � ∈ Sn(321, 31̄42)

if and only if

ti+1 � ti + 2, 1� i�k − 1. (3.2)

We now give a brief description of the bijection � between Motzkin paths of length n and Sn(321, 31̄42) by the strip
decomposition of Motzkin paths [3]. This bijection involves a labelling of the cells in the region of a Motzkin path.
The region of a Motzkin path is meant to be the area surrounded by the path and the x-axis. Furthermore, the region of
a Motzkin path is subdivided into cells which are either unit squares or triangles with unit bottom sides. A triangular
cell contains either an up step or a down step. We will not label triangular cells containing up steps. The other types of
cells, either square or triangular, have bottom sides, say, with points (i, j) and (i + 1, j). We will label these cells with
si+j or simply i + j . We call this labelling the (x + y)-labelling.

We now define the strip decomposition of a Motzkin path. Suppose Pn,k is a Motzkin path of length n that contains
k up steps. If k = 0, then the strip decomposition of Pn,0 is simply the empty set. For any Pn,k ∈ Mn, let A → B be the
last up step and E → F the last down step on Pn,k . Then we define the strip of Pn,k as the path from B to F along the
path Pn,k . Now we move the points from B to E one layer lower, namely, subtract the y-coordinate by 1, and denote the
adjusted points by B ′, . . . , E′. We now form a new Motzkin path by using the path Pn,k up to the point A, then joining
the point A to B ′ and following the adjusted segment until we reach the point E′, then continuing with the points on the
x-axis to reach the destination (n, 0). Denote this Motzkin path by Pn,k−1, which may end with some horizontal steps.

From the strip of Pn,k , we may define the value hk as the label of the cell containing the step E → F . Clearly, we
have hk �n − 1. The value tk is defined as the label of the cell containing the step starting from the point B.

Iterating the above procedure, we get a set of parameters {(hi, ti)|1� i�k} satisfying condition (3.2). For each step
in the above procedure, we obtain a product of transpositions �i = shi

shi−1 · · · sti . Finally, we get the corresponding
canonical reduced decomposition �=�1�2 · · · �k and the corresponding permutation �= (1 2 · · · n)�, see Fig. 2. We
then obtain the following property of the bijection �.

Theorem 3.3. The bijection � is a correspondence between Motzkin paths of length n with m horizontal steps on the
x-axis and permutations in Sn(321, 31̄42) that have m fixed points.

Proof. For any Motzkin path P of length n with m horizontal steps on the x-axis, label its steps with 0, 1, 2, . . . , n − 1
from left to right. Suppose that the m horizontal steps on the x-axis are labelled byx1, x2, . . . , xm, where 0�x1 < x2 < · · ·
< xm �n− 1. By the strip decomposition and the (x + y)-labelling, sx1 , sx2 , . . . , sxm do not occur in the corresponding
canonical reduced decomposition with respect to the bijection �. Note that a horizontal step on the x-axis is followed
by an up step or a horizontal step on the x-axis (except that it is the last step). Thus x1 + 1, x2 + 1, . . . , xm + 1 are fixed
points of the corresponding permutation in Sn(321, 31̄42) by applying Theorem 3.2. �

Corollary 3.4. For any Motzkin path P of length n, let � ∈ Sn(321, 31̄42) be its corresponding permutation with
respect to the bijection �. Suppose that � has the canonical reduced decomposition of form (3.1), then:

(1) t1 − 1 is the number of initial horizontal steps on the x-axis at the beginning of the Motzkin path P.
(2) n − 1 − hk is the number of final horizontal steps on the x-axis at the end of the Motzkin path P.
(3)

∑
i (ti+1 −hi − 2) equals the number of horizontal steps of the Motzkin path P on the x-axis that are neither initial

nor final steps, where the summation is over all i such that hi + 1 < ti+1.
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Recall that a permutation � = �1�2 · · · �n is said to be a derangement if � does not have any fixed points, that is,
�i �= i for all i ∈ [n]. Let Dn(321, 31̄42) denote (321, 31̄42)-avoiding derangements in Sn. Then we have the following
correspondence.

Corollary 3.5. The bijection � is a correspondence between Riordan paths of length n and Dn(321, 31̄42).

For example, for the Riordan path in Fig. 2, we have

P17,5 = UHHDUUHHDHUUDDHHD.

From the strip decomposition, we get the parameter set

{(3, 1), (8, 5), (12, 7), (13, 12), (16, 14)}.
The canonical reduced decomposition is given below:

(s3s2s1)(s8s7s6s5)(s12s11s10s9s8s7)(s13s12)(s16s15s14). (3.3)

The corresponding permutation is

4 1 2 3 9 5 13 6 7 8 10 14 11 17 12 15 16.

Corollary 3.6. Let P be a Riordan path of length n. Then the area of P minus the sum of heights of the up steps is
equal to the inversion number of the permutation �(P ) ∈ Dn(321, 31̄42).

Corollary 3.7. Let � = �1 · · · �k be the canonical reduced decomposition of � ∈ Sn, where �i = shi
shi−1 · · · sti for

1� i�k. Then � ∈ Dn(321, 31̄42) if and only if t1 = 1, hk = n − 1, and

hi + 2� ti+1 � ti + 2, 1� i�k − 1.

4. A recurrence relation

In this section, we give a combinatorial proof of the following recurrence relation on the Riordan numbers:

Theorem 4.1. For n�2, we have

(n + 1)rn = (n − 1)(2rn−1 + 3rn−2) (4.1)

with initial values r0 = 1, r1 = 0, and r2 = 1.

Proof. We proceed to establish the following bijection:

�: [3(n − 1)] × Rn−2

⋃
[2(n − 1)] × Rn−1 �⇒ [n + 1] × Rn (4.2)

which yields the identity (4.1).
We begin with an interpretation of [3(n − 1)] × Rn−2 as the multi-set of Riordan paths of length n − 2 in which

exactly one step is labelled by one of the labels a, b, and c, plus three copies of the set of Riordan paths of length n − 2
without labels. Similarly, [2(n − 1)] × Rn−1 can be represented by the set of labelled Riordan paths of length n − 1
in which exactly one step is labelled by either 1 or 2. The set [n + 1] × Rn can be represented by the set of Riordan
paths of length n for which at most one step is labelled by the symbol ∗.

For example, since R4 = {UUDD, UDUD, UHHD}, [5] × R4 consists of the following labelled paths:

UUDD U∗UDD UU∗DD UUD∗D UUDD∗
UDUD U∗DUD UD∗UD UDU∗D UDUD∗
UHHD U∗HHD UH ∗HD UHH ∗D UHHD∗.

We now give a construction of the map �.
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(1) For the three copies of the paths in Rn−2 without labels, we, respectively, add UD, U∗D, and UD∗ to the
beginning of the paths. In this way, we obtain all the paths beginning with UD in [n+ 1]×Rn. For example, for n= 4,
the three copies of UD are mapped to UDUD, U∗DUD, and UD∗UD, respectively.

(2) For the paths having a step pi of height k labelled by a in Rn−2: If k = 0, namely, pi = U , we add an up step to
the beginning of the path and insert a down step following the corresponding down step of pi , namely, the first down
step after pi that touches the x-axis. This gives all the Riordan paths of length n without labels such that there are no
horizontal steps of height 1 before the path returns to the x-axis. Otherwise, let pj be the last up step of height k − 1
before the step pi , then we add an up step after pj and a down step before pi and label pj with ∗. Hence, we have all
the Riordan paths of length n which contain the consecutive steps U∗U . For example, UaD and UDa are mapped to
UUDD and U∗UDD, respectively.

(3) For the paths having a step pi labelled by b (or c) in Rn−2, we add U∗D (or UD∗) after pi . In this way, we get
all Riordan paths of length n containing the consecutive steps U∗D (or UD∗) which are not at the beginning of the
Riordan paths. For example, UbD and UDb (or UcD and UDc) are mapped to UU∗DD and UDU∗D (or UUD∗D
and UDUD∗), respectively.

(4) For the paths having a step pi of height k labelled by 1 in Rn−1: If pi = D and k = 1, then we change the
corresponding up step (that is, the nearest up step before pi that touches the x-axis) to an H step, and add an up step
to the beginning of the path. So we obtain all the Riordan paths of length n without labels such that there is at least
one horizontal step of height 1 before the path returns to the x-axis. Otherwise, we add a horizontal step after pi , and
label the new horizontal step with ∗. This yields all the Riordan paths of length n containing H ∗. For example, U1HD,
UH 1D, and UHD1 are mapped to UH ∗HD, UHH ∗D and UHHD, respectively.

(5) For the paths having a step pi labelled by 2 in Rn−1: If pi is an up step (or a down step), then we label pi with
∗ and add a horizontal step H after pi (before pi). Thus, we obtain all the Riordan paths of length n containing the
consecutive steps U∗H (or HD∗). If pi =H , then its height is nonzero. In this case, we may assume that pj is the first
down step after pi . Then we replace pi by U, and add a down step before pj and label pj with ∗. So we obtain all the
Riordan paths of length n containing consecutive steps DD∗. For example, U2HD, UH 2D, and UHD2 are mapped
to U∗HHD, UUDD∗, UHHD∗, respectively.

In summary, we obtain all the Riordan paths in [n + 1] × Rn. It can be seen that the above procedure is reversible.
Hence � is a bijection. �

Note that relation (4.1) is derived from the generating function of Bernhart [1]. Our proof is in the spirit of the
Foata–Zeilberger proof of a recurrence relation on the Schröder numbers [6], and Sulanke’s proofs of the recurrences
for Schröder paths, parallelogram polyominoes, and Motzkin paths [10–12].
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