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CLASSIFICATION OF CLASSICAL
ORTHOGONAL POLYNOMIALS

KiL H. KWON AND LANCE L. LITTLEJOHN

ABSTRACT. We reconsider the problem of classifying all classical orthogo-
nal polynomial sequences which are solutions to a second-order differential
equation of the form

L(X)Y"(X) + 20y (X) = AnY(X).

We first obtain new (algebraic) necessary and sufficient conditions on the coef-
ficients¢1(x) and¢2(x) for the above differential equation to have orthogonal
polynomial solutions. Using this result, we then obtain a complete classifi-
cation of all classical orthogonal polynomials : up toeal linear change of
variable, there are the six distinct orthogonal polynomial sets of Jacobi, Bessel,
Laguerre, Hermite, twisted Hermite, and twisted Jacobi.

1. Introduction

All polynomials in this work are assumed to be real polynomials in the
real variablex and we letP be the space of all these real polynomials.
We denote the degree of a polynomiglx) by deg) with the convention
that deg0) = —1. By a polynomial system (PS), we mean a sequence of
polynomials{¢n(x)}32, with deg¢,) = n, n > 0. Note that a PS forms a
basis forp.

A PS{pn(X)}52, is called orthogonal if there is a functign: R — R of
bounded variation on the real lifesuch that

(1.2) / X" du(X)
R
is finite foralln =0, 1, ... and

(1.2) / P (X)Pn(X) die(X) = Kndmn  (Mandn > 0),
R
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whereK,, are non-zero real constants ah is the Kronecker delta function.
Furthermore, we shall say thgh,(X)}5 , is classicalif eachg,(x) (n > 0)
satisfies a fixed second-order differential equation of the form

(1.3) LIYI(X) = £200Y"(X) + £1(X)Y'(X) = AnY(X),

wheref,(x) andZ1(x) are real-valued functions independenbatndi,, is a

real constant depending only an The classification of classical orthogonal
polynomials is generally attributed to Bochner [3]. In fact, Bochner [3]
considered a general second-order Sturm-Liouville differential equation of
the form

(1.4) ()Y’ (X) + a(X)y'(X) + a(X)y(x) + 1y(x) = 0,

wherea;(x) (i = 0, 1, 2) are real- or complex-valued functions ahds a
constant. He then raised and solved the problem : determine all cases such
that for each integen > 0, there is an eigenvalue = A, for which there

is a corresponding polynomial solution of degreeHe first observed that if

the differential equation (1.4) has polynomial solutions of degree 0, 1, and
2, thena; (x) must be a polynomial of degree i, i = 0,1,2. He then
considered cases according to the degres ©f) and, in each case, reduced

the differential equation into a normal form by a suitable complex linear
change of variable. Then, through a detailed analysis of each case, Bochner
showed that up to a complex linear change of variable, the only PS’s that arise
as eigensolutions of the differential equation (1.4) are the following (apart
from non-zero constant factors) :

(a) Jacobi polynomial$Pi*” (x)}°, (@, B, @ + B +1 ¢ {—1, -2,

¥
(b) Laguerre polynomialsL(® (x)}2, (@ ¢ {—1,-2,...});
(c) Hermite polynomial§Hn(x)}72 ;

(d) X"}l
(e) Bessel polynomialsBrﬁ“’ﬂ)(x)}ﬁ‘;o (¢ ¢ {0,—-1,—2,...} andB #
0).

The orthogonality of the Jacobi polynomials toands > —1, Laguerre
polynomials fore > —1, and Hermite polynomials was known long before
Bochner’s work. In fact, Bochner [3] did not mention the orthogonality of
the PS’s that he found. The problem of classifying all classical orthogonal
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polynomials was handled by many authors thereafter : see, for example, [1],
[5], [6], [11], [27], and [31]. The problem was settled by Lesky [27]in 1962 at
least for classical orthogonal polynomials satisfying the orthogonality relation
(1.2) in which the functionu(x) is non-decreasing. Lesky [27] showed that
the only such orthogonal polynomials are Jacobi polynomials witind

B > —1, Laguerre polynomials with > —1, and Hermite polynomials.

Itis easy to see that the RS"}° , in case (d) above cannot be orthogonal.
The orthogonality of the Bessel polynomials was first observed by H.L. Krall
[18] and later investigated in depth by Krall and Frink [19]. Bochner [3]
observed the relation between the PS in case (e) above and the half-integer
Bessel functions and it is this relation which motivates the name Bessel
polynomials in [19]. The orthogonality of the Jacobi polynomialsdoor
B < —1 and Laguerre polynomials far < —1 was recently treated by
Morton and Krall [32].

Anatural question arises : are these four PS’s of Jacobi, Laguerre, Hermite,
and Bessel the only classical orthogonal polynomials? Of course, if we allow
for a complex linear change of variable, as Bochner does in [3], the answer is
yes. However, if we restrict our attention toeal linear change of variable, as
we shall do in this paper, are there any more classical orthogonal polynomials?
As far as the authors know, no previous work on this classification problem
really exhausts all possibilities.

After obtaining necessary and sufficient conditions (see Theorem 2.9) for
the differential equation (1.3) to have orthogonal polynomials of solutions
in section two, we give a complete classification of classical orthogonal
polynomials in section three. Finally, in section four, we will discuss the
integral or distributional representation of orthogonality for each classical
orthogonal polynomial system found in section three.

2. Necessary and sufficient conditions

We call any linear functionat on? a moment functional and denote its
action on a polynomiat (x) by (o, 7). We define thenth moment ofo by
(o, xMm(n=0,1,...).

We shall remind the reader in section four below that any moment func-
tionalo has a representation of the form

(o, ) = f m(X) dp(x) (r eP),
R



976 Kil H. Kwon and Lance L. Littlejohn

or

(o, ) = / T (X)p(X) dx (m e P),
R

whereu(x) is, in general, a function of bounded variation Brand where

¢ (X) isaC*>-function of the Schwartz class. Hence, the orthogonality relation

in (1.2) can be expressed in terms of moment functionals. As we shall see,

it is very convenient and advantageous to use moment functionals instead of

using their integral representations in discussing orthogonal polynomials.
We say that a moment functionais quasi-definite (respectively, positive-

definite) if its momentgo,} >, satisfy the Hamburger condition

(2.1) An(o) = detloi,j]'j_o # 0 (respectivelyAn(o) > 0)

for everyn > 0.

Any PS {P,(X)}32, determines a moment functional (uniquely up to
a non-zero constant multiple), called a canonical moment functional for
{Ph(X)}p2, by the conditions

(2.2) (0,Pg) #0 and (o, P,) =0, n>1

DEFINITION 2.1. APS{P,(X)}2, is called a weak orthogonal polynomial
system (WOPS) if there is a non-trivial moment functiomauch that

(2.3) (0, PnPyy =0 if m#n (mandn > 0).
If we further have
(2-4) (o, Pm Pn) = Kndmn,

whereK,, are non-zero real constants, then we €BH(x)};2 , an orthogonal
polynomial system (OPS). If ead¢fy, > O, then we cal{ P,(X)};2 , a positive-
definite OPS. In either case, we say thB§(x)}>2, is a WOPS or an OPS
relative too and callo an orthogonalizing moment functional @, (X)} 52 .

Itis immediate from the orthogonality (2.3) that for any WORE3(x)} 22,
its orthogonalizing moment functional must be a canonical moment functional
for {Ph(X)}52, SO that it is unique up to a non-zero constant multiple.
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Itis well known (for example, see [4, Chapter 1]) that a moment functional
o is quasi-definite (respectively, positive-definite) if and only if there is an
OPS (respectively, a positive-definite OPS) relativesto It is clear that
if {Pn(X)}p, is an OPS relative tor, then so is{C,P,(x)}r2, for every
sequence of non-zero constalls. Conversely ifo is any quasi-definite
moment functional andiP,(x)}5 , is an OPS relative to, then eachP,(x)
is uniguely determined up to an arbitrary non-zero factor. In particular, for
any quasi-definite moment functiona) there is a unique monic OPS relative
to o given by

oo o1 . e On
o1 o2 ... On+1
2.5 Pr(X) = det : . : (n>0),
@8 P =1 L .
On-1 On ... O2n-1
1 X ... x"

whereA_;(o0) = 1 (see [4, Chapter 1]).

We shall call an OP§P,(x)}22, a classical OP Sf for eachn > 0,
P, (x) satisfies the differential equation (1.3) for some eigenpararmgteXs
mentioned in the introduction, if the differential equation (1.3) has a PS of
solutions, then it is necessary that the coefficightx), ¢1(x), andi, be
given by

L) =Y 4 x] (i=12),
(2.6) ; ’

An =N(N — 1D)loo+ nlyg (n>0),

where(z, + ¢3, # 0.

From here on, we shall assume that the differential equation (1.3) has
coefficients given by (2.6).

In 1938, H.L. Krall [17] obtained necessary and sufficient conditions for
an OPS to satisfy a Sturm-Liouville type differential equation of any order.
In case of the second-order differential equation (1.3), Krall’s result can be
stated as :

THEOREMZ2.1. APS{P,(X)}72 o Is an OPS3respectively, a positive-definite
OPS satisfying the differential equatiofl.3) if and only if its canonical
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moment functionas is quasi-definitérespectively, positive-definit@and the
momentdon )2, of o satisfy the recurrence relation

(2.7)

(€22 + £11)0n41 + (No1 + £10)on + Nlogon—1 = 0 (N>0; 01 =0).

For a new and somewhat simpler proof of Theorem 2.1, see [23] ; for
another proof of the general Krall characterization theorem, see [20] and
[25].

We call the recurrence relation (2.7) theoment equatioffior the dif-
ferential equation (1.3). We may use Theorem 2.1 to classify all possible
classical OPS’s. However it is very difficult, in general, to solve the moment
equation (2.7) and to see whether the corresponding moment functional is
guasi-definite or not. The disadvantage of the conditions in Theorem 2.1 is
that the equation (2.7) contains not only the coefficients of (1.3) but also the
moments of a canonical moment functional of a classical OPS of which the
existence is not known apriori.

Below, we shall first obtain a necessary condition (see Theorem 2.5) and
then necessary and sufficient conditions (see Theorem 2.9) for the differential
equation (1.3) to have an OPS of solutions. Unlike those in Theorem 2.1,
these conditions involve only the coefficients of the differential equation (1.3).

We begin with introducing some formal calculus on moment functionals.
For a moment functionat andx € P, we leto’, the derivative ot andr o,
multiplication ofo by a polynomial, be those moment functionals defined by

(2.8) (o', p) = —(o, P) (peP)
and
(2.9 (mo, p) = (o, Tp) (peP).

Itis then easy to obtain the following Leibnitz rule for any moment functional
o and polynomialr (x) :

(2.10) (o) =n'oc +mo’.

LEMMA 2.2. Leto be a moment functional andx) a polynomial.
(i) Theno = 0ifandonlyife’ = 0.
(i) If o is quasi-definite, then(x)o = 0 if and only ifr (x) = 0.
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Proof. (i) If o/ = 0, then

() = (o, = 0

(0, X7) = (o =0T

‘n+1

for everyn > 0 so thaio = 0. The converse is trivial.
(i) Assumeo is quasi-definite andr(x)o = 0. Let {Py(X)};, be an
OPS relative tar. Supposer(x) # 0 so that degr) = N > 0 and write

N
T(X) = Z C P« (x) with Cy # 0. Then we have
k=0

K

0= (w0, Px) = ) Cilo, PPn) = Ci(o, PR)
k=0

so thatCy = 0 since(o, P3) # 0, contradicting our assumption. The
converse is trivial.

LEMMA 2.3. If the differential equatiorfl.3) has a PS of solutions, then
any canonical moment functionalof this PS satisfies the functional equation

(2.11) (L2(X)o) — £1(X)o = 0.
Proof. Suppose thafP,(x)}o2, is a PS of solutions of the differential

equation (1.3). Let be a canonical moment functional for this PS. Then we
have for each integer > 1,

O = kn(@ Pn) - (G’ )\n Pn) = (G’ KZPA/ + £1P[;> - (EIO_ - (620_)/’ Pr;>’
which implies (2.11) sincéP, (x)};2, is also a PS.

Note that the zero in the right hand side of the equation (2.11) means the
zero moment functional. In other words, the equation (2.11) means

((L20) = £10,x") =0 (n>0),

which is exactly the moment equation (2.7) when it is expressed in terms of
the momentgo,}3°, of o.

We call the equation (2.11) the weight equation for the differential equation
(1.3).
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REMARK 2.1. If we view the equation (2.11) as a classical differential
equation:

(2.12) (£2(x)s)" = £1(X)s = 0,

then any non-trivial solutios(x) of (2.12) is asymmetry facto(see [29])

of the differential expressiob[-] in (1.3). In this sense, we call the equation
(2.12) thesymmetry equatioof the differential expressioh|[-]. For more
details on symmetry factors, symmetry equations, and their applications to
orthogonal polynomials, see [16], [25], [28], and [29].

It is natural to ask if the differential equation (1.3) always has a PS of
solutions. By direct calculation, it is easy to see that (1.3) has a unique monic
polynomial solution of degree for each integen > 0 except possibly for
a finite number of values of and, for those exceptional casesxfif there
is any), there may be no polynomial solution of degreer there will be
infinitely many monic polynomial solutions of degree

ExampLE. Consider the following second-order differential equation :
(2.13) LIYI®) = @+ x)y" (%) + [1~ kx +bly () = n(n - k)y(x),
wherek > 1 is an integer and is a real constant. Now it is easy to see that
the equation (2.13) has a PS of solutions if and onlyig odd ando = 0.
Moreoverwherk = 2j+1, ] > 0andb = 0, the equation (2.13) has a unique
monic polynomial solution of degraeforn ¢ {j +1, ) +2,...,2] + 1}.
Forne {j+1,j+2, ...,2j+ 1}, it has infinitely many monic polynomial
solutions of degrea.

DerFINITION 2.2 (Krall and Sheffer [21]). The differential expressibp]
in (1.3) (or the differential equation (1.3) itself) is called admissible if

(2.13) Am#Z iy for m#n (mandn > 0).

LEMMA 2.4. For the differential expressidd -] in (1.3), the following are
equivalent :
(i) L[] is admissible ;
(i) An=n("—Dlo+nl11 #0(N>1);
(III) 11 ¢ {—nﬂzz | n=20,12,.. } ,
(iv) The moment equatiofR.7) (or equivalently the weight equation
(2.11)) has only one linearly independent solution ;
(v) For eactn > 0, the differential equatiofl.3) has a unique monic
polynomial solution of degree.
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Proof. The proofs of (i}=(ii) and (ii)< (iii) < (iv) are trivial.
(ii))=-(i) : This follows from the identity

(N+mMn—2Am) = (N—mM)(N+mM)(lo(N+M—1)+£11) = (N —M)Anim.

(i)=(v) : For any integen > 1, let

n

P =) Cix*  (Ch=1
k=0

be a monic polynomial of degree ThenP,(x) satisfies (1.3) if and only if
(2.14) L20(k+2)(k+1DCP, 5 + (K+ 1) (21K + £10)Cy; + (A — An)C = 0

k =01,....,n-1), whereCl,, = 0. If L[] is admissible, then all
C? (k=0,1,...,n— 1) are uniquely and successively determined by the
equation (2.14) and our assumption tGjt= 1.

(V)=() : Assume that the differential equation (1.3) has a unique monic
PS{Pa(x)}p2, of solutions butl[-] is not admissible. Hence from (ii), we
haveiyn = Ao = O for some integeN > 1. But then

L[Pn + KPy] = AnPn + kioPo = 0= An(Pn + kPy)

for any constarit. Hencel[y] = AnY has infinitely many monic polynomial
solutions of degre@l, which contradicts our assumption.

REMARK 2.2. LetN > O be the largest integer such thiat = 0. Then
for anyn > N the differential equation (1.3) can have only one linearly
independent polynomial solution of degnee

REMARK 2.3. Whenl,(x) = 0, the differential equation (1.3) reduces to
the first-order equation

(12X + £10)Y' (X) = nl11y(X),

which is admissible if and only if;1 # 0. In this case, the corresponding
weight equation is
(£11X + £109)0 =0,
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of which the general solution is
o = CS5(£11X + £10),

wherec is an arbitrary constant ardd?,1X + £1o) is the Dirac delta moment
functional defined by

(0(L11X + £10), m (X)) = 7w (—L10/L11) (m €P).

Since o is not quasi-definite, we can conclude that the above first-order
differential equation can never have an OPS of solutions (see Theorem 2.1).

By Remark 2.3, we may assundg(x) # 0 in the differential equation
(1.3). Now we are ready to give a necessary condition for the differential
equation (1.3) to have an OPS of solutions, which will be very useful in our
classification in the next section.

THEOREM 2.5. If the differential equatior{1.3) has anOPS{P,(x)}32, of
solutions, then_[-] is admissible.

Proof. Assume that (1.3) has an ORB, (x)}2 , of solutions and letr be
an orthogonalizing moment functional o, (x)}2,. Theno is a canonical
moment functional of P,(X)}52, and, by Lemma 2.37 satisfies the weight
equation (2.11). IL[-] is not admissible, then, by Lemma 2.4 (ii), there is an
integerN > 1 such thaky, = 0. Consequently, we have

0= )‘-N PNO' = (EZPI/\i +£1P|I\I)O’
= (£2P\0)" — P (£20) + Py (£10) = (£2Py0)’.

Hence, by Lemma 2.2, we havwPy = 0. However,{(X) # 0 (see
Remark 2.3) so tha® (x) = 0, which impliesN = 0 contradicting the fact
thatN > 1.

Theorem 2.5 was first proved by Lesky [27] only for positive-definite
classical OPS’s. However his method of proof cannot be extended to general
classical OPS’s since he used the following fact which holds only for positive-
definite OPS'’s : for any positive-definite ORB, (x)}12 ;, the zeros of,(x),

n > 1, are real and distinct and no two polynomials fr¢Ry(x)}2, can
have common zeros (see Chihara [4]).
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The converse of Theorem 2.5 does not hold in general. For example, the
PS{x"}s2, satisfies the admissible differential equation

X2y (X) + XY (X) = n?y(x)

but {x"}s2, is not an OPS. However, we have the following partial converse
of Theorem 2.5.

THEOREMZ2.6. If the differential operatoL.[-] in (1.3) is admissible, then
any PS[P,(x)}32, of solutions to the differential equati¢h.3) is a WOPS.

Proof. By Lemma 2.4, we may assume thid,(x)}>°, is the unique
monic PS of solutions to (1.3). Let be a canonical moment functional of
{Pn(X)}22,- Theno # 0 by definition and, by Lemma 2.3; satisfies the
weight equation (2.11). Then we have farandn > 0

(}\m - }\n) I:)m I:)n = EZ(Pr/n I:)n - I:)m Pr;)/ + El(Pr/n I:)n - I:)m Pr;)
= EZWr/n’n + ele,n»

whereWn, = PP, — PnP; is the Wronskian ofP,, and P,. Hence, by
(2.11), we have

(Am — An) (o, PnPn) = (o, eZWr/n,n + £1Wmn)
= <E10’ — (@20‘)/, Wm,n) =0.

Consequentlyo, PnP,) = 0form # nif L[-] is admissible.

REMARK 2.4. In fact we can prove, by the same reasoning as in the proof
of Theorem 2.6, something more than Theorem 2.6.L[Ip] = Ap and
L[gq] = uq for some polynomialp(x) andq(x) andx # u, then(o, pq) = 0
for any moment functional solutian of the weight equation (2.11). Here we
do not need to assunid-] is admissible.

We now seek a criterion for when a WORR, (x)}>2, is an OPS, which
does not involve a canonical moment functional Bf(x)}52 .

For any monic PSP, (X)}:2,, there are constanis,}o2, and {Bn}nc;
such that

(2.15) Pry1(X) — (X — an) Pa(X) + Bn Pr—1(X) (n>1)
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is a polynomial of degree n — 2. In fact if Py(x) = Y p_oCIx* (Cl =1 ;
n > 1), then

(2.16)
Un = rrw]—l - CRH

and

(2.17)
Bn = Cr?fZ - (erfl - CRH)CSA - Cr?j (Cil =0).

At this moment, we need to recall Favard’s theorem (see [10]) which asserts
that a monic PP, (X)}52, is an OPS (respectively, a positive-definite OPS)
if and only if { Py (X)}52, satisfies a three term recurrence relation

(2.18) Pry1(X) = (X — an) Pa(X) — BnPa—1(X) (n>1),

where eaclg, # 0 (respectivelys, > 0).
In the case of WOPS'’s, Favard’s theorem can be improved as follows.
ProPOSITION2.7 (Krall and Sheffer [21]).A monic WOPS{P,(x)};, iS an
OPS(respectively, a positive-definite OP&and only if
(2.19) Bn#0 (respectivelyp, > 0)

forn > 1, wherep, is the constant given i(2.15)

Proof. See Lemma 1.1 in [21].

Once we know a P&P,(X)}52 is a WOPS (it is so if Py (X)}52, satisfies
an admissible equation (1.3) : see Theorem 2.6), the advantage of applying
Proposition 2.7 over Favard’'s theorem is evident. In order to check condition
(2.19), we only need to know the coefficientsdf 1 andx"~2 of eachP,(x)
from a monic WOPS P, (x)};2,. More precisely, we have the following
result from Proposition 2.7 and equation (2.17).
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COROLLARY 2.8. Let {Py(X)}32, be a WOPS andP,(x) = Y Cpx¥
k=0
(Ci =1) forn > 0. Then{P,(x)}22, is an OPSrespectively, a positive-

definite OP% if and only if
(2.20)
pn=Ch ,—(CP,—CMHCh , —CM1£0 (respectivelyp, > 0)

forn > 1, whereC!, = 0.

Now combining Theorem 2.5, Theorem 2.6, and Corollary 2.8, we can
obtain necessary and sufficient conditions for the differential equation (1.3)
to have an OPS of solutions in terms of only the coefficients of the differential
expressiori[-].

THEOREM2.9. The differential equatio(iL.3) has an OP$respect- ively,

a positive-definite OPSf solutions if and only if
() 11 ¢ {—nl2INn=0,1,2,...}

and
i) the condition(2. olds; i.e. B, respectiely, g, > 0),
(i) th dition(2.20) holds; i.e. B, # 0 ( vely, B 0)
where
N[€10+ €21(n — 1)]
2.21 ch =
( ) LT g+ 2005(n— 1)
and
(2.22) co_, = n(n — 1)[€20(€11 + 2€22(N — 1)) + (L10 + €21(N — 2)) (L1g + £21(N — 1)]
. n-2 —

2[811+ 2€20(n — D][L11+ £22(2n — )]
(n = 1; CE]_:O)

Proof. By Lemma 2.4, the above condition (i) is just the admissibility of
L[-]whichis also equivalentto the fact that the differential equation (1.3) has a
n

unique monic P$P,(X)}52 , of solutions. If we seP,(X) = Z Cl'gx" (Ch =
k=0

1; n> 0),thenC] ; andC , are givenby (2.21) and (2.22_), respectively, by
solving the equation (2.14) f&r= n—1 andk = n— 2. Hence, Theorem 2.9
follows from Theorem 2.5, Theorem 2.6, and Corollary 2.8.

We end this section by the following remark.
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REMARK 2.5. If we assume that the differential equation (1.3) has a monic
PS {Ph(X)}52, of solutions, then(P,(X)}:2, is an OPS if and only if the
condition (2.20) holds. For a proof of this statement, see [24, Proposition 3.7].
Note here that apriori we do not assume tfat(x)}:2, is a WOPS (as in
Proposition 2.7) ot [-] is admissible (as in Theorem 2.9). Furthermore, only
condition (2.2) must be checked but not with the conditions given in (2.21)
and (2.22). In general, these latter two equations are not well defined unless
the expressioh[-] is admissible.

3. Classification

We say that any two OPS'’s are equivalent if either one differs from the
other by non-zero constant factors or one is obtained from the other by a real
linear change of variable.

In this section, we will classify all classical OPS’s up to equivalence classes
using Theorem 2.9.

In the following, we letN be the set of all positive integers and use the

notation
a) ay al@—1---(a—k+1)
(o)== ()=

for any complex numbes and any integek in N. As with Bochner, we
divide the cases according to the roots of the leading coeffi¢igrj of the
differential expressio.[-] in (1.3).

Cases 1: Jacobi polynomials
We assumé,, # 0 andeg1 — 4lyolo0 > 0. Then, by a real linear change
of variable, the equation (1.3) can be transformed into
LIyI0) = (1= X2y () + [(B — @) — (@ + B+ 2X]Y'(X)
= —-—nh+o+B+DyX).
We assume-(a¢ + 8 + 1) ¢ N so thatL[-] in (3.1) is admissible. Then the
equation (3.1) has a unique monic F%*” (x)}>,,, called the Jacobi PS, of

solutions :
(3.2)

2n+ o+ B 1T M+a n+p _
p(@.f) _ Z Nk k
n () ( n ) ( k )(n — k)(x DT x+D

k=0

(3.1)

(n > 0).
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PROPOSITION3.1. The Jacobi PSP\"" (x)}°, is

(i) aWwOPSif—(a«+p+1) ¢N;

(i) an OPSifandonly if-o, —B, and—(a¢ + 8+ 1) ¢ N :
(i) a positive-definite OPS if and onlydf andf > —1.

Proof. The proof of (i) follows from Theorem 2.6. Now we assume
—(ax+ B+ 1) ¢ N. We then have, from (2.20), (2.21), (2.22), and (3.1),

(3.3)
b= dn(a + B+ N)(x +Nn)(B + n)
"T @+ B+2n—D@+B+2n2(a+p+2n+1)

HenceS, #0forn > lifandonlyifa +n# 0andB+n # 0forn > 1so
that (ii) follows from Theorem 2.9. To prove (iii), it suffices to shgw > 0
forn > lifandonlyife andg > —1. If « andg > —1, then every factor
in (3.3) is positive so thas, > 0 forn > 1. Conversely, assumg, > 0
forn > 1 bute < —1 (whenp < —1, the proof is essentially the same).
Then, frompg; > 0, we have( + )(« + 8+ 3) < 0. If +1 < 0 and
a+pB+3>0,thene+p+2<0andO0<a+2, B+2 < 1sothats, <0,
which is a contradiction. I8 + 1 > 0 ande + 8 + 3 < 0O, thena < —2.
Then, fromp, > 0, we havex + 8 +5 < 0 and sax < —4. Continuing
the same process, we have thak —2k for any integerk > 1, which is
impossible.

(n=>1).

The explicit orthogonality of the Jacobi I?Bn(“’ﬂ) X))} pforaorp < —1
(but—a and—p ¢ N) has been treated by Morton and Krall [32].
Case 2: Bessel polynomials

We assumé,, # 0 andﬁ%l — 42020 = 0. Then, by a real linear change
of variable, the equation (1.3) can be transformed into

(34)  LIYIX) = x2Y'(0) + (@x + B)Y (X) = n(n + & — Dy(X).
We assume-(o—1) ¢ Nsothat_[-]in(3.4) isadmissible. Then the equation
(3.4) has a unique monic F{B,ﬁ“’ﬂ)(x)}g‘;o of solutions :
xn if =0
(35) B@“Ax) = 1 " nT(@+n+k—1) (5>" 820

BT (a +2n — 1) kgo (n—Kk)! k! B

(n > 0). Wheng # 0, we calI{B,ﬁ“’ﬂ)(x)},g";o the Bessel PS. The R&"}>°,
is a WOPS by Theorem 2.6 but it cannot be an OPS.
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PROPOSITION3.2. The Bessel P$B\"” (x)}%, is an OPS(but not a
positive-definite OPSIf and only if —(a« — 1) ¢ N andp # 0.

Proof. We assume-(a¢ — 1) ¢ N. We then have, from (2.20), (2.21),
(2.22), and (3.4),

—nB%(a+n—2)

(3.6) Bn= (@+2n—3)(@+2n—22%a+2n— 1)

(n>1).

Henceg, # 0 forn > O if and only if 8 # 0 andpB, < O for n large enough.
Therefore, we have the proposition by Theorem 2.9.

The Bessel PS, as an OPS, was first observed by H.L. Krall [18]. Earlier
these polynomials were discussed by Romanovski [33] and Bochner [3]. In
[19], Krall and Frink studied the Bessel polynomials in detail and found,
explicitly, their complex orthogonality.

Case 3: Laguerre polynomials

We assumé,, = 0 andl,; # 0. Then by a real linear change of variable,
the equation (1.3) can be transformed into

(3.7) LIy](x) = xy"(X) + (¢ + 1 — X)Y'(X) = —ny(x).

The differential expressioh[-] in (3.7) is admissible and so the equation
(3.7) has a unique monic A& *}%°,, called the Laguerre polynomials, of
solutions :

n ik
(3.8) L&) = (=Dl ) (?ii) ( k)'() (n > 0).
k=0 ’

PROPOSITION3.3. The Laguerre PEL@ (x)}>, is
(i) a WOPS for every ;

(i) an OPSifandonly if-o ¢ N ;

(i) a positive-definite OPS if and onlydf > —1.
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Proof. (i) follows from Theorem 2.6. We have from (2.20), (2.21), (2.22),
and (3.7)

(3.9) Bo=n(@+n  (n>1).

Hencep, # 0 (respectivelys, > 0) forn > 1 if and only ifa + n # O for
n > 1 (respectivelye > —1) so that (ii) and (iii) follow from Theorem 2.9.

The caser = 0 is the one originally studied by Laguerre [26]. The case
a > —1is due to Sonine [34] and the generalized Laguerre P& far—1
and—a ¢ N has been recently studied by Morton and Krall [32].

Case 4. Hermite polynomials

We assumé,, = ¢ = 0, €20 # 0, and?¢y; < 0. Then, by a real linear
change of variable, the equation (1.3) can be transformed into

(3.10) LIy](x) = y"(X) — 2xy' (X) = —2ny(X).

The differential expressioh[-] in (3.10) is admissible and so the equation
(3.10) has a unique monic P&, (x)}:2, of solutions called the Hermite
polynomials :

[n/2] k n—2k
_ (-1 X
(3.11) H,(X) = n! kE:o K(n_ 201 &

(n=0),

where ] is the integer part ok.
PrROPOSITION3.4. The Hermite P§H,(X)}:2, is a positive-definite OPS.
Proof. We have from (2.20), (2.21), (2.22), and (3.10)

(3.12) pn = g (n>0).

Hence, the proposition follows from Theorem 2.9.

Case 5: Twisted Hermite polynomials

Assumely, = €p; = 0, €9 # 0, andf1; > 0. Then, by a real linear
change of variable, the equation (1.3) can be transformed into

(3.13) LIy](x) = y"(X) + 2xy (x) = 2ny(X).
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The differential expressiohl[-] in (3.13) is admissible and so the equation
(3.13) has a unique monic R&l,(x)}2, of solutions. We callHn(x)},

the twisted HermitePS. In order to findH,(x) explicitly, we setx = it
and H,(x) = Hq(it) = i"Z,(t) withi = «/—1. ThenZ,(t) is a monic
polynomial of degre@ and satisfies the Hermite differential equation (3.10)
so thatZ,(t) = Hn(t). Hence, we have

[n/2] —2k
- . . 1 X"
(3.14) H,(X) =i"Hp(—=ix) =n! kE 0 K (h— 2k & (n>0).

ProPOSITION3.5. The twisted Hermite Psfln(x)}ﬁi o Is an OPS but not
a positive-definite OPS.

Proof. We have from (2.20), (2.21), (2.22), and (3.13)

(3.15) Pn = _7” (n>1).

Hence, the proposition follows from Theorem 2.9.

Case 6: Twisted Jacobi polynomials

We assumé,, # 0 andﬁ%l — 492050 < 0. Then, by a real linear change
of variable, the equation (1.3) can be transformed into

(3.16) L[y](x) = (1 4+ x3)Y"(X) + (dx+ )y (x) = n(n+d — 1)y(x).

We assume-(d — 1) ¢ N so thatL[-]vin (3.16) is admissible. Then the
equation (3.16) has a unique monic fR(x; d, e)};2, of solutions. We call
{Pn(x; d, )}, thetwisted JacobPS. In order to find®, (x; d, ) explicitly,
we setx = it and P,(x; d, ) = P,(it:d,e) = i"Z,(t). ThenZ,(t) is a
monic polynomial of degrer and satisfies

L —t3)y"(t) + (e —dbhy'(t) = —n(n +d — y(),
which is the Jacobi differential equation (3.1) when

ie=—a and d=ao+ 8+ 2
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Hence we hav&,(t) = P\*? t) and B{*? (x) = i"P\*#(—ix) so that
(3.17)
. N+a+B\ T N+a)\/n+p . .
(@.B) — __iyh—k k
P (X)—( N ) Z( K )(n—k X=D)"*x+1)

k=0

(n > 0), whereP,(x; d, &) = Pa(x; a4+ B +2,i (e — B)) = P\ (x). Note
that even though the expression &P (x) in (3.17) involves, PP (x)
is a real polynomial of degraesinces = a.

PROPOSITION3.6. The twisted Jacobi P&\ (x)}2, is an OPSbut
not a positive-definite OBSf and only if —(a + 8 + 1) ¢ N.

Proof. We have, from (2.20), (2.21), (2.22), and (3.16),
(3.18)

) —4n(@ + B+ (@ + (B +n)

T @tpt2n—D@+p+202a+p+2n+1)

(n>1).

Since =a, fn Z0forn > lifand only ifa + 8+ n # O0forn > 2 and
Bn < Ofornlarge enough. Hence, the proposition follows from Theorem 2.9.

The twisted Jacobi PS first appeared in the paper [33] of Romanovski as a
PS satisfying the differential equation

(X2 +a%)y’(x) + [2(1 — m)x — va]ly' (x) — n(n + 1 — 2m)y(x) = 0,

wherea, m, v > 0. He provided identities for the twisted Jacobi PS includ-
ing the three term recurrence relation, the differentiation formula, and the
orthogonality (with an incorrect weight function ; see section four).

As discussed in the introduction, Bochner [3] classified the so-called
Sturm-Liouville polynomial systems that can arise as eigenfunctions of the
differential equation (1.3). His analysis allowed a complex linear change of
variable in his classification. Consequently, he identified the Hermite PS with
the twisted Hermite PS, and the Jacobi PS with the twisted Jacobi PS.

Later, Cryer [5] found the twisted Jacobi PS as the Jacobi PS with com-
plex parameters in his characterization of the classical OPS’s through the
Rodrigues’ type formula.

Lastly in this section, we discuss briefly the problem of finding moments
of the classical OPS’s.
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For each classical OPS, we can compute the monjeits , of its canoni-
cal moment functionat by solving the corresponding moment equation (2.7)
successively starting from any non-zero valuedgr However, the moment
equation is, in general, a three term recurrence relation, which is not easy to
solve. Morton and Krall [32] introduced an idea by which we can always
reduce a three term recurrence relation to a two term recurrence relation. Let
t = X — Xp, Wherexg is a constant, possibly complex, that will be chosen
later. Then, in terms of the new varialilghe differential equation (1.3) and
the corresponding moment equation (2.7) become

[€20t? + (222%0 + La1)t + £22X5 + £21X0 + L20] Y (1)

(3.19) /
+ [€1at + (11X + €10)]Y (1) = Any(1),

and

(3.20) (£11 4+ Nl22)0ont1(Xo) + [€11X0 + £10 + N(2022X0 + £21)]on(Xo)

+ N(LaoX3 + €21%0 + €20)on_1(X0) =0 (N > 0),

whereon(Xg) = (o, (X — Xg)") is thenth moment o aboutxg. If we choose

Xg SO thatﬁzzxg + ¢21%0 + €20 = O, then the equation (3.20) becomes a two
term recurrence relation and we have

(3.21)

n
n
on = (0. X") = (0. [(X = X0) + X]") = Y _ (k)xg"‘ak(xO) (n>0).
k=0
We illustrate the above procedure for the twisted Jacobi polynomials; see

Morton and Krall [32] for a similar discussion of the moments for the other
classical OPS'’s, except the twisted Hermite PS. The moment equation for the
twisted Hermite PS is a two-term recurrence relation, which can be solved
easily.

_Lets = 5P be the canonical moment functional of the twisted Jacobi PS
{P,ﬁ“”g)(x)}ﬁio with 69 = (6, 1) = 1. The corresponding moment equation
IS
(B822) (@+B+Nn+2)06n1+i(@—p)on+ns-1=0 (n>0),

which is a three-term recurrence relation unkess g. If we choosex, to be
i and let{on (i)}, be the moments af abouti, then{d, (i)}, satisfies a
two-term recurrence relation

(a+B+nNn+2)0on1(i) +2(@+n+1)op(i) =0 (n>0),
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from which it follows that

_ (=D"@)Na + D

on(i) = @+ B+ (n>0),

where(a)o = 1 and(a)x = a(x¢+1) - - - (¢ +k— 1) for any complex number
« and integek > 1. We now obtain, from (3.21),

s (DED @+,
(3.23) Gn=1")" J(a+5+2),-

j=0

> 0).

Similarly, if we uses,(—i) instead o5, (i), we then obtain

L (DEiB+ ),
@28 =), (J)(a ThiD
J

j=0

> 0).

Note that alls,, are real since the complex conjugatespf(recall 8 = @) in
(3.23) is exacthys, in (3.24).

4. Integral representation of orthogonality

Although using moment functionals to introduce orthogonality has many
advantages as we have seen in previous sections, it is still desirable to express
the orthogonality as an integral with respect to a suitable measure. Such an
integral representation of orthogonality is always possible due to the following
classical results on the moment problem .

Given any sequenden )2 of real numbers,

(i) (Boas [2]) there is a functiop: R — R of bounded variation of®
such that

(4.1) on = / X"du(x) (0= 0);
R

(i) (Duran [7]) there is &C°°-function¢: R — R in the Schwartz space
Ssuch that

(4.2) on = / X" (X) dx (n > 0).
R
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Hence for any moment functional, there is a distributiom, (X) on R (for
example, we may take, (X) to be¢ (x) in (4.2)) such that

(4.3) (o,7) = (wo,m)  (w€P),

where (w,, ) is the action of the distributiom, (X) on the test function
m(X). In particular, ifo is an orthogonalizing moment functional of an OPS
{Ph(X)}p2o, We callw, (X) in (4.3) an orthogonalizing weight fgiP, (X) }72 .

Recently, there have been several attempts of effectively finding orthogo-
nalizing weights for various classes of OPS’s. Morton and Krall [32] intro-
duced a formaéd-series expansion of a moment functional

o0
o~ Y (=D ™ (x)/n!
n=0
and found, via the Fourier transform, orthogonalizing weights for the Jacobi,
Laguerre, and Hermite PS’s. This forndaseries expansion was also used in
Kim and Kwon [14] to produce an orthogonalizing hyperfunctional weight
for the Bessel P$B(%? (x)}22,.

In case of a classical OP®,(x)};2,, satisfying the differential equation
(1.3), we may use the corresponding weight equation (2.11) to find an or-
thogonalizing weight fof P, (x)}72 5. To do this, however, we must interpret
(2.11) as a classical differential equation with the right-hand side of (2.11)
replaced by a function (not necessarily identically zero) having zero moments.

To be precise we have the following Theorem, which is a special case
of Theorem 2.3 in [22] for second-order differential equations (see also [28,
Theorem 5.6]).

THEOREM 4.1. Let {Pa (X))}, be a classical OPS satisfying the differ-
ential equatior(1.3). If w(x) is an orthogonalizing weight distribution for
{Pa(X)}22,0, thenw(X) satisfies the distributional differential equation

(4.4) (L2()w(X))" — L1()w(X) = g(X),
whereg(x) is a distribution having zero moments; that is,
(4.5) (9(x),x") =0 (n=0).

Conversely, ifw(X) is a distribution such that
() w(x) decays rapidly at infinity so that w, X" > exists and is finite
foralln > 0;
(i) w(X) Is a solution to equatiof®.4) onR distributionally ;
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and
(i) w(x) is non-trivial as a moment functional,
thenw(X) is an orthogonalizing weight distribution foP,(X)}>

Condition (iii) in the above Theorem 4.1 means that x") £ 0 for some
n > 0. For any classical OPS, there always exists a distributional orthogo-
nalizing weightw(x) satisfying the conditions (i), (ii), (iii) in Theorem 4.1.
In fact, it is enough to take(x) to be¢(x) in (4.2) where{on}3>, are the
moments of any canonical moment functionadf the given classical OPS.

We call the equation (4.4) the non-homogeneous weight equation for the
differential equation (1.3). Wheg(x) = 0, the homogeneous weight equa-
tion

(4.6) (L2()w (X)) — L1 (X w(X) =

is exactly the symmetry equation (2.12) of (1.3) (see Remark 2.1).

Althoughitturns outthatitis enough to solve classicallytibenogeneous
weight equation (4.6) for an orthogonalizing weight for any positive-definite
classical OPS (as shown by Lesky [27]), we must, in general, consider the
non-homogeneousveight equation (4.4) in the space of distributions; see,
for example, Kwon, Kim, and Han [22] for the case of the Bessel PS and
Littlejohn [28] and Krall and Littlejohn [16] for other classical OPS’s as well
as non-classical OPS'’s satisfying higher order differential equations.

There are several examples of non-trivial continuous functions having zero
moments available. For example, the functgg®) given by

ifx<0

4.7 g(x) = { exq_x%)sin(x%) if x>0

is continuous orR and has zero moments. This function was found by
Stieltjes [35]. For more such examples, we refer to Hardy [12] and Maroni
[30].

Once an orthogonalizing weight(x) (or any orthogonalizing moment
functionalo) of an OPS{P,(x)}5, is chosen, the squared norms, P2)
can be computed most easily from the three-term recurrence relation (2.18).
In fact, we have (see [4, Theorem 4.2 in Chap. 1])

(4.8) (w(x), P?) = ]‘[/31,
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wherefy = (w, POZ) = (w, 1) andp, (n > 1) are the constants in (2.18).

We shall now construct an orthogonalizing weight for each classical OPS
found in section three. We always assume that the parameters involved in
each PS are restricted so that the PS is an OPS.

Case 1: Jacobi polynomials

In this case, the homogeneous weight equation corresponding to the Jacobi
differential equation (3.1) is

(4.9) (L= x3w'(x) + [(@ + p)x = (B —)]w(x) =0,

which is equivalent to

(4.10) A=—xH[A=x"*A+x)Pwx)] =0

for x # £1. Then the general distributional solution of (4.10) ¥of +1is
w(X) = [ctH(@ — X) + oH (1 + X) 4+ ¢3] (1 — x)* (1 + x)?,

wherec; (i = 1,2, 3) is an arbitrary constant and (x) is the Heaviside
function. If we chooses;, = —1, ¢, = +1, andcs = 0, then thisw(x)
extends to a distribution dR (see Remark 4.1 below) :

(4.11) w@P (x) = (1 - %L+ %),

which is a non-trivial distributional solution to (4.9) dR with compact
support [-1,1]. Since w®? (x) satisfies the conditions (i), (i), (iii) in
Theorem 4.1w@# (x) is an orthogonalizing weight faP\* (x)}2°,. We
then have, from (3.3) and (4.8),
(4.12)

(WP (), [P 01%)

| 2P 4o+ DI+ B+ DI+ o + B + Dn!
= ren+a++Dr@n+a+pB+2)

22PN (e + DI (B41)

forn > 0, since(w@? (x), 1) = Terin?
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REMARK 4.1. For any complex numbaer consider the functiorfy: R —
C defined by
0 ifx<oO

x2 ifx>0’

fa(X) = {

where we take log to be real forx > 0 so thatx? is defined uniquely
for x > 0. The functionf,(x) always extends to a distributior on R
with supportin [Qc0). For Rea > —1, f5(x) is locally integrable ofR so
thatx? = fa(x) and for Rea < —1, x? is obtained fromf,(x) by analytic
continuation and regularization. For details on the distributibrwe refer to
Hormander [13, Chap. 3.3.2]; see also Morton and Krall [32] for an explicit
integral representation of the distributiar®# (x) in (4.11).

Case 2: Bessel polynomials

In this case, it is more convenient to replacey 5—2’( ando by o + 2 so
that the equation (3.4) becomes

(4.13) L[y](x) = X2y"(X) + [(@ + 2x + 2]y (X) = n(n + a + 1)y(x),

where—(a + 1) ¢ N. We then denotdB**22(x) by B®(x). Now, the
homogeneous weight equation corresponding to (4.13) is

(4.14) x2w'(X) — (X + 2)w(x) = 0,

of which the only one linearly independent distributional solution with support
in [0, c0) is

415 o — 0 ifx<0
(4.15) wO()_{x“exp(—Z/x) if x > 0.

Romanovski [33] used(x) as an orthogonalizing weight for Bessel PS, but
wo(X) cannot be an orthogonalizing weight since it does not decay rapidly at
infinity. In fact, we have

lim X"wo(X) = oo
X— 00
forn+ o > 0. We now consider the non-homogeneous weight equation

(4.16) X2w'(X) — (@X + Qw(xX) = g(x),
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whereg(x) is a function with zero moments. Fgr# 0, the general solution
of (4.16) is

0 { Cr(—x)%e /X if x <0
w(X) =
x*e 2/ [XeXtt—2mog(t) dt + cox?e X if x > 0,
wherec; and c, are arbitrary constants. With concern for the boundary
condition (i) in Theorem 4.1, we choose = 0 andc, = — [;° €?/'t™2™
g(t) dt to obtain

(4.17) w®@(x) = { 0 Tx=0
' | —xee X [ ttZegtydt if x > 0.

If we further takeg(x) to be the function givenin (4.7), thenf® in (4.17) is a
continuous function o satisfying the conditions (i) and (ii) in Theorem 4.1
(see [9], [22], and [30]). Hencey® (x) in (4.17) (withg(x) in (4.7)) is an
orthogonalizing weight for Bessel RB\* (x)}52, if and only if

(4.18) (w®(x),1) = —/

0

x%e~2/X U e?/'t=2g(t) dt] dx # 0.
X

Condition (4.18) was first proved in [22] far = 0 and, recently, Maroni [30]
proved (4.18) for altr > 12(2)* — 2.

If we let o be the canonical moment functional @8 (x)}%°, with
o3 = 1, then we have from (3.6) and (4.8)

(=4H"nT (@ + 2T (@ +n+1)
() (@) 2y _
(4.19) (0, [ByY(0]%) = F(@+2n+ D@ +2n+2)

(n>0).

REMARK 4.2. Krall and Frink [19] found the complex orthogonality (now
called the Bessel orthogonality) of the Bessel PS through the contour integral
along the unit circle in the complex plane. Although the homogeneous weight
equation (4.14) cannot yield a distributional orthogonalizing weight for the
Bessel PS, it has a non-trivial hyperfunctional solution with suppof{0jat
with respect to which the Bessel PS is orthogonal (see [9], [14], and [15]).

Later in this section, we will discuss again real orthogonalizing weights
for {B{*) (x)}%°, for anya with —(« + 1) ¢ N.
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Case 3: Laguerre polynomials

In this case, the homogeneous weight equation corresponding to the La-
guerre differential equation (3.7) is

(4.20) Xw'(X) + (X — a)w(x) = 0.

If we setv(X) = €*w(x), thenv(x) satisfies the Euler equation
xv'(X) — av(X) =0,

of which the general distributional solution is
v(X) = Cax{ + Cox2,

wherec; andc, are arbitrary constants and is the distribution orR with
support in(—oo, 0] (defined similarly ax%; see Remark 4.1 anddimander
[13, Chap. 3.3.2]). Hence, the general solution of (4.20) is

w(X) = Ccixfe X + cxie ™.

For thisw(x) to vanish at infinityc, must be zero. Then by taking = 1,
we obtain

(4.21) w®(x) = x%e™%.

Sincew® (x) in (4.21) satisfies the conditions (i), (i), (i) in Theorem 4.1,
w® (x) is an orthogonalizing weight fdi.* (x)}>°,. Since

(xie™X, 1) =T(@+1)
we have, from (3.9) and (4.8),
(4.22) (W@ x), [LY)]%) =nlT(n+a+1).

Case 4: Hermite polynomials

In this case, the homogeneous weight equation corresponding to the Her-
mite differential equation (3.10) is

(4.23) w' (X) + 2Xw(X) = 0,
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of which the only one linearly independent distributional solution is
(4.24) w(X) = exp(—x3).

Sincew(x) in (4.24) satisfies the conditions (i), (ii), (iii) in Theorem 4.1,
w(X) is an orthogonalizing weight fdH, (x)}72 ;. We then have, from (3.12)
and (4.8),

(4.25)

(w(x), H3(X)) = foo H2(x) exp(—x?) dx = /7n!2™"  (n>0).

Case 5: Twisted Hermite polynomials

In this case, the homogeneous weight equation corresponding to the twisted
Hermite differential equation (3.13) is

(4.26) w'(X) — 2Xw(X) = 0,
of which the only one linearly independent distributional solution is
wo(X) = exp(x’),
which cannot be an orthogonalizing weight. However, from (3.14) and (4.25),

we can obtain the complex orthogonality :
(4.27)

/ ” Hen(X) Ha(X) expx?) dx = (=1)"/7n!' 2 "idmn  (mandn > 0).

oo
Let us now consider the non-homogeneous weight equation
(4.28) w' (X) — 2Xw(X) = g(X),

whereg(x) is a non-trivial continuous function dR with zero moments and
support in [Q co). Then the general solution of (4.28) is

w(x) = ce” + eXZ/ e Pg(t) dt,
0



Classical orthogonal polynomials 1001

wherec is an arbitrary constant. For thig(x) to vanish at infinityc must be
zero and

(4.29) f e ¥ g(x)dx = 0.
0
Then we have

(4.30) (X)_{O ifx<0
| PV T e e fomydt if x> 0.

Note thatw(x) in (4.30) is a classical solution to (4.26) & If we further
assume

(4.31) XIim x"g(x) =0 (n>0),
then it is easy to see that

Xlim x"w(x) =0 (n > 0),
and sow(x) satisfies the conditions (i), (ii) in Theorem 4.1. Consequently,
w(X) in (4.30) is a real orthogonalizing weight foiH, (X)} 2, if and only if

(4.32) (w(X), 1) = /Oo e’ U e‘tzg(t)dt] dx # 0.
0 0

The existence of a weight(x) for the twisted Hermite PS, of the form
given in (4.30) and satisfying (4.29), is discussed below in Remark 4.3.

If we let o be the orthogonalizing moment functional {(ﬁln(x)}ﬁ;o with
oo = /7, then we have, from (3.15) and (4.8),

(4.33) (0, [Hn(0]?) = (=D)"/mni2™  (n > 0).

REMARK 4.3. We can easily see that there is a non-trivial funcgox)
with zero moments, which also satisfies the condition (4.29). Choose any
two linearly independent continuous functioggx) and g(x) with zero
moments and support in [B0). Set

A = /OO eXgdx  (=1,2).
0
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If Ai #0( =1, 2), then

g(x) = Axg1(X) — A102(X)

satisfies the condition (4.29) and has zero moments.

Case 6: Twisted Jacobi polynomials

Inthis case, the homogeneous weight equation corresponding to the twisted
Jacobi differential equation (3.16) is

(4.34) (14 x®w'(X) + [(d — 2)x + elw(x) = 0,
of which the only linearly independent distributional solution is
f(x) = (L 4+ x3) 7 exp(—earctanx).

Romanovski [33] used (x) as an orthogonalizing weight for the twisted
Jacobi PS, buff (x) cannot be an orthogonalizing weight since it does not
decay rapidly at infinity. In fact, we have

lim x"f(x) = o0

X—>00

forn+2—-d > 0. However, from (3.17) and (4.12), we can obtain the
complex orthogonality
(4.35) 5 5
(L= %L+ x5, Behix) PP (ix))
B (=pn22tetAHlrin+ o+ HI(N+ B+ HI'(N+a + B+ DHn! 5
N ren+a+8+0Dr@2n+a+p+2)

mn

(mandn > 0), whereie = 8 —a andd = o« + 8 + 2.
Let us now consider the non-homogeneous weight equation

(4.36) (14 x®)w'(x) + [(d — 2)x + elw(X) = g(X),

whereg(x) is a non-trivial continuous function dR with zero moments and
support in [Q co). Then the general solution of (4.36) is

w(X) =ef<x>[c+/ e 'O +t2)1gt)di],
0
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wherec is an arbitrary constant. For thig(x) to vanish at infinityc must be
zero and

(4.37) f e ' Oa+tH) gt)dt=0.
0

Then we have

(4.38) V(x)—{o ifx<0
' PV T el e to 412 Tg(tydt i x > 0.

Note thatw(x) in (4.38) is a classical solution to (4.36). dix) satisfies
the condition (4.31), thew(x) satisfies the conditions (i) and (ii) in Theo-
rem 4.1. Consequentlyi(x) in (4.38) is a real orthogonalizing weight for
(PP (x))22, if and only if

(4.39) (w(x), 1) :/OO ef® U e”t)(l-i-tz)lg(t)dt] dx # 0.
0 0

If we let 6 be the orthogonalizing moment functional {cﬁé“’ﬁ)(x)}gio
with
. 22PN+ DB+ 1)
on =
0 T(a+B+2)
then we have, from (3.18) and (4.8),
(4.40)V
(&, [P? ()]?)
B (=pn22tetAHlrin+ o+ HI(N+ B+ DI(N+ o + B+ DHn!
- ren+a+8+0Dr@2n+a+p+2) '

l

(n=0)

REMARK 4.4. In the formula (4.12), the parametersand g are real
numbers with—(e¢ + 8 + 1), —a, and—8 ¢ N. However, by analytic
continuation, the same formula holds for complex parametarsds as long
as— Rela + B+ 1), — Rea, and— Rep ¢ —N. This fact is used in (4.35),
wheref = @, Rea = Ref = &2, and—(d - 1) = —(@+ B+ 1) ¢ N.

Constructing explicit real orthogonalizing weights for classical OPS’s by
solving the non-homogeneous weight equation (4.4) has been successful ex-
cept, atthe moment, for the BesselflBF (x)}°° ,when 0# o < 12(%)4—2,
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the twisted Hermite P§H, (x)}22,, and the twisted Jacobi RE™" (x)}22.,.

For any OPS (classical or not), its real orthogonalizing weight can be explic-
itly constructed by the following remarkable result on the general moment
problem.

THEOREM4.2 (Duran [8]). For any sequence of real or complex numbers
{onlnco, define a functionw () by

(4.41) 0 { 0 ifx<0

' T L R0 g ot ™) Jo(v/XD dt - if X > 0,
wherec, = Zzﬁjl—l()n,)z An =N+ n_,Cn, Jo(X) is the Bessel function of the
first kind, andh(x) is aC®-function onR with compact support satisfying
h(0) = 1 andh™ (0) = 0 (n > 1). Then,w(X) is a function in the Schwartz
spaces and satisfies

/Oo x”w(x)dx:/Oox”w(x)dx=an (n > 0).

o0 0
In particular, if we take{on}n2, in Theorem 4.2 to be the moments of a
canonical moment functional of any classical OPS, then the funation
in (4.41) is a real orthogonalizing weight for the OPS. Moreover, by Theo-
rem 4.1, the function

g(x) = (L2)w (X))’ = L1 (X)w(X)

is a function, in the Schwartz spa&@with zero moments and support in
[0, 00), satisfying the condition (4.31). In the case of the twisted Hermite or
the twisted Jacobi polynomials, thigx) also satisfies (4.29) and (4.32) or
(4.37) and (4.39) respectively.

REMARK 4.5. Inthe case of the Bessel, the twisted Hermite, and the twisted
Jacobi polynomials, their complex orthogonality seems more natural than
their real orthogonality. In fact, through the hyperfunctional representations
of orthogonalizing weights, we can see that any OPS has both real and
complex orthogonality : see, for example, [14].
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