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Exceptional orthogonal polynomials and generalized Schur polynomials

Yves Grandati
LCP A2MC, Université de Lorraine, 1 Bd Arago, 57078 Metz, Cedex 3, France.

We show that the exceptional orthogonal polynomials can be viewed as confluent limits of the
generalized Schur polynomials introduced by Sergeev and Veselov.

PACS numbers:

I. INTRODUCTION

The concept of exceptional orthogonal polynomials (EOP) has been introduced five years ago by Gomez-Ullate,
Kamran and Milson [1, 2]. They form families of orthogonal polynomials whose degree sequences present a finite
number of gaps but which span a complete basis of their corresponding Hilbert spaces. They appear to be closely
related to exactly solvable quantum systems built from translationally shape invariant potentials (TSIP) via chains
of Darboux-Bäcklund transformations and this connection has been the subject of an active research during the last
years. The exceptional Hermite, Laguerre and Jacobi polynomials are expressible as Wronskians of the corresponding
classical orthogonal polynomials and give, up to a gauge factor the eigenstates of these extended potentials (see [3]
and [4] and references therein).
In this letter we show that these Wronskians can be viewed as confluent limit of alternants which coincide with the

generalized Schur polynomials defined in their seminal paper by Sergeev and Veselov [5] and recently generalized by
Harnad and Lee [6]. The confluent limit of the generalized Jacobi-Trudy formula established by Sergeev and Veselov
is also discussed.

II. CHAIN OF STATE-DELETING DARBOUX-BÄCKLUND TRANSFORMATIONS (SDDBT)

A. One step DBT

We consider a one dimensional Hamiltonian Ĥ = −d2/dx2 + V (x), x ∈ I ⊂ R and the associated Schrödinger
equation

ψ′′
µ(x) + (Eµ − V (x))ψµ(x) = 0, (1)

ψµ(x) being a formal eigenfunction of Ĥ for the eigenvalue Eµ. In the following we suppose that, with Dirichlet

boundary conditions on I, Ĥ admits a discrete spectrum of energies and eigenstates of the (En, ψn)n∈{0,...,nmax}⊆N

where, without loss of generality, we can always suppose that the ground level of Ĥ is zero: E0 = 0.
Starting from a given solution ψν(x) associated to the value µ = ν of the spectral parameter (eigenvalue Eµ), we

define the first order operator Â (wν) by

Â (wν) = d/dx+ wν(x), (2)

where wµ(x) = −ψ′
µ(x)/ψµ(x). For µ 6= ν, the function defined via the Darboux-Crum formula

ψ(ν)
µ = Â (wν)ψλ(x) =

W
(
ψν , ψµ | x

)

ψν(x)
, (3)

where W (y1, ..., ym | x) denotes the Wronskian of the family of functions y1, ..., ym

W (y1, ..., ym | x) =

∣∣∣∣∣∣

y1 (x) ... ym (x)
... ...

y
(m−1)
1 (x) ... y

(m−1)
m (x)

∣∣∣∣∣∣
, (4)
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is then a solution of the Schrödinger equation

ψ(ν)′′
µ (x) +

(
Eµ − V (ν)(x)

)
ψ(ν)
µ (x) = 0, (5)

with the same energy Eλ as in Eq(1) but with a modified potential

V (ν)(x) = V (x) + 2w′
ν(x), (6)

We call V (ν)(x) an extension of V (x) and the correspondence

(
V (x)
ψµ(x)

)
A(wν)
→

(
V (ν)(x)

ψ(ν)
µ (x)

)
(7)

is called a Darboux-Bäcklund Transformations (DBT). The eigenfunction ψν is the seed function of the DBT A(wν ).

Note that Â(wν) annihilates ψν and consequently the formula Eq(3) allows to obtain an eigenfunction of V (ν) for
the eigenvalue Eµ only when µ 6= ν. Nevertheless, we can readily verify that 1/ψν(x) is such an eigenfunction. By
extension, we then define the ”image” by A(wν) of the seed eigenfunction ψν itself as

ψ(ν)
ν (x) ∼ 1/ψν(x). (8)

B. Formal chains of DBT

At the formal level, the DBT can be straightforwardly iterated and a chain of m DBT is simply described by the
following scheme




ψµ

A(wν1 )

֌ ψ(ν1)
µ

A(w(N1)
ν2

)

֌ ψ(N2)
µ ...

A(w
(Nm−1)
νm )
֌ ψ(Nm)

µ

V
A(wν1)

֌ V (ν1)
A(w(N1)

ν2
)

֌ V (N2)...
A(w

(Nm−1)
νm )
֌ V (Nm),

(9)

where Nj denotes the j-uple (ν1, ..., νj) (with N1 = ν1) of spectral indices which completely characterizes the chain.
We note (Nm, νm+1, ..., νm+k) the chain obtained by adding to the chain Nm the DBT associated to the successive

eigenfunctions ψ(Nm)
νm+1

, ..., ψ(Nm+k−1)
νm+k

.

ψ(Nm)
µ is an eigenfunction associated to the eigenvalue Eµ of the potential (see Eq(6))

V (Nm)(x) = V (x) + 2

m∑

j=1

(
w(Nj−1)

νj
(x)

)′

= V (x) − 2

m∑

j=1

(
log

(
ψ(Nj−1)
νj

(x)
))′′

. (10)

It can be written as (cf Eq(3))

ψ(Nm)
µ (x) = Â

(
w(Nm−1)

νm

)
ψ(Nm−1)
µ (x) = Â

(
w(Nm−1)

νm

)
...Â (wν1

)ψµ(x), (11)

that is,

ψ(Nm)
µ (x) =

W
(
ψ(Nm−1)
νm

, ψ(Nm−1)
µ | x

)

ψ(Nm−1)
νm

(x)
. (12)

A chain is non-degenerate if all the spectral indices νi of the chain Nm are distinct and is degenerate if some of
them are repeated in the chain. For non-degenerate chains, Crum has established formulas which give the extended
potentials and their eigenfunctions in terms of Wronskians of eigenfunctions of the initial potential [3, 7, 8].
Crum’s formulas
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When all the νj and λ are distinct, we have

ψ(Nm)
µ (x) =

W (Nm,µ) (x)

W (Nm) (x)
(13)

and

V (Nm)(x) = V (x) − 2
(
logW (Nm) (x)

)′′

, (14)

where W (Nm) (x) =W
(
ψν1

, ..., ψνm
| x

)
.

The eigenfunctions ψν1
, ..., ψνm

of V are called the seed functions of the chain of DBT associated to the m-uple of
spectral indices Nm = (ν1, ..., νm).

C. Chains of SDDBT and partitions

In the following, we call state-deleting DBT (SDDBT) every DBT whose seed function is an eigenstate. A chain
of SDDBT is then characterized by an m-uple Nm = (n1, , ..., nm) , ni+1 > ni ≥ 0, of distinct positive integers such
that the corresponding seed functions ψni

are eigenstates of the initial potential.
Consider a chain of SDDBT associated to a m-uple of spectral indices Nm = (n1, ..., nm) with nm > ... > n1 ≥ 0.

We can equivalently characterize this chain by a partition λ = (λ1, ..., λm) of length l(λ) = m, where λ1 > ... > λm ≥ 0
and

λi = nm−i+1 −m+ i. (15)

λ is a partition of the integer

|λ| =
m∑

i=1

λi =
m∑

i=1

ni −m(m− 1)/2. (16)

Note that, contrarily to the usual convention, we authorize λ to contain at its end a string of zeros (this string

corresponding to a complete chain of SDDBT). The reduced form λ̃ of the partition is obtained by suppressing this
last string of zeros. If λ does not contain such a chain we say that it is an irreducible partition.
To this partition is associated a Young diagram which characterizes the spectral shape of the extension. The λi are

the lengths of the columns of the Young diagram starting from the left corner. Following [4, 9], we define the double

partition λ2 of λ as the partition of length l
(
λ2

)
= 2m defined as λ2 =

(
λ21, ..., λ

2
m

)
, where we note λki for λi repeated

k times (λki = λi, ..., λi). We call an Adler partition a partition λ whose reduced form, λ̃ = (λm1
1 , ..., λmk

k ), is a double
partition.
The qualifier state-deleting used above is somewhat abusive, since strictly speaking it have to be reserved to chains

leading to regular potentials. Indeed, in this case, the action on the spectrum of the successive DBT based on
eigenstates corresponds to suppress at each step the level associated to the used seed function, which then justifies
the denomination ”state-deleting” DBT.
Krein [10] and later Adler [11] have given a necessary and sufficient regularity condition for the final extensions of

such non degenerate chains of SDDBT. The Krein-Adler theorem can be rewritten as a structural condition for the
partition associated to the chain of SDDBT [4, 10, 11] as follows
Krein-Adler theorem

The final extension of the chain of SDDBT associated to the m-uple Nm = (n1, , ..., nm) , ni+1 > ni ≥ 0, or

equivalently to the partition λ = (λm1
1 , ..., λmk

k , 0r) ,

k∑

i=1

mk + r = m, is regular iff λ is an Adler partition, that is, iff

mi ∈ 2N, ∀i ∈ {1, ..., k}. The spectrum of the final extension V (Nm)(x) contains only even gaps (gaps constituted by
an even number of consecutive missing levels).

Such a chain of SDDBT is said of the Krein-Adler type and in the particular case where λ̃ = 0, the chain is said
to be complete.
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III. JACOBI-TRUDI FORMULA FOR EOP

A. PTSIP

Consider a potential V (x; a) which depends upon a (multi)parameter a ∈ R
N and which admits a (finite or infinite)

bound state spectrum (En, ψn)n≥0, the ground level being supposed to be zero: E0(a) = 0. In the framework of

SUSY QM, such a potential is said to be shape invariant (SIP) [12–14] if its SUSY partner

V (0)(x; a) = V (x; a) + 2w′
0(x; a), (17)

keeps the same functional form as the initial potential. Namely

V (0)(x; a) = V (x; f(α)) +R(a), (18)

R (a) ∈ R and f(a) ∈ R
N being two given functions of a.

In this case, it can be shown [12–14] that the complete bound state energy spectrum of Ĥ(a) = − d2

dx2 + V (x; a) is
given by:

En(a) =

n−1∑

k=0

R(ak) =

n−1∑

i=0

E1(ai), (19)

where ak = f (k)(a) =

k times︷ ︸︸ ︷
f ◦ ... ◦ f(a).

As for the corresponding eigenstates, they can be written as

ψn(x; a) ∼ Â+(a)ψn−1(x; a1) ∼ Â+(a)...Â+(an−1)ψ0(x; an), (20)

where Â+(a) = − d
dx + w0(x; a).

When f is a simple translation f(a) = a+ε, ε =
(
ε(1), ..., ε(N)

)
∈ R

N , V is said to be translationally shape invariant

and we call it a TSIP. For all the known TSIP we have a ∈ R (first category TSIP) or a ∈ R
2 (second category TSIP)

[12, 13, 15].
The set of TSIP contains all the potentials classicaly known to be exactly solvable, ie for which we know explicitely

the dispersion relation and whose the eigenfunctions can be expressed in closed analytical form in terms of elementary
transcendental functions: the harmonic, isotonic, Morse, Kepler-Coulomb, Eckart, Darboux-Pöschl-Teller (hyperbolic
and trigonometric) and Rosen-Morse (hyperbolic and trigonometric) potentials. These potentials are primary TSIP
(PTSIP) from which it is possible in some cases to build infinite towers of secondary TSIP (STSIP) which are
extensions of the previous ones and which share the same translational shape invariance properties [16].
An important feature of the the PTSIP is that their eigenfunctions ψn are equal, up to a gauge factor, to classical

orthogonal polynomials in an appropriate variable z (which can be n dependent) and we say that ψn is quasi-
polynomial in this variable. The confining (ie diverging at both boundaries of the definition intrerval) PTSIP, which
then possess an infinite bound state spectrum, are the harmonic, isotonic and trigonometric Darboux-Pöschl-Teller
(TDPT) potentials. For these ones, the gauge factor and the adapted variable are independent of n and their
(unnormalized) eigenstates can be written as

ψn(x; a) = ψ0(x; a)Π
a
n(z (x)), (21)

where Πa
n(z) is a monic classical orthogonal polynomial (Hermite, Laguerre and Jacobi) [17, 18].

The Πa
n (z) satisfy the recursion relation

{
Πa

0(z) = 1
zΠa

n(z) = Πa
n+1(z) + pn,aΠ

a
n(z) + qn,aΠ

a
n−1(z)

, (22)

with
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{
pn,a = 0

qn,a = qn = n/2.
, for the Hermite case, (23)

{
pn,a = pn,α = 2n+ 1 + α
qn,a = qn,α = n(n+ α).

, for the Laguerre case, (24)

and

{
pn,a = pn,α,β = β2−α2

(2n+2+α+β)(2n+α+β)

qn,a = qn,α,β = 4n(n+α)(n+β)(n+α+β)

(2n+1+α+β)(2n+α+β)2(2n−1+α+β)
.
, for the Jacobi case. (25)

In the following, we give a resumed description of the spectral properties of the three confining PTSIP.

1. Harmonic oscillator

The harmonic oscillator (HO) potential (with zero ground level E0 = 0)) is defined on the real line by

V (x;ω) =
ω2

4
x2 −

ω

2
, ω ∈ R

+. (26)

With Dirichlet boundary conditions at infinity it has the following spectrum (z(x) =
√
ω/2x)

{
En (ω) = nω

ψn(x;ω) = ψ0(x;ω)H̃n (z)
, n ≥ 0, (27)

with

ψ0(x;ω) = exp
(
−z2/2

)
(28)

and

H̃n (z) =
1

2n
Hn (z) , (29)

the Hn (z) being the classical Hermite polynomials.
It is the most simple example of TSIP, with a = ω ∈ R and ε = 0 (the parameter translation is of zero amplitude

a1 = ω), that is

V (0) (x;ω) = V (x;ω) + ω. (30)

2. Isotonic oscillator

The isotonic oscillator (IO) potential (with zero ground level E0 = 0)) is defined on the positive half line ]0,+∞[
by

V (x;ω, α) =
ω2

4
x2 +

(α+ 1/2) (α − 1/2)

x2
− ω (α+ 1) , α > 1/2. (31)

If we add Dirichlet boundary conditions at 0 and infinity and if we suppose α > 1/2, it has the following spectrum
(z(x) = ωx2/2)

{
En (ω) = 2nω

ψn (x;ω, α) = ψ0 (x;ω, α) L̃
α
n (z)

, n ≥ 0, (32)
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where

ψ0 (x;ω, α) = z(α+1/2)/2e−z/2 (33)

and

L̃α
n (z) = (−1)

n
n!Lα

n (z) , (34)

the Lα
n (z) being the classical Laguerre polynomials.

It is a TSIP, with a = (ω, α) ∈ R
2 and ε = (0,+1)

V (0) (x;ω, α) = V (x;ω, α1) + 2ω. (35)

3. TDPT

The trigonometric Darboux-Pöschl-Teller (TDPT) potential is defined on the interval ]0, π/2[ by

V (x;α, β) =
(α+ 1/2)(α− 1/2)

cos2 x
+

(β + 1/2)(β − 1/2)

sin2 x
− (α+ β + 1)2, α, β > 1/2. (36)

With Dirichlet boundary conditions at 0 and π/2, it has the following spectrum





En (α, β) = (αn + βn + 1)2 − (α + β + 1)2 = 4n(α+ β + 1 + n)

ψn (x;α, β) = ψ0 (x;α, β) P̃
(α,β)
n (cos 2x)

, n ∈ N, (37)

where

ψ0 (x;α, β) = (sinx)
α+1/2

(cosx)
β+1/2

(38)

and

P̃ (α,β)
n (z) =

2nn!

(α+ β + n+ 1)n
P (α,β)
n (z) . (39)

The P
(α,β)
n are the usual Jacobi polynomials, (x)n = x(x+ 1)...(x+ n− 1) is the Pochhammer symbol [17, 18] and

(αn, βn) = (α+ n, β + n).
It is a TSIP, with a = (α, β) ∈ R

2 and ε = (+1,+1)

V (0) (x;α, β) = V (x;α1, β1) + 4(α+ β + 2). (40)

B. Jacobi-Trudi type formula for EOP

Due to the Crum formulas Eq(13) and Eq(14), the form of the extensions obtained from a PTSIP via chains of
SDDBT as well as their eigenfunctions are determined by Wronskians of the type

W (Nm) (x; a) =W
(
ψn1

(x; a) , ..., ψnm
(x; a) | x

)
, (41)

where the ψn are given by Eq(21). W (Nm) is characterized by the m-uple of spectral indices Nm = (n1, ..., nm)
(nm > ... > n1 ≥ 0) or equivalently by the associated partition λ = (λ1, ..., λm) (see Eq(15)). Considering the three
confining PTSIP mentioned above, using the standard properties of Wronskians [22], this can be rewritten



7

W (Nm) (x; a) = (ψ0(x; a))
m
W

(
Πa

n1
(z), ...,Πa

nm
(z) | x

)
= (ψ0(x; a))

m

(
dz

dx

)m(m+1)/2

Wλ (z) , (42)

where (see Eq(15))

Wλ (z) =W
(
Πa

n1
(z), ...,Πa

nm
(z) | z

)
=W

(
Πa

λm
(z), ...,Πa

λ1+m−1(z) | z
)

(43)

is a polynomial in z that we call in an abusive manner an exceptional orthogonal polynomial (EOP) enlarging the
denomination associated to regular extensions [1]. Since, as we have seen above, the regularity is only related to a
particular structure of the partition λ, we don’t refer to it in the following.
For the monic classical orthogonal polynomials, we have [17, 18]

d

dz
Πa

n(z) = nΠa1
n−1(z), (44)

which gives

Wλ (z) =

∣∣∣∣∣∣∣∣

A0
λm

Πa
λm

(z) A0
λm−1+1Π

a
λm−1+1(z) ... A0

λ1+m−1Π
a
λ1+m−1(z)

A1
λm

Πa1

λm−1(z) A1
λm−1+1Π

a1

λm−1
(z) ... A1

λ1+m−1Π
a1

λ1+m−2(z)

... ... ...
Am−1

λm
Π

am−1

λm−m+1(z) Am−1
λm−1+1Π

am−1

λm−1−m+2(z) ... Am−1
λ1+m−1Π

am−1

λ1
(z)

∣∣∣∣∣∣∣∣
, (45)

where

Ak
n = n(n− 1)...(n− k + 1) =

n!

(n− k)!
. (46)

Defining

g
(j)
k (z) = Am−1−j

k+m−1−jΠ
am−1+j
k (z) =

(k − 1 +m− j)!

k!
Π

am−1+j
k (z) (47)

and reversing the order of the columns and of the lines, we arrive to

Wλ (z) =

∣∣∣∣∣∣∣∣∣

g
(0)
λ1

(z) g
(0)
λ2−1 (z) ... g

(0)
λm−m+1 (z)

g
(1)
λ1+1 (z) g

(1)
λ2

(z) ... g
(1)
λm−m+2 (z)

... ... ...

g
(m−1)
λ1+m−1 (z) g

(m−1)
λ2+m−2 (z) ... g

(m−1)
λm

(z)

∣∣∣∣∣∣∣∣∣
. (48)

Consequently, the EOP Wλ (z) is amenable of a Jacobi-Trudi type formula a la Noumi [19], analogous to the one
satisfied by the φ-factors in Noumi-Yamada approach of the rational solutions of the Painlevé equations. It has to
be noticed that the generalized Hermite and Okamoto polynomials [20, 21] appear as particular exceptional Hermite
polynomials in the enlarged sense given above.

IV. WRONSKIANS AND CONFLUENT ALTERNANTS

Consider the following alternant [22]

∆ (Φ | X) =

∣∣∣∣∣∣

φ1 (x1) ... φ1 (xm)
... ...

φm (x1) ... φm (xm)

∣∣∣∣∣∣
, (49)
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where the φi are supposed polynomials of degree ni and where we have noted Φ = (φ1, ..., φm) and X = (x1, ..., xm).
For the case φk (x) = xk−1 the preceding determinant reduces to a Vandermondian

∆ (X) =

∣∣∣∣∣∣∣∣

1 ... 1
x1 ... xm
... ...

xm−1
1 ... xm−1

m

∣∣∣∣∣∣∣∣
=

∏

1≤i<j≤m

(xi − xj) . (50)

∆ (Φ | X) being a polynomial antisymmetric in the exchange of two variables xi and xj is divisible ∆ (X) and the

ratio ∆(Φ|X)
∆(X) is a symmetric polynomial S (Φ | X).

In the case where the φk are monic polynomials of respective degrees k, then by linear combinations of the columns,
we obtain

∆ (Φ | X) = ∆ (X) . (51)

We are interested in the confluent limit xi → x, ∀i ∈ {1, ...,m}. Defining the new set of variable εk via xk = x+εk,
we have

φi (x+ εj) =

ni∑

k=0

ak,i (x) ε
k
j = pi (εj) , (52)

with ak,i (x) = φ
(k)
i (x) /k! and

∆ (Φ | X) =

∣∣∣∣∣∣

p1 (ε1) ... p1 (εm)
... ...

pm (ε1) ... pm (εm)

∣∣∣∣∣∣
= ∆(P | ε) , (53)

where P = (p1, ..., pm) and ε = (ε1, ..., εm). Moreover

∆ (X) =
∏

1≤i<j≤m

(εi − εj) = ∆ (ε) , (54)

which implies

S (Φ | X) = S (P | ε) (55)

The ratio S (P | ε) = ∆ (P | ε) /∆(ε) is also a symmetric polynomial and is consequently a continuous function
of ε on R

m. It results in particular that to calculate the value S (P | 0), we can successively apply the limits ε1 →
0, ε2 → 0, ..., εm → 0 in this order. We then have the following result
Theorem 1:

In the confluent limit xi → x, ∀i ∈ {1, ...,m}

S (Φ | X) =
∆ (Φ | X)

∆ (X)
→

{xi→x}

W (φ1, ..., φm | x)
m−1∏

j=1

j!

. (56)

Proof:

From Eq(55) and Eq(52), we have

S (Φ | X) = S (P | ε) =
1

∆(ε)

∣∣∣∣∣∣∣∣∣∣∣

n1∑

k=0

ak,1 (x) ε
k
1 ...

n1∑

k=0

ak,1 (x) ε
k
m

... ...
nm∑

k=0

ak,m (x) εk1 ...

nm∑

k=0

ak,m (x) εkm

∣∣∣∣∣∣∣∣∣∣∣

, (57)
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or by substracting the first column to the following ones

S (Φ | X) =
1

∆(ε1, ..., εm)

∣∣∣∣∣∣∣∣∣∣∣

a0,1 (x) +O(ε1)

n1∑

k=1

ak,1 (x)
(
εk2 − εk1

)
...

n1∑

k=1

ak,1 (x)
(
εkm − εk1

)

... ... ...

a0,m (x) +O(ε1)

nm∑

k=0

ak,m (x)
(
εk2 − εk1

)
...

nm∑

k=0

ak,m (x)
(
εkm − εk1

)

∣∣∣∣∣∣∣∣∣∣∣

, (58)

that is,

S (Φ | X) =
1

∆(ε2, ..., εm)

∣∣∣∣∣∣∣∣∣∣∣

a0,1 (x) +O(ε1)

n1∑

k=1

ak,1 (x) ε
k−1
2 (1 +O(ε1)) ...

n1∑

k=1

ak,1 (x) ε
k−1
m (1 +O(ε1))

... ... ...

a0,m (x) +O(ε1)

nm∑

k=1

ak,m (x) εk−1
2 (1 +O(ε1)) ...

nm∑

k=1

ak,m (x) εk−1
m (1 +O(ε1))

∣∣∣∣∣∣∣∣∣∣∣

. (59)

If we take the limit ε1 → 0, ie x1 → x, we obtain

lim
x1→x

S (Φ | X) =
1

∆(ε2, ..., εm)

∣∣∣∣∣∣∣∣∣∣∣

a0,1 (x)

n1∑

k=1

ak,1 (x) ε
k−1
2 ...

n1∑

k=1

ak,1 (x) ε
k−1
m

... ... ...

a0,m (x)

nm∑

k=1

ak,m (x) εk−1
2 ...

nm∑

k=1

ak,m (x) εk−1
m

∣∣∣∣∣∣∣∣∣∣∣

. (60)

Substracting the second columns to the following ones gives

S (Φ | x, x2, ..., xm) =
1

∆(ε2, ..., εm)

∣∣∣∣∣∣∣∣∣∣∣

a0,1 (x) a1,1 (x) +O(ε2) ...

n1∑

k=2

ak,1 (x)
(
εk−1
m − εk−1

2

)

... ... ...

a0,m (x) a1,m (x) +O(ε2) ...

nm∑

k=2

ak,m (x)
(
εk−1
m − εk−1

2

)

∣∣∣∣∣∣∣∣∣∣∣

(61)

=
1

∆(ε3, ..., εm)

∣∣∣∣∣∣∣∣∣∣∣

a0,1 (x) a1,1 (x) +O(ε2) ...

n1∑

k=2

ak,1 (x) ε
k−2
m (1 +O(ε2))

... ... ...

a0,m (x) a1,m (x) +O(ε2) ...

nm∑

k=2

ak,m (x) εk−2
m (1 +O(ε2))

∣∣∣∣∣∣∣∣∣∣∣

and

S (Φ | x, x, x3, ..., xm) = lim
x2→x

S (Φ | x, x2, ..., xm) =
1

∆(ε3, ..., εm)

∣∣∣∣∣∣∣∣∣∣∣

a0,1 (x) a1,1 (x) ...

n1∑

k=2

ak,1 (x) ε
k−2
m

... ... ...

a0,m (x) a1,m (x) ...

nm∑

k=2

ak,m (x) εk−2
m

∣∣∣∣∣∣∣∣∣∣∣

. (62)

The iteration is immediate and gives the researched result

S (Φ | x, ..., x) =

∣∣∣∣∣∣

a0,1 (x) a1,1 (x) ... an1−1,1 (x)
... ... ...

a0,m (x) a1,m (x) ... anm−1,m (x)

∣∣∣∣∣∣
=
W (φ1, ..., φm | x)

m−1∏

j=1

j!

. (63)
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V. CONFLUENT LIMITS OF THE GENERALIZED SCHUR POLYNOMIALS AND OF THE
GENERALIZED JACOBI-TRUDI FORMULA

A. EOP and generalized Schur polynomials

Sergeev and Veselov [5, 6] have defined the generalized Schur polynomials associated to the family of polynomials
(Πa

n) as

Sλ (Z) =
∆ (Πλ | Z)

∆ (Π0 | Z)
, λ = (λ1, ..., λm), (64)

where

∆ (Πλ | Z) =

∣∣∣∣∣∣

Πα
λ1+m−1 (z1) ... Πα

λ1+m−1 (zm)
... ...

Πα
λm

(z1) ... Πα
λm

(zm)

∣∣∣∣∣∣
. (65)

Note that (see Eq(51))

∆ (Π0 | Z) = ∆ (Z) . (66)

From theorem 1, we then deduce immediately

Sλ (z) = lim
{xi→x}

Sλ (Z) =
1

m−1∏

j=1

j!

Wλ (z) (67)

and the EOP considered above appear to be the confluent limits of generalized Schur polynomials.

B. Confluent limit of the generalized Jacobi-Trudi formula

Sergeev and Veselov [5, 6], have shown that the generalized Schur polynomials satisfy a generalized Jacobi-Trudi
formula of the form

Sλ (Z) =

∣∣∣∣∣∣∣∣∣

S
(0,m)
λ1

(Z) S
(1,m)
λ1

(Z) ... S
(m−1,m)
λ1

(Z)

S
(0,m)
λ2−1 (Z) S

(1,m)
λ2−1 (Z) ... S

(m−1,m)
λ2−1 (Z)

... ... ...

S
(0,m)
λm−m+1 (Z) S

(1,m)
λm−m+1 (Z) ... S

(m−1,m)
λm−m+1 (Z)

∣∣∣∣∣∣∣∣∣
, (68)

where the multivariable polynomials S
(i,m)
k (Z) verify the recursion relations

{
S
(i+1,m)
k (Z) = S

(i,m)
k+1 (Z) + pk+m−1,aS

(i,m)
k (Z) + qk+m−1,aS

(i,m)
k−1 (Z)

S
(i+1,m)
k (Z) = z1S

(i,m)
k (Z) + S

(i,m−1)
k+1 (Z)

, (69)

the coefficients pk and qk being given by Eq(23), Eq(24) and Eq(25).

S
(0,m)
k≥0 (Z) is the generalized Schur polynomial associated to a column Young diagram of heigth k, that is,

S
(0,m)
k (Z) = S(k,0,...,0) (Z) =

1

∆ (Z)

∣∣∣∣∣∣∣

Πa
k+m−1 (z1) ... Πa

k+m−1 (zm)
Πa

m−2 (z1) ... Πa
m−2 (zm)

... ...
Πa

0 (z1) ... Πa
0 (zm)

∣∣∣∣∣∣∣
, (70)
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which is extended to negative k by setting S
(0,m)
k<0 (Z) = 0.

The confluent limit of the generalized JT formula Eq(68)

Sλ (z) =

∣∣∣∣∣∣∣∣∣

S
(0,m)
λ1

(z) S
(1,m)
λ1

(z) ... S
(m−1,m)
λ1

(z)

S
(0,m)
λ2−1 (z) S

(1,m)
λ2−1 (z) ... S

(m−1,m)
λ2−1 (z)

... ... ...

S
(0,m)
λm−m+1 (z) S

(1,m)
λm−m+1 (z) ... S

(m−1,m)
λm−m+1 (z)

∣∣∣∣∣∣∣∣∣
, (71)

is a priori different in nature from the Jacobi-Trudi type formula given in Eq(48). This last does not appear as the
confluent limit of Sergeev -Veselov’s generalized Jacobi-Trudi formula but simply as a rewriting of Eq(67) on the basis
of the explicit derivation formula Eq(44). More precisely, in the confluent limit, we deduce immediately from theorem
1

S
(0,m)
k (z) =

1
m−1∏

j=0

j!

W
(
Πa

k+m−1 (z) ,Π
a
m−2 (z) , ...,Π

a
0 (z) | z

)
(72)

=
1

m−1∏

j=0

j!

∣∣∣∣∣∣∣∣∣

Πa
k+m−1 (z) Πa

m−2 (z) ... Πa
1 (z) 1

(k +m− 1)Πa1

k+m−2 (z) ... 1! 0
... ... ... 0 0

(m− 2)! ... ...
(k +m− 1) ... (k + 1)Π

am−1

k (z) 0 ... 0 0

∣∣∣∣∣∣∣∣∣
,

that is, using Eq(44)

S
(0,l)
k (z) =

(
k + l − 1

k

)
Π

al−1

k (z) =
1

(l− 1)!

dl−1

dzl−1

(
Πa

k+l−1 (z)
)
. (73)

The g
(j)
k (z) functions appearing in Eq(48) identify then to the S

(0,l)
k (z) rather than to the S

(j,l)
k (z).

The connection between the two Jacobi-Trudy type formulas becomes clearer if we return to the proof of Eq(71) in
the specific confluent case. If we note

S
(i,m)
λ (z) =




S
(i,m)
λ1

(z)
...

S
(i,m)
λm−m+1 (z)


 , (74)

we have

Sλ (z) = det
[
S
(0,m)
λ (z) ,S

(1,m)
λ (z) , ...,S

(m−1,m)
λ (z)

]
. (75)

Eq(69) implies then

S
(i+1,m)
λ (z) = zS

(i,m)
λ (z) + S

(i,m−1)
λ+1 (z) , (76)

where λ+1 = (λ1 + 1, ..., λm + 1). By successively using Eq(76) and combining the columns from the last one to the
second one, we obtain

Sλ (z) = det
[
S
(0,m)
λ (z) , ...,S

(m−3,m)
λ (z) ,S

(m−2,m)
λ (z) , zS

(m−2,m)
λ (z) + S

(m−2,m−1)
λ+1 (z)

]
(77)

= det
[
S
(0,m)
λ (z) , ...,S

(m−3,m)
λ (z) ,S

(m−2,m)
λ (z) ,S

(m−2,m−1)
λ+1 (z)

]

= det
[
S
(0,m)
λ (z) , ...,S

(m−3,m)
λ (z) , zS

(m−3,m)
λ (z) + S

(m−3,m−1)
λ+1 (z) ,S

(m−2,m−1)
λ+1 (z)

]

= det
[
S
(0,m)
λ (z) , ...,S

(m−3,m)
λ (z) ,S

(m−3,m−1)
λ+1 (z) ,S

(m−2,m−1)
λ+1 (z)

]

= ...

= det
[
S
(0,m)
λ (z) ,S

(0,m−1)
λ+1 (z) ,S

(1,m−1)
λ+1 (z) , ...,S

(m−2,m−1)
λ+1 (z)

]
.
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Repeating the same procedure on the columns from the last one to the third one, gives

Sλ (z) = det
[
S
(0,m)
λ (z) ,S

(0,m−1)
λ+1 (z) ,S

(0,m−2)
λ+2 (z) ,S

(1,m−2)
λ+2 (z) , ...,S

(m−3,m−2)
λ+2 (z)

]
. (78)

The recursion is immediate and we obtain

Sλ (z) = det
[
S
(0,m)
λ (z) ,S

(0,m−1)
λ+1 (z) ,S

(0,m−2)
λ+2 (z) , ...,S

(0,1)
λ+m−1 (z)

]
(79)

=

∣∣∣∣∣∣∣∣∣

S
(0,m)
λ1

(z) S
(0,m−1)
λ1+1 (z) ... S

(0,1)
λ1+m−1 (z)

S
(0,m)
λ2−1 (z) S

(0,m−1)
λ2

(z) ... S
(0,1)
λ2+m−2 (z)

... ... ...

S
(0,m)
λm−m+1 (z) S

(0,m−1)
λm−m+2 (z) ... S

(0,1)
λm

(z)

∣∣∣∣∣∣∣∣∣
,

that is,

Sλ (z) =

∣∣∣∣∣∣∣∣∣

1
(m−1)!

dm−1

dzm−1

(
Πa

λ1+m−1 (z)
)

1
(m−2)!

dm−2

dzm−2

(
Πa

λ1+m−1 (z)
)
... Πa

λ1+m−1 (z)
1

(m−1)!
dm−1

dzm−1

(
Πa

λ2+m−2 (z)
)

1
(m−2)!

dm−2

dzm−2

(
Πa

λ2+m−2 (z)
)
... Πa

λ2+m−2 (z)

... ... ...
1

(m−1)!
dm−1

dzm−1

(
Πa

λm
(z)

)
1

(m−2)!
dm−2

dzm−2

(
Πa

λm
(z)

)
... Πa

λm
(z)

∣∣∣∣∣∣∣∣∣
. (80)

We finally recover Eq(67) and consequently Eq(48).
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