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Abstract

We give a survey of recent generalizations of orthogonal polynomials. That includes multidimensional (matrix and
vector orthogonal polynomials) and multivariate versions, multipole (orthogonal rational functions) variants, and
extensions of the orthogonality conditions (multiple orthogonality). Most of these generalizations are inspired by the
applications in which they are applied. We also give a glimpse of these applications, which are usually generalizations
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of applications where classical orthogonal polynomials also play a fundamental role: moment problems, numerical
quadrature, rational approximation, linear algebra, recurrence relations, and random matrices.
© 2004 Elsevier B.V. All rights reserved.

MSC:42C10; 33D45; 41A; 30E05; 65D30; 46E35

Keywords:Orthogonal polynomials; Rational approximation; Linear algebra

1. Introduction

Since the fundamental work of Saepf8], orthogonal polynomials have been an essential tool in the
analysis of basic problems in mathematics and engineering. For example moment problems, numerical
gquadrature, rational and polynomial approximation and interpolation, linear algebra, and all the direct or
indirect applications of these techniques in engineering and applied problems, they are all indebted to the
basic properties of orthogonal polynomials.

Obviously, if we want to discussrthogonalpolynomials, the first thing we need is an inner product
defined on the space of polynomials. There are several formalizations of this concept. For example, one
can define a positive definite Hermitian linear functiomgl-] on the space of polynomials. This means
the following. LetlT, be the space of polynomials of degree at nehdIT the space of all polynomials.

The dual space offi, is I1,,, hamely the space of all linear functionals. With respect to a set of basis
functions{By, B1, ..., B,} that spanii, forn =0, 1, ..., a polynomial has a uniquely defined set of
coefficients, representing this polynomial. Thus, given a nested baBisveé can identify the space of
complex polynomiald7,, with the space of its coefficients, i.e., wit*tP*1 of complex(n + 1) x 1
column vectors.

Suppose the dual space is spanned by a sequence of basic linear fundgtigngls, thusIi,, =
spafLo, L1, ..., L,}forn=0,1,2, ... . Then the dual subspadg,. can be identified witlc1**+D,
the space of complex & (n + 1) row vectors. Now, given a sequence of linear functionalg ;2 ,, we
say that a sequence of polynomi@l 2 , with P, € II;, is orthonormal with respect to the sequence
of linear functionalg L }72 o with Ly € I, if

Liy(P)=0bn, k,1=0,1,2....

Hereby we have to assure some non-degeneracy, which means that the moment matrix of the system is
Hermitian positive definite. This moment matrix is defined as follows. Consider the Basis, . .. in
IT and a basid.g, L1, ... for the dual spacél.., then the moment matrix is the infinite matrix

moo mo1 moe2
mio mi1 miz ... .
M = mog mo1 Mmoo ... |° with miszi(Bj)-

It is Hermitian positive definite il = [m,-j]f’j:o is Hermitian positive definite forakk =0, 1, ... .

In some formal generalizations, positive definiteness may not be necessary; a nondegeneracy condition
is then sufficient (all the leading principal submatrices are nonsingular rather than positive definite). In
other applications it is not even really necessary to impose this nondegeneracy condition, and in that case
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there should be some notion of block orthogonality because the existence of an orthonormal set is not
guaranteed anymore.

Note thatif the coefficients & e I1, andQ,. € II,, are givenbyp=[po, p1, ...1" andg=[qo, g1, - . .]
respectively, them..(P) = gMp.

Classical cases fall into this framework. For example consider a positive measira finite or
infinite intervall on the real line, a basis t, x2, . .. for the space of real polynomials and a basis of
linear functionald.q, L1, ... defined by

Li(P) = / P duc),

0

then we can choosky as the dual of the polynomiaF and therefore introduce an inner productimas
(assuming convergence)

qrpi (x5, x) = qepiLe(x") = Q. (P),
=3 e (¢ )

k=0 [=0 =0

if Qx=>3 1o0qk Li, Q(x) =Y 72 oqx x*, andP (x) = 372 o pi x*. If uis a positive measure, the moment
matrix is guaranteed to be positive definite.

Note that in this case we need to define only one linear functibnat 17 to determine the whole
moment matrix. Indeed, with the definitidrn(x') = /; x'du(x), the moment matrix is completely defined
by the sequence; = L(x¥),k=0,1,2,... .

Another important case is obtained by orthogonality on the unit circle. ConBigefr € C : |t| = 1}
and a positive measure dn The set of complex polynomials are spanned hy, 12, . . . and we consider
linear functionald.; defined by

Lk(z1)=L(zl_k)=ftl_kdu(t), k,1=0,1,2,... .
T

Thus we can again use only one linear functiahéP (z)) = fT P (r)du(t) and define a positive definite
Hermitian inner product on the set of complex polynomials by

= (S 3|3 S anf )

k 0 /=0

qipiLi(z) = ka (Z PlZl> = 0.(P)
k=0
= ZZ pILE T = /T (Z it~ ) (Z pzr’) du(r)
k=0 [=0

k=0 =0

8||P”18
gM%

= /T Q. (1) P(1)du(r),

where we have abused the notati@n for both the linear functional), = Z,fioquk and for the dual
polynomial Q..(z) = 3_5° o qxz%, which is the dual ofQ(z) = 322, qxz", and we have seP(z) =
> opiz'. Note that here the linear functionalis defined on the space of Laurent polynomials-
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spariz* : k € 7}. The moment matrix is completely defined by the one dimensional sequgreé (z~),
k € 7, and becauseis positive, it is sufficient to giver,, k=0, 1, 2. .. becauser_; =L(z %)= L(zF)=
my.

Note that in the case of polynomials orthogonal on a real, finite or infinite interval, the moment matrix
[my;]is real and has a Hankel structure and in the case of orthogonality on the circle, the moment matrix
is complex Hermitian and has a Toeplitz structure. This explains of course why a single sequence defines
the whole matrix in both cases.

In the moment problem, it is required to recover a representation of the inner product, given its positive
definite moment matrix. In the examples above, this means that we have to find the positive measure
from the moment sequendée:}. A first question is thus to find out whether a solution exists, and if it
exists, to find conditions for a unique solution, and when it is not unique, to describe all the solutions.

The relation with structured linear algebra problems has given rise to an intensive research on fast
algorithms for the solution of linear systems of equations and other linear algebra problems. The duality
between real Hankel matrices and complex Toeplitz matrices is in this context a natural distinction.
However, what is possible for one case is usually also true in some form for the other case.

For example, the Hankel structure is at the heart of the famous three-term recurrence relation for
orthogonal polynomials. For three successive orthogonal polynohjals, _1, ¢,_, there are constants
A,, B,, andC, with A,, > 0 andC,, > 0 such that

¢, (x) =(Apx + Bp)o,_1(x) — Cp,_2(x), n=2,3,...

Closely related to this recurrence is the Christoffel-Darboux relation which gives a closed form expression
for the (reproducing) kernél, (z, w)

n(3) 1= 3 900 () = 2 et D0 2 AP,

k=0 ntl r=y

wherex, is the highest degree coefficient ¢f. All three items: orthogonality, three-term recurrence,
and a Christoffel-Darboux relation are in a sense equivalent. The Favard theorem states that if there is a
three-term recurrence relation with certain properties, then the sequence of polynomials that it generates
will be a sequence of orthogonal polynomials with respect to some inner product. Brezinski $hdjved
that the Christoffel-Darboux relation is equivalent with the recurrence relation.

In the case of the unit circle, another fundamental type of recurrence relation is due to Bzeg”
recursion is of the form

Dr41(2) = cry1lzr (2) + pri1di (2],
where for any polynomiaP, of degreek we set
P (2) = 2 Pu(2) = P(1)2),
so that¢y is the reciprocal ofy;, p, 1 is @ Szeg'parameter and;1 = (1 — lpr111?) Y2 is a normal-

izing constant. This recurrence relation plays the same fundamental role as the three-term recurrence
relation does for orthogonality on (part of) the real line. There is a related Favard-type theorem and a
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Christoffel-Darboux-type of relation that now has the complex form

@ 1 (W) = ¢ 1) Py 1 (w)

1-zw

n (2, w) =Y ()b (w) =~

k=0

Another basic aspect of orthogonal polynomials is rational approximation. Rational approximation is
given through the fact that truncating a continued fraction gives an approximant for the function to which
it converges. The link with orthogonal polynomials is that continued fractions are essentially equivalent
with three-term recurrence relations, and orthogonal polynomials on an interval are known to satisfy such
a recurrence. In fact if the orthogonal polynomials are solutions of the recurrence with starting values
¢_1 =0 and¢g = 1, then an independent solution can be obtained as a polynomial seduehds

using the initial conditiong_; = —1 andy = 0. It turns out that

zpn(x):L(d)”(x;_f”(y)) /%(X) $n(¥) 4 ).

whereL is the linear functional defining the inner product bx R. (Note that),, is a polynomial of
degreen — 1.) Therefore, theth approximant of the continued fraction

! | & | G |
| Aiw+B1 [Asz+Bs | Asz+Bs

is given by, (x)/ ¢, (x). The continued fraction converges to the Stieltjes transform or Cauchy transform
(note the Cauchy kernél(x, y) =1/(x — y))

FH(X)ZL<L):/du(y)_
x—y P X =y

The approximant is a Padé approximansabecause

o=ttt =AW G) - o

All the 2n + 1 free parameters in the rational functigp/¢, of degreen are used to fit the first2+ 1
coefficients in the asymptotic expansionff at oc.

Again, there is an analog situation for the unit circle case. Then the function that is approximated is a
Riesz—Herglotz transform

Fu(2) = f P2 Gy,
Tl—2

where now the Riesz—Herglotz kerre{z, z)=(t +z)/(t — z) is used. This function is analytic in the open

unit disk and has a positive real part fat < 1. It is therefore a Carathéodory function. By the Cayley
transform, one can map the right half plane to the unit disk, by which we can transform a Carathéodory
function F into a Schur function, since indeédz) = (F,(z) — F,(0))/[z(F.(z) + F,(0))] is a function
analytic in the unit disk andlS(z)| < 1 for |z] < 1. It is in this framework that Schur has developed his
famous algorithm to check whether a function is in the Schur class. It is based on the simple lemma
saying thats is in the Schur class if and only j§(0)| < 1 andS1(z) = %(S(z) — S(0))/(1 — S(0)S(2))

is in the Schur class. Applying this lemma recursively gives the complete test. This kind of test is closely
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related to a stability test for polynomials in discrete time linear system theory or the solution of difference
equations. It is known as the Jury test. A similar derivation exists for the case of an interval on the real
line, which leads to the Routh—Hurwitz test, which is a bit more involved.

Note also that the moments show up as Fourier—Stieltjes coefficiefishEcause

© o
FH(Z)Z/T|:1+ZZj—kj| du(t):mo+22m_kzk.
k=1

k=1

It is again possible to construct a continued fraction whose approximants are alternétipgjyand
Vs / Pns» @nd these are two-point Padé approximants at the origin and infinify, fiora linearized sense,
i.e., one has

Fu@) +¥,(2)/¢p(2) = 0", z— oo,
Fu(2)$,(2) + ¥, (2) = 0(z"), z— 0,

and

Fu(2)$pi(2) = (2) = O(z7"), 7z — o0,
Fu(@) = Y0 (2)/$(2) = 0", z—>0.
Here they,, are defined by

V(@) = L (Dt (1) — dy(2)]) = f

T

gwn (1) — du(@)1du(0).

The term two-point Padé approximant is justified by the fact that the interpolation is in the points 0 and
oo and the number of interpolation conditions equals the degrees of freedom in the rational function of
degreen. Sinceg,,,. /v, is a rational Carathéodory function, it is a solution of a partial Carathéodory
coefficient problem. This is the problem of finding a Carathéodory function with given coefficients for its
expansion at the origin. To a large extent the Schur interpolation problem, the Carathéodory coefficient
problem and the trigonometric moment problem are all equivalent.

Another important aspect directly related to orthogonal polynomials and the previous approxima-
tion properties is numerical quadrature formulas. By a quadrature formula for the infggfal :=
f" f(x)du(x) is meant a formula of the form, (f) := Y ;_jwni f (). The knotsé,, should be in
distinct points that are preferably inthe support of the measurgand the weights are preferably pos-
itive. Both these requirements are met by the Gauss quadrature formulas, i.e., whgnareechosen
as then zeros of the orthogonal polynomial,. The weights or Christoffel numbers are then given by
Wnk = 1/ ky &y Enr) = 1/2Z:0[¢n(fnk)]2 and the quadrature formula has the maximal domain of va-
lidity in the set of polynomials. This means tha( ) = 1,(f) for all f that are polynomials of degree
at most 2 — 1. It can be shown that there is nepoint quadrature formula that will be exact for all
polynomials of degreer2 so that the polynomial degree of exactness is maximal.

In the case of the unit circle, the integial f) := [ f(1)du(r) is again approximated by a formula
of the form7,,(f) := 3 j_ywar f (¢ux), Where now the knots are preferably on the unit circle. However,
the zeros ofp,, are known to be strictly less than one in absolute value. Therefore, the para-orthogonal
polynomials are introduced as

0n(z,7) =¢,(2) + ¢y (z), t€T.
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Itis known that these polynomials have exaetlyimple zeros off and thus they can be used as knots for
a quadrature formula. If the corresponding weights are chosen as before, namel\t/ k, (&, &) =
1/ZZ:0|¢H(5,1,<)|2, then these are obviously positive and the quadrature formula becomesmaf&zeg”
mula, again with maximal domain of validity, namely(f) = 1,(f) for all f that are in the span of
(z7"1, ..., 7271}, a subspace of dimension 2- 1 in the space of Laurent polynomials.

We have just given the most elementary account of what orthogonal polynomials are related to. Many
other aspects are not even mentioned: for example the tridiagonal Jacobian operator (real case) or the
unitary Hessenberg operator (circle case) which catch the recurrence relation in one operator equation,
also the deep studies by Geronimus, Freud and many others to study the asymptotics of orthogonal
polynomials, their zero distribution, and many other properties under various assumptions on the weights
and/or on the recurrence parame{@is30,38,39,47]there are the differential equations like Rodrigues
formulas and generating functions that hold for so called classical orthogonal polynomials, the whole
Askey—Wilson scheme, introducing a wealth of extensions for the two simplest possible schemes that
were introduced above.

Also from the application side there are many generalizations, some are fdripalrthogonality
relations inspired by fast algorithms for linear algebra, some are matrix and vector forms of orthogonal
polynomials which are often inspired by linear system theory and all kind of generalizations of rational
interpolation problems. And so further and so on.

In this paper we want to give a survey of recent achievements about generalizations of orthogonal
polynomials. What we shall present is just a sample of what is possible and reflects the interest of the
authors. It is far from being a complete survey. Nevertheless, it is an illustration of the diversity of
possibilities that are still open for further research.

2. Orthogonal rational functions

One of the recent generalizations of orthogonal polynomials that has emerged during the last decade
is the analysis of orthogonal rational functions. They were first introduced by Djrbashian in the 1960s.
Most of his papers appeared in the Russian literature. An accessible survey in English can be found in
[24]. Details about this section can be foundib]. For a survey about their use in numerical quadrature
see the survey papgt6], for another survey and further generalizations[4dg Several results about
matrix-valued orthogonal rational functions are found?g,29,36]

2.1. Orthogonal rational functions on the unit circle

Some connections between orthogonal polynomials and other related problems were given in the
introduction to this paper. The simplest way to introduce the orthogonal rational functions is to look at a
slight generalization of the Schur lemma. With the Schur function constructed from a positive measure
as it was in the introduction, the lemma says thathfs infinitely many points of increase, then for some
veD={zeC:|z] <1} we haveS(x) € D andss is again a Schur function §1(z) = S,(z)/{,(z) with
Sy (2)=(S(2) = S(@)/(L1—S(x)S(z)) and{,(z) = (z —2) /(1 —z). As in the polynomial case, a recursive
application of this lemma leads to some continued fraction-like algorithm that computes for a given
sequence of pointgy}72, C D (with or without repetitions) a sequence of parametgrs- S (ax+1)
that are all inD and that are generalizations of the Szggfameters.
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Thus instead of taking all the, = 0, which yields the Szegpolynomials, we obtain a multipoint
generalization. The multipoint generalization of the Schur algorithm is the algorithm of Nevanlinna—Pick.
Itis well known that this algorithm constructs rational approximants of increasing degree that interpolate
the original Schur functiof in the successive poinig. Suppose we define the successive Schur functions
S, (z) as the ratio of two functions analytic in, namelys,, (z) = 4,1(z) / 4,2(z), then the Schur recursion
reads f,,11 = Su(ta11) aNd(, (2) = z,1=2 With z, = 1if o, = 0 andz, = ,/|o,| otherwise)

—nZ

- 1 b ||V O
[An+1,1An+1,z]—[An,1An,z][_pn+1 1 ][ o i

This describes the recurrence for the tails. The inverse recurrence is the recurrence for the partial numer-
ators and denominators of the underlying continued fraction:

% . w1 | Cnt1 0 1 1 Pn+1
[Dnt1 ppal =10 5] [ (J)r 1:| m [Pn+1 1+ ] .

When starting withpy = ¢g = 1, this generates rational functiops which are of degree and which
are in certain spaces with poles among the pditis; }

.. F € L, =spariBo, By, ..., By} = {% P € nn} :
wherer, (z) = [[;_1(1 — &;z) and the finite Blaschke products are defined by

Bo=1 Bi=0l .
Moreover, it is easily verified that, (z) = B, (z) ¢, (z) whereg,, . (z) = ¢, (1/z). This should make clear
that the recurrence

bn11(2) = en1lln 1D D, (D) + pps105(@D]. cnr1 =L —1p,1/H 2

is a generalization of the Szegécurrence relation.

Transforming back from the Schur to the Carathéodory domain, the approximants of the Schur function
correspond to rational approximants of increasing degree that interpolate the furGtionthe points
. Defining the rational functions of the second kifidexactly as in the polynomial case, then we have
multipoint Padé approximants since

2By (D[ Fu(z) + ¥, (2)/ 9, (2)] is holomorfic in 1< |z| < oo,

[2Bu-1(2)] [ Fu(2),(2) + ¥, (2)] is holomorfic in 0<|z| <1
and

[2Bn-1(D)[Fu(2)$ni(2) — ¥, (2)] is holomorfic in 1< |z| <oo,

[2Bn ()] [Fu(2) — ¥,4(2)/$,.(2)] is holomorfic in 0<|z| < 1.

The¢, correspond to orthogonal rational functions with respect to the Riesz—Herglotz meaBrefudy
can be obtained by a Gram—-Schmidt orthogonalization procedure applied to the seBueBge .. .
If all «; are zero, the poles are all at infinity and the Szpglynomials emerge as a special case.
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Justagi, isamoment generating function by applying the linear functidrtalthe (formal) expansion
of the Riesz—Herglotz kernel, we now have

Fu(z)=/ [1+2 Z s zf)}du(t)=mo+22mkznzl(z),
Ty

k=1

where the generalized moments are now defined by

dut) £
mk:./wr%’ nk(z)zjl_[:l(z—ocj).

Note that also in this generalized rational case, we can define a linear fundti@perating on? =
UreoZx Via the definition of the moments(1) = mg andL(1l/m)) =m 4 fork=1,2,... . If Lisa

real functional, then by taking the complex conjugate of the latter and by partial fraction decomposition,
it should be clear that the functional is actually defined on the space’, whereZ, ={f : f. € ¥}.

Thus, we can usg to define a complex Hermitian inner product ghand so the use of the orthogonal
rational functions is possible for the solution of the generalized moment problem. The essence of the
technique is to note that the quadrature formula whose knots are the zgnids , of the para-orthogonal
function 0, (z, 1) = ¢,(z) + ¢} (z) (they are all simple and lie o) and as weights the numbers

1/ ky_1(&s Enr) > 0, then this quadrature formula is exact for all rational functiong’jn; - #,,_1. It

then follows that under certain conditions the discrete measure that corresponds to the quadrature formula
converges fon — oo in a weak sense to a solution of the moment problem. The conditions for this to
hold are now involved, not only with the moments, but also with the selection of the sequence of points
{cxk},‘?;q C D. A typical condition being thap_ 72 ,(1 — |u|) = oo, i.e., thecondition that makes the

Blaschke producf[;=,( diverge to zero.
2.2. Orthogonal rational functions on the real line

About the same discussion can be given for orthogonal rational functions on the real axis. If however
we want the polynomials (which are rational functions with polesctto come out as a special case,
then the natural multipoint generalization is to consider a sequence of points thatarthal(extended)
real axisik = R U {oo}. For technical reasons, we have to exclude one point. Without loss of generality,
we shall assume this to be the point at infinity. Thus we consider the sequence of{pgiftts C R
and we definer, (z) = [[;_;(1 — «z). The spaces of rational functions we shall consider are given by
Ly ={pn/mn : pn € I,}. If we define the basis functionts) = 1, b,(z) = 7" /n,(z), k =1,2, ...,
then orthogonalization of this basis gives the orthogonal rational functipriBhe inner product can be
defined in terms of a positive measurel®ria (we assume functions with real coefficients)

(fog) = /R FE@u), fige?,

or via some positive linear functional defined on the spac# - #. Such a linear functional is defined
if we know the moments

my = L(byby), k,1=0,1,...
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Thus in this case, defining the functional ehor on.¥ - ¥ are two different things. In the first case
we only need the momenis;o, in the second case we need a doubly indexed moment sequence. Thus,
there are two different moment problems: the one where we look for a representatiomiod the one
representind. on ¥ - #. If all the x =0, we get polynomials, and thefi= . - ¢ and the two problems
are the same. This is the Hamburger moment problem. Also when there is only a finite number of different
oy that are each repeated an infinite number of times, we are in that comfortable situation. An extreme
form of the latter is when the onbyare 0 ando which leads to (orthogonal) Laurent polynomials, first
discussed33].

We also mention here that this (and also the previous) section is related to polynomials orthogonal with
respect to varying measures. Indeed jf= p, /n,, thenfork =0,1,...,n — 1

0= (¢, x*/mp_1) = /R P02k du, (),

where the (in general not positive definite) measurg(d) = du(x)/[(1 — @,x)7,_1(x)?] depends on.
For polynomials orthogonal w.r.t. varying measures seg£7.
The generalization of the three-term recursion of the polynomials will only exist if some regularity
condition holds, namely, (1/«,) # Oforallk =1, 2, ... . We say that the sequengg, } is regular and
it holds then that

1— o, 1x E, 1—o, ox
+Bn nl)(bn(x)_ n n—2

—
1— o,z 1—o,x

(bn(x) = (E ¢n—2(x)

E, 1 1—opx
forn=1,2,..., while the initial conditions are_; = 0 and¢y = 1. Moreover it holds thak,, # O for

all n.
Functions of the second kind can be introduced as in the polynomial case by

b = [ W =0y 0y n=01,...
R y—=x

They also satisfy the same three term recurrence relation with initial conditiops= 1 andyq = 0.

The corresponding continued fraction is called a multipoint Padé fraction or MP-fraction because its
convergentg,, /¢, are multipoint Padé approximants of tyjae— 1/n] to the Stieltjes transform, (x) =

S — y)~tdu(y). These rational functions approximate in the sense that $610 and

[wn (x)
¢p(x)
and if« = 0 then

lim [lﬁn(x) — Fu(x):| zo# =0,

7—>00 qsn(x)

wherex € {0, o1, a1, ..., 0py—1, ty_1, %}, and«” is the multiplicity of« in this set and the limit ta € R
is nontangential. The MP-fractions are generalizations of the J-fractions to which they are reduced in the
polynomial case, i.e., if all the, = 0.

As for the quadrature formulas, one may consider the rational functiis, ©) = ¢, (x) + (1 —
ap—1x)/(L—o,x)En¢,_1(x). If ¢, is regular, then except for at most a finite number afR=RU{co},

lim
z—1/a

(k)
—F#(x)] =0, k=0,1,...,4" -1
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these quasi-orthogonal functions hawvsimple zeros on the real axis that differ frqty«q, ..., 1/a,}.
Again, taking these zerof,};_, as knots and the corresponding weights @%,11(qk, &) =

1/Zz;é|¢k(énk)|2 > 0, we get quadrature formulas that are exact for all rational functiogfg in - %, 1.

If ¢, is regular and = 0 is not one of those exceptional values fpthen the formula is even exact in
Zn-Z,—1. Since an orthogonal polynomial sequence is always regular and since there are no exceptional
values forz, one can thus always take the zerogpffor the construction of the quadrature formula, so

that we are back in the case of Gauss quadrature formulas.

These quadrature formulas, apart from being of practical interest, can be used to find a solution for the
moment problem inZ. Note that we use orthogonality, thus an inner product so that for the solution of
the moment problem i, we need the linear functional to be defined o - #. Itis not known how
the problem could be solved using only the moments defihiog .&.

2.3. Orthogonal rational functions on an interval

Of course, many of the classical orthogonal polynomials are not defined with respect to a measure on
the unit circle or the whole real line, but they are orthogonal over a finite interval or a half-line.

Not much is known about the generalization of these cases to the rational case. There is a high potential
in there because the analysis of orthogonal rational functions on the real line suffered from technical
difficulties because the poles of the function spaces were in the support of the measure. If the support
of the measure is only a finite interval or a half-line, we could easily locate the poles on the real axis,
but outside the support of the measure. New intriguing questions about the location of the zeros, the
quadrature formulas, the moment problems arise. For further details on this topic we [&fer@t]

3. Homogeneous orthogonal polynomials

In the presentation of one of the multivariate generalizations of the concept of orthogonal polynomials,
we follow the outline of Section 1. Aninner product or linear functional is defined, orthogonality relations
are imposed on multivariate functions of a specific form, 3-term recurrence relations come into play and
some properties of the zeroes of these multivariate orthogonal polynomials are presented. The 3-term
recurrence relations link the polynomials to rational approximants and continued fractions. The zero
properties allow the development of some new cubature rules.

Without loss of generality we present the results only for the bivariate case.

3.1. Orthogonality conditions

The homogeneous orthogonal polynomials discussed here were first introdyéédnira different
form and later if7] in the form presented here. At that time they were studied in the context of multivariate
Padé-type approximation. Originally they were not termed spherical orthogonal polynomials because of
a lack of insight into the mechanism behind the definition.

In dealing with multivariate polynomials and functions we shall often switch between the cartesian
and the spherical coordinate system. The cartesian coordiKate&, . . ., x,) € C* are then replaced
by X = (x1,...,x,) = (Q1zg, ..., inz) Wherez € R and the directional vectot = (41, ..., 4,) in C"
belongs to the unit sphet% = {4 : ||4]|, = 1}. Here| - ||, denotes one of the usual Minkowski norms.
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While A contains the directional information &f, the variable; contains the (possibly signed) distance
information. Observe that can be positive as well as negative and hence two directional vectors can
generatex.
For the sequel of the discussion we need some more notation. With the multixiedex, . .., x,) €
N", the notationX*, k! and|x| respectively denotes
XF = x b X
kl=rx1!...Kk,!,
K| =K1+ 4 Kn.

To simplify the notation of this section, we temporarily drop the arrow but we shall consequently use the
letter x to denote the multi-index. We denote Byz] the linear space of polynomials in the variable
with complex coefficients, b [41] = C[11, ..., 4,] the linear space of-variate polynomials iri; with
complex coefficients and bg[1][z] the linear space of polynomials in the variablaith coefficients
from C[/].

We introduce the linear function&l acting on the distance variahieas

r@y=c@) I, =1, (3.1)

wherec; (1) is a homogeneous expression of dedgraethe /.

(=Y cd". (3.2)

k=i

Our n-variate spherical polynomials are of the form

Vi (X) =¥ ' (2) = Z B2 (W7, (3.3a)
i=0
B2 ;(J) = Z by k. (3.3b)
|k|=m2—i

The functionV,,(X) is a polynomial of degree: in z with polynomial coefficients fronC[]. The
coefficientsB,,;n—1)(4), .. ., B,,2(1) are homogeneous polynomials in the parametgr3he function
V,»(X) itself does not belong t@[X] but sinceV,,(X) = ¥7,,(2), it belongs toC[2][z]. Therefore the
functionV,,,(X) is given the name spherical polynomial: for everg S, the functionV,,(X) = ¥7,,,(z)
is a polynomial of degrem: in the variable;.

The form (3.3a) has been chosen because, remarkably enough, the function

Vn(X) = 7 (@) = 2"V m(z™Y)

belongs taC[ X1, which proves to be useful later on.
We now impose the orthogonality conditions

r@v,z)=0 i=0,....m—1 (3.4)
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or

m
@Y m@) =) By ;(WIE*)=0 i=0,....,m—1
j=0
As in the univariate case the orthogonality conditions (3.4) only determijp€) up to a kind of normal-
ization:m + 1 polynomial coefficient®,,2_; (1) must be determined from tiweparameterized conditions
(3.4). How this is done, is shown now. For more information on this issue we refé2@).
With thec; (1) we define the polynomial Hankel determinants
co(d) -+ cem—1(4)
H,, (1) = det B . Ho(h)=1.
cm-1(4) -+ com—2(4)
We call the functional” definite if

Hyn() %0, m>0.

In the sequel of the text we assume thas a definite functional and also that,, (z) as given by (3.3)
is primitive, meaning that its polynomial coefficierss,>_, (1) are relatively prime. This last condition
can always be satisfied, because for a definite functibrasolution of (3.4) is given bj7]

cod) o eme1(D) em(d)
P m(2) = det| : Vo) =1 -
¥ Pm(2) ) cm-1(4) com—1(4) o) (35)
1 z Zm

where the polynomiap,, (1) is a polynomial greatest common divisor of the polynomial coefficients of
the powers of in this determinant expression. Clearly (3.5) determinggz) and consequently,, (X).
The associated polynomialg,, (X) defined by

Wi (X) =W m(z) =T <Vm(z) — Y (”)) (3.6)
Z—Uu
are of the form

m—1

Win(X) = Wm(2) =D Apz_q_ (D7 (3.7a)
i=0

m—1—i
Ap2_1-(4) = Z By2_1_;—j(4)cj(2). (3.7b)
j=0

The expressiod,>_;_;(2) is a homogeneous polynomial of degre&— 1 — i in the parameters Note
again thatw,, (X) does not necessarily belong@X] because the homogeneous degreg dioes not
equal the degree in Instead it belongs t&[][z]. On the other hand, the function

Wi (X) = T (2) = 2" 20 (27
m =W @)=z Won(Z"7)
belongs taC[X].
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3.2. Recurrence relations

In the sequel of the text we use both the notafig(X) andy ,,(z) interchangeably to refer to (3.3),
and analogously fow,,, (X) and¥ ,,(z) in (3.7). For simplicity, we also refer to both, (X) andy ", (z)
as polynomials, and similarly foW,,, (X) and# ", (z).

The link between the orthogonal polynomi&ig(X), the associated polynomidl, (X) and rational
approximation theory follows from the following and gives rise to a number of recurrence relations, the
proofs of which can be found if7].

Assume that, fronT", we construct the-variate series expansion

FOO=>"> e =" M= ")

i=0 |x|=i i=0 |x|=i i=0

Then the polynomials

Vi) =T @ =" 1@ = Bz ()"

i=0
m 5 m
=Y B =Y T bt
i=0 i=0 |k|=m2—m+i
and

m—1
~ ~ 2_ ) _ 2_1_;
Win(X) =W () =" W@ =D Aye_q ("
i=0

m—1 5 m—1
=2 Aweemp D=3 3 a4t
i=0 i=0 |k|=m2—m+i

satisfy the Padé approximation conditions
(ff/m - Wm) (X) = (f"%m - “f%m) (2)

o0
= Y dd
i=m2+m
00 i
- Y | Xar),

i=m24+m \|x|=i

where, asin (3.2), (3.3b) and (3.7b), the subscripted funetion is a homogeneous function of degiee
in 2. The rational functioW,, (X)/V,,(X) coincides with the homogeneous Padé approximanf far).
More information about these approximants can be foun@1j. It is now easy to give a three-term
recurrence relation for thg, (X) and the associated functioi$, (X), as well as an identity linking the
V,»(X) and thew,, (X).
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Theorem 3.1. Let the functional™ be definite and let the polynomials,, (z) and p,, (%) be defined as
in (3.5). Then the polynomial sequendes,,(z)},, and{# ,,(z)},, satisfy the recurrence relations

Vint1(X) = o1 (D) (2 = B 1(D) Vin (X) = 72 (4) Vin—1(X)),
Vo1i(X) =0, Wo(X)=1

Win1(X) = o4 1(D) (2 = By 1 (D) Win (X) = 911 (AD) Win—1(X)),
W_o1(X)=-1, Wo(X)=0

with
pm(}v) Hm-i—l()b)
m /1 = ’
A= ) Hu(h)
o TE[Valx, 1)1?)
g () = L m V),
T
m_1(2) Hyps1(r ﬂ
ppa () = PO Bna ) o Gy .

pm(A)  Hp(2) ,

Theorem 3.2. Let the functional” be definite and let the polynomial sequeneés(z) and p,, (1) be
defined as ir{3.5). Then the polynomialg,, (z) and %, (z) satisfy the identity

Y m @D m+1@) — W (D) m+1(2) = Vin (X, ) Win11(X) — Wi (X) Vi1 1(X)
12
. [Hm—l—l(/h)]
Pm (i)pm-i—l(;v) .
The preceding theorem shows that the expression

Y m @D m+1(2) — W' (DY m+1(2)
is independent of and homogeneous ia If p, (1) and p,+1(1) are constants, this homogeneous
expression is of degreeridm + 1).

3.3. Relation with univariate orthogonal polynomials

Let us now fix. = i* and take a look at the projected spherical polynomials
Vo (@) = VU2, 252) 125, =1

From the definition of/",, (X) it is clear that for eachh = 2* the functionsy”,, ;«(z) are polynomials of

degreen in z. Are these projected polynomials themselves orthogonal? If so, what is their relationship

to the univariate orthogonal polynomials? The answer to both questions follows from Theorem 3.3.
Let us introduce the (univariate) linear functiorélacting on the variable, by

*(Z) =i () = I j— . (3.8)

In what follows we use the notatio¥j, (z) to denote the univariate polynomials of degreerthogonal
with respect to the linear functioned. The reader should not confuse these polynomials withrthéz)
or theV,,(X). Note that theV,, (z) are computed from orthogonality conditions with respecttavhich
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is a particular projection of, while thev”,, ;«(z) are a particular instance of the spherical polynomials
orthogonal with respect tb.

Theorem 3.3. Let the monic univariate polynomials, (z) satisfy the orthogonality conditions
(@' Vn(z)=0 i=0,...,m—1

with ¢* given by(3.8), and let the multivariate function$,,(X) = ¥, (z) satisfy the orthogonality
conditions(3.4).Then

Hyy 05 Vin(2) = pm 25V 1 (2)
= pn )V (XH),  X*=(0iz,.... 252).

In words, Theorem 3.3 says that thg(z) andv",, ;+(z) coincide up to a normalizing facter,, (1*)/
H,, (7). Or reformulated in yet another way, it says that the orthogonality conditions and the projection
operator commute.

We illustrate the above theorem in the bivariate case by considering the following real definite functional

r@)y=ciy=y ci—j iy 7. (3.92)
j=0
i S
Cimjj = ( )// x"y w(|[(x, ), dx dy. (3.9b)
J e,y <1

In the sequel of this section we let(||(x, y)|,) =1 andp =2in|(x, y)|| ,. We then call the orthogonal
polynomialsV,,(X) satisfying the orthogonality conditions (3.4) with respect to the linear functional
(3.9) bivariate spherical Legendre polynomials and denote thei,liy, y) or %,,(z). From (3.9) it
follows that

F(Zi) =ci(l) = // (xA1+ y)»z)i dx dy.
G nl2<1
Hencec; (1) equals zero for oddand is given by the following expressions for even

o) =n o) =ZR+7). calh=Z0i+ B>
n
128
The orthogonality conditions (3.4) amount to

5n
c6(z)=6—4(;€+z§)3, cg(2) = —— (72 + 2%)*

IG@ L) =Y Bz ( (DTG
k=0

= f/ Y B (D(xi+yi)tdedy i=0,....m-1
loel2<1 =g

= // (X1 4 yi2) Lom(xI1+ yi)dxdy=0 i=0,...,m—1. (3.10)
lylz<1
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Fig. 1. #1(2) for x2 + y2<1, #»(z) for x2 + y2< 1.

When writing(x, y) = (z41, z42) with

z=sdx, y) =sgnx)|l(x, y) 2

a signed distance function, the first few orthogonal polynomials satisfying (3.4) with respect to (3.9), can
be written as (we use the notatiofy, (z) to designate botl.,, (x, y) and.Z,,(z)) (seeFig. 1):

Zo(z) = 1,
Z1(z) =z,

=sd(x, y),
Pa(z) =% — 105+ 73), (3.11)

(Sd(x y) — %) (sdx, y) + 3).,
P3(z) =22 — 103+ 13z

=sd(x, y) (Sd(x, y) — ) (Sd(x, ) + %2) :
Laz) =24 302 +/1§)z2 L5+ 15)?
<Sd(x y) — )(Sd(x y) + 2\/5)
(sd(x y) — ff ) (sd(x )+ Y /5>,
Ps(z) =2° — O + 253 + 205 + 15z
=sd(x, y) (sdx, y) — 3) (sdx, y) + )(Sd(x y) — —) (Sd(x y) + f)
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For fixed (17, 25) we know from Theorem 3.3 tha¥,, ;+(z) is orthogonal with respect to the linear
functional

@) = c* @) =i (3, 75) = / / (x4 y3)idedy |23, ) =1 (3.12)
I, »ll2<1
It is important to point out that this*(z') does not coincide with the univariate linear functional

1
c(Z) =c¢ =/ x' dx, (3.13)
-1

which gives rise to the classical Legendre orthogonal polynomials. Hence we do not immediately retrieve
these classical univariate orthogonal polynomials from the projection, because the projected functional
¢* given by (3.12) does not coincide with the functionaiven by (3.13). Then what is the connection
between the spherical orthogonal polynomiats, (z) and their univariate counterpart, the Legendre
polynomials? This is explained next.

For another choice of functionalitis possible to retrieve the classical families of orthogonal polynomials.
At the same time the spherical orthogonal polynomials, for this particular choice of functional, coincide
with some particular radial basis functions. Let for simplicity aga#a2 in X = (x1,...,x,) andp =2
in | X] ,. For the real functional

i
rEy=cy=Yy cijjk ' (3.14a)
j=0
0 for j odd ori — j odd
R i 1
Chimi = (f)/ u' du elsewhere (3.14b)
2)J-1
we find
1
rEy=ci()= (/ u' du) (22 + 75)1/2. (3.15)
-1

We obtain for the first few even-numbered/):
L2 2
o) =2 c)=30i+73), cad)=z0i+%3)?

while the odd-numbered (1) are zero. We obtain from (3.4) and (3.5) the bivariate orthogonal functions

Ro(x,y) =%0(z) =1,
Ri(x,y) = #1(z) =z =sdx, y),

1 1
Ro(x,y) = #2(z) = 2% — 3= scP(x, y) — 3

3 3
Ra(x,y) = #3(z) = 2° — 2 =sdx, ) (sdz(x, y) — g) :

The projection property as formulated in Theorem 3.3 is still valid, but now the projection of the functional
(3.15) equals the functional given in (3.13). Hence thesg,,(z) coincide on every one-dimensional
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subspace oft? with the monic form of the well-known univariate Legendre polynomials. The main
difference between th&,,(z) and Z,,(z) is that they satisfy different orthogonality conditions. While
the %,,(z) satisfy

1 .
/Zl@m(z)dz=0 z=sdx,y) i=0,...,m—1,
~1

which is a radial version of the classical orthogonality condition for the Legendre polynomials, the spher-
ical Legendre polynomial¥’,,(z) = L,,(x, y) satisfy (3.10) which is a truly multivariate orthogonality.

3.4. Gaussian cubature formulas

For a definite functional” the orthogonal polynomialg,, (X) andV,,+1(X) have no common factors.
The same holds for the associated polynomi&ls(x, y) and W,,+1(x, y) and for the polynomials
Viu(x, ¥) andW,, (x, y). The proofs of these results can be foundisip

To indicate that, as in the classical case, there is a close relationship between numerical cubature
formulas and homogeneous or spherical orthogonal polynomials, we consider the real funtgiveal

by
rEh=Yy" e, (3.16a)

|rc|=i

|x]!

cK——'/---/ w(|| X[ ,) X< dX, (3.16D)
! IX1, <1

where d¥ = dx1...dx,. This is then-variate generalization of the functional (3.9) and we find

r(z"):/.../ w([IX1l) x| dX.

IX1l, <1 ot

If the functionall” is positive definite, meaning that
V.eR":H,(4)>0 m>0,

then so are all its projection$ and hence the zeroeféi”)(/l*) of v, ,x(z) are real and simple. According
to the implicit function theorem, there exists for ea¢’ﬁ) (4*) a unique holomorphic functioff’")(i*)
such that in a neighbourhood q(f”)(),*),

Vo (2) =0 = 2= (). (3.17)
Since this is true for each= A* becausd is positive definite, this implies that for eatk:-1, . .., m the
zeroe&fm) can be viewed as a holomorphic functionﬂpﬁamelyzl@m) = Cl(m)(/l). Let us denote

- (m) (m)

Agm)(l) _ Wmfl,/l(zim ) . Wmfl(gim ()

7™ oy
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Fig. 2.2(z) with (i1, /2) = (3/5,4/5), 2(z) With (11, 12) = (—+/2/2, —/2/2).

where the function®,,_1(z) are the associated polynomials defined by (3.6), which are of degre®
in z. Then the following cubature formula can rightfully be called a Gaussian cubature formula. The proof
of this fact can be found if6].

Theorem 3.4. Let 2(z) be a polynomial of degre®n — 1 belonging toR(2)[z], the set of polynomials
in the variable z with coefficients from the space of multivariate rational functions in theeath real

coefficients. Let the functioréjé"’)(/l) be given as irf{3.17)and be such that
Vie S j#i= "0 # "W).
Then
/ . / w(| X )2 (Z /Ikxk) dX = Z A 2™ ().
X1, <1 P =

Letusillustrate Theorem 3.4 with a bivariate example to render the achieved result more understandable.
Take

P(z) = 77+ z“+z+10
@) 2+17 0 2241

(Fig. 2) and consider again the-norm. Then

13 YA 2
ey 404 40

[ [ par+iayardy = EEZATIATD) (3.18)

el <1 1+1

The exact integration rule given in Theorem 3.4 applies to (3.18) witfX ||2) = 1 andm = 2. From the
orthogonal functiorL>(x, y) = %»(z) given in (3.11), we obtain the zeroes

1 1
@ ) s )
(70 = E,/Ai +23, 0= —S\A+ 2.
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and the weights

T
AP =20 =3,
The integration rule
AP 2P 0) + AP 2 ()

then yields the same result as (3.18). In fact, the Gaussipaint cubature formula given in Theorem 3.4
exactly integrates a parameterized family of polynomie($_;_; Axxx) over adomain i®”. Them nodes
and weights are themselves functions of the parameéters illustrate this, we graph two instances of
this family 2(21x + 22y), namely for the choice§i1, /2) = (3/5, 4/5) and (i1, 12) = (—v/2/2, —/2/2).

More properties of the spherical orthogonal functidfg(X) can be proved, such as the fact that
they are the characteristic polynomials of certain parametrized tridiagonal mg&jic&be connection
between their theory and the theory of the univariate orthogonal polynomials is very close, while more
multivariate in nature than their radial counterparts.

4. \Vector and matrix orthogonal polynomials

In this section, we generalize some results of Section 1 on scalar orthogonal polynomials to the vector
and matrix case.

Let I1* be the space of all vector polynomials wititomponents. Lell’ be the subspace of* of all
vector polynomials of degree (elementwise) at mostN*. The dimension of this subspace is

ol
il +o with Ji|=Y ni. i=(1no....n0,).
i=1

Following the notation of Section 1, we denote a set of basis functiorﬂ%ﬁ‘ms

In contrast to the scalar case, a nested basis of increasing degree can be chosen in several different way:
e.g., witha = 2, a natural choice could be

(1] [0] [«x 0
179 121 [0 ”

Another possibility is

)

Once, we have chosen a (nested) basigineach element off% can be identified by an element of
clil+2x1 Similarly, choosing a basis in the dual space, each linear functionaf @an be represented
by an element of 1> (il+2),
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Let u be a matrix-valued measure of a finite or infinite intefvaih the real line. Then, the components
of

LuPraﬁﬂdmmP@>

can be considered as the duals of the vector polynomials

xk 0
0 xk
0 0

The corresponding inner product for two vector polynomialand Q is introduced as follows:

(0.Py=> "> gl (" L. x'Lyp1 = " q[ Li(P)
k=0

k=0 [=0

with Q(x) = Y 72 oqxx* and P(x) = Y 2 oprx*. When we consider the natural nested basis (4.1), the
moment matrix is block Hankel and all blocks are completely determined by the matrix-valued function
L defined as

L(x')= /xi du(x)
!
because thék, I)th block of the moment matrix equals
Li(xh) = LxFH.

In a similar way, we can extend the results for scalar polynomials orthogonal on the unit circle into vector
orthogonal polynomials where, then, the moment matrix has a block Toeplitz structure.

Taking the natural nested basis, and taking the vector orthogonal polynomials together in groups of
elements, we derivex x matrix orthogonal polynomialg;, i =0, 1, . . . of increasing degreesatisfying
the “matrix” orthogonality relationship

(P, ﬁj) = 0;jly
with (-, -) defined in an obvious way based on the inner product of vector polynomials. Several other
properties of Section 1 can be generalized in the same way for vector and matrix orthogonal polynomials
[44-46]

Let us consider the following discrete inner product based on the pgit<C,i =1,2,..., N and
the weights (vectorsy; e C**1:

N
(V.U)=> V)" FFU@), with U,V e IIZ.
i=1
Note that this is a true inner product as long as there is no eletdram I77 such that{U, U) = 0.
To find a recurrence relation for the vector orthogonal polynomials based on the natural nested basis for
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1%, we can solve the following inverse eigenvalue problem. Givei;,i =1,2, ..., N, find the upper
triangular matrixR and the generalized Hessenberg ma#fisuch that
[0" FIQ" 1,01 =[R|H], (4.2)

where the right-hand side matrix has upper triangular structure, the rows of the maitrixthe weights
FiH, the matrixQ is a unitaryN x N matrix, 4, is the diagonal matrix with the points on the diagonal,
andR is aN x « matrix which is zero except for the upperx o block which is the upper triangular
matrix R. Note that becausé = [ R| H ] has the upper triangular structufé js a generalized Hessenberg
matrix havingx subdiagonals different from zero. Instead of the natural nested basis, we can take a more
complicated nested basis. In this case the mari¥ ] will still have the upper triangular structure, but
only after a column permutation.

The columns of the unitary matri are connected to the values of the corresponding vector orthogonal
polynomials¢q, ¢o, . .. as follows

Qij=F/¢;(z), withi,j=1,2,...,N.

Because the relation (4.2) gives us a recurrence for the colunthsmeé get the corresponding recurrence
relation for the vector orthogonal polynomials:

i—1
hidi@)=ei =Y hjihjid;(2), i=12... 4

j=1

i—1
:Zd)i—ac_zhjihjid)j(z), i=o+1la+2...,N,
j=1

whereh;; is the(i, j)th element of the upper triangular (rectangular) makfix

Forz; arbitrary chosen in the complex plane, the previous inverse eigenvalue problem requifds O
floating point operations. However, this computational complexity decreases by an order of magnitude
in the following two special cases.

(1) All the pointsz; are real and the weights are real vectors
In this case, all computations can be done using real numbers. Hence, the @hafitixalso be real
(orthogonal). Thereforgd = QT Z Q will be symmetric and becausgé is a generalized Hessenberg,
it will be a symmetric banded matrix with bandwidth 2 1. Note that the recurrence relation for the
vector orthogonal polynomials only involves 2 1 of these polynomials, i.e., for the special case of
« =1, we obtain the classical 3-term recurrence relation.

(2) Allthe pointsz; are on the unit circle
In this caseH is not only generalized Hessenberg but also unitary. In this case, the iHatax be
written as a product of more simple unitary matricgs

H=G1G2---GN_q,

whereG;, =1, _1® Q; ® Iy_;_,_1 With Q; ana x « unitary matrix. When the inverse eigenvalue
problem is solved wher#l is parameterized in terms of the unitary matri¢ggs the computational
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complexity reduces to @V2). The recurrence relation for the vector orthonormal polynomials turns
out to be a generalization of the classical Szegation.

For more details on vector orthogonal polynomials with respect to a discrete inner product, we refer the
interested reader tf18,53,55] These vector and/or matrix orthogonal polynomials can be applied in
system identificatiofil9,42], to design fast and accurate algorithms to solve structured syfdrb§].

5. Multiple orthogonality and Hermite—Padé approximation

Hermite—Padé approximation is simultaneous rational approximation to a vectorflofctions
f1, f2, ..., fr, Which are all given as Taylor series around a paing C and for which we require
interpolation conditions at. We will restrict our attention to Hermite—Padé approximation around in-
finity and impose interpolation conditions at infinity. Certain polynomials which appear in this rational
approximation problem satisfy a humber of orthogonality conditions with respecimeasures and
hence we call thermultiple orthogonal polynomialsThese polynomials are one-variable polynomials
but the degree is a multi-index. A good source for information on Hermite—Padé approximation is the
book by Nikishin and Sorokif40, Chapter 4] where the multiple orthogonal polynomials are called
polyorthogonal polynomials. Other good sources of information are the surveys by Aptgaaied de
Bruin [23].

Suppose we are givenfunctions with Laurent expansions

w o
(,k’j

fi(@) = Zkﬁ’ j=12...,r
k=0

There are basically two different types of Hermite—Padé approximation. First we will need multi-indices
n=(ni,ny,...,n;) €N andtheirsizén| =n1+no+--- +n,.

Definition 5.1 (Type ). Type | Hermite—Padé approximation to the vectdy, ..., f) near infinity
consists of finding a vector of polynomialdj 1, ..., A; ) and a polynomiaB;;, with A; ; of degree
<n; — 1, such that

- 1
ZAﬁvj(Z)fj(Z) — B;i(z)=0 (W) , Z— o0. (5.1)
Jj=1

In type | Hermite—Padé approximation one wants to approximate a linear combination (with poly-
nomial coefficients) of the functions by a polynomial. This is often done for the vector of functions
f, f2, ..., f", wheref is a given function. The solution of the equation

> A j@f(2) - Bi(z2) =0

j=t

is an algebraic function and then gives an algebraic approxifidot the functionf.
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Definition 5.2 (Type I)). Type Il Hermite—Padé approximation to the vectdy, ..., f,) near infinity
consists of finding a polynomiat; of degree< |z| and polynomial®); ; (j =1,2,...,r) such that

1
Pi2) fu(2) — Q1) = C <Z”1+1> Lo

(5.2)

' 1
Pi(2) fr(2) = Qi r(2) = O <an+1) . 2> 00

Type Il Hermite—Padé approximation therefore corresponds to an approximation of each fifiaction
separately by rational functiongith a common denominata?;. Combinations of type | and type |l
Hermite—Padé approximation also are possible.

5.1. Orthogonality

When we consider Markov functions
bj du;(x) .
fj(Z)=/ I j=12,...,r
a; Z—X

then Hermite—Padé approximation corresponds to certain orthogonality conditions.
First consider type | approximation. Multiply (5.1) b and integrate over a contofirencircling all
the intervalda;, b;] in the positive direction, then

2751/22 Anj(Z)f](Z)dZ__/Z Bji(z) dz = Zthnl/ e

=]

Clearly Cauchy’s theorem implies

B =
o> z () dz =

Furthermore, there is only a contribution on the right-hand side Wkeh+ 1, so wherk < || — 2, then
none of the terms in the infinite sum have a contribution. Therefore we see that

szzz A (@) fj(z)dz=0, 0<k<|i|—

Now eachf; is a Markov function, so by changing the order of integration we get
k
z Ay j(2)
— A; dz = d 2l
/z J@ (@) dz = / MJ(X)meF -z &
Sincer  is a contour encirclinga;, b;] we have that

1 45,0

dz = x¥A: (x),
2ni r <—X ¢ n,]()
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so that we get the following orthogonality conditions
" orbi
Z/ KA ;0 duj(x) =0, k=0,1,..., i -2 (5.3)

These arén| — 1 linear and homogeneous equations for|ffiecoefficients of the: polynomialsAj; ;
(j=1,2,...,r),sothat we can determine these polynomials up to a multiplicative factor, provided that
the rank of the matrix in this system jig| — 1. If the solution is unique (up to a multiplicative factor),
then we say that is a normal index for type I. One can show that this is equivalent with the condition
that the degree of eacty; ; is exactlyn ; — 1. We call the vecto(A;; 1, ..., Aj; ) themultiple orthogonal
polynomials of type for (y4, ..., i,.). Once the polynomial vectqid; 1, ..., Aj ) is determined, we

can also find the remaining polynomiB} which is given by

(b Ay () — Aj(x)
Bi(z)=) f ~f DL du (x). (5.4)
. a; Z — X
j=1"%
Indeed, with this definition oB; we have
- — [P Az j(x)
Z Aji j(2) fj(2) — Bji(z) = Z d dij (x). (5.5)
=X
j=1 j=1"4
If we use the expansion
1 2, xk
—x Z ZkHT

k=0

then the right-hand side is

© 4 b;
ZmZ/ xF Az 00 dpj (x),
k=0 j=1Y4i

and the orthogonality conditions (5.3) show that the sum bgéarts withk = || — 1, hence the right-hand
side is¢(z~!"!), which is the order given in the definition of type | Hermite—Padé approximation.

Next we consider type Il approximation. Multiply (5.2) bYand integrate over a contofirencircling
all the intervalda;, b;], then

1

- | b
27 Jr

1 1 e
%/szPﬁ(z)fj(z)dz—%/szQ;,,j(z)dz: Z by

E:nﬁ-l

Cauchy’s theorem gives

1 k
5 /F #0; /(2)dz =0,
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and on the right-hand side we only have a contribution whenk + 1. So fork<n; — 1 none of the
terms in the infinite sum contribute. Hence

1
—,/kaﬁ(z)fj(z)dzzo, 0<k<n; — 1
27 r

Interchanging the order of integration on the left-hand side gives the orthogonality conditions

b1
/ x*P;(x)duyy(x) =0, k=0,1,...,n1—1,
a

1

(5.6)
by
/kaz(X)dur(x)zQ k=0,1,...,n, — 1
ar

This gives|n| linear and homogeneous equations for|ifie+ 1 coefficients ofP;, hence we can obtain
the polynomialP; up to a multiplicative factor, provided the matrix of coefficients has riafkin that
case we call the index normal for type Il. One can show that this is equivalent with the condition that
the degree of; is exactly|z|. We call this polynomialP; themultiple orthogonal polynomial of type Il
for (uq, ..., u,). Once the polynomiak; is determined, we can obtain the polynomi@ls ; by

b7 Pi(z) — Pi
0i.j(2) =/ %duj(x)- (5.7)

J

Indeed, with this expression f@; ; we have

bj P-
Pi(2) f(z) — Qﬁ,‘;(z)=/ i du; (x), (5.8)

aj £—X

and if we expand A(z — x), then the right-hand side is of the form

o b
1 I

E ] X" P (x) duj (x)

k:oZ aj

and the orthogonality conditions (5.6) show that the infinite sum staktsaf, which gives an expression
of 0(z~~1), which is exactly what is required for type Il Hermite—Padé approximation.

5.2. Angelesco systems
An interesting system of functions, which allows detailed analysis, was introduced by Angdlesco

Definition 5.3. An Angelesco systenifi, f», ..., f) consists ofr Markov functions for which the
intervals(a;, b;) are pairwise disjoint.
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All multi-indices are normal for type Il in an Angelesco system. We will prove this by showing that
the multiple orthogonal polynomiat; has degree exactly equallid. In fact more is true, namely

Theorem 5.1. Suppos€ f1, ..., f») is an Angelesco system with measyreshat have infinitely many
points in their support. TheR; hasn ; simple zeros o, b;) for j =1,...,r.
Proof. Letx,..., x, be the sign changes &; on(a;, b;). Suppose that: < n; and letr,, (x) = (x —

x1) - - - (x — xp), thenP;m,, does not change sign ¢a;, b;]. Since the support qf; has infinitely many
points, we have

bj
[ it duy) £ 0
aj
However, the orthogonality (5.6) implies that is orthogonal to all polynomials of degree: ; — 1 with
respect to the measufe on|a;, b1, so that the integral is zero. This contradiction implies thatn ;,
and henceP; has at least ; zeros on(a;, b;). This holds for every, and since the intervalg;, b;) are
disjoint this gives at leasfi| zeros on the real line. But the degreeRyfis < |n|, henceP; has exactly
n; simple zeros ofta;, b;). O
The polynomialP; can therefore be factored as

P;i (X) = gny (X)Gny(X) - - - g, (X),

where eacly, ; is a polynomial of degree; with its zeros or(a;, b;). The orthogonality (5.6) then gives

bj
/ xkqnj(x) l_[qn,.(x) duj(x)=0, k=0,1,...,n; -1 (5.9)
4 i#]
The product]_[i# qn,; (x) does not change sign @a;, b;), hence (5.9) shows that; is an ordinary or-

thogonal polynomial of degreg onthe intervala;, b;] with respectto the measuﬂei#j gn; (0)| i (x).
The measure depends on the multi-index

5.3. Algebraic Chebyshev systems

A Chebyshev systerfy, ..., ¢,} on[a, b] is a system ofi linearly independent functions such that
every linear combinatiol ;_,ax ¢, has at most — 1 zeros ora, b]. This is equivalent with the condition
that

e1(x1)  @1(x2) - @1(xn)
x _x DY _x
det 902(' 1) 402(. 2) <02(. n) 0
op(x1)  @p(x2) -0 @, (xn)
for every choice of: different pointsx1, ..., x, € [a, b]. Indeed, wherxy, ..., x, are such that the

determinant is zero, then there is a linear combination of the rows that gives a zero row, but this means
that for this linear combinatiod_;_,ax ¢, has zeros at, ..., x,, givingn zeros, which is not allowed.
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Definition 5.4. A system(f1, ..., f») is an algebraic Chebyshev system (AT system) for the imdiéx
eachf; is a Markov function on the same interal, »] with a measurev; (x) du(x), wherey has an
infinite support and the ; are such that

ni

{wy, xwy, ..., x “Lwi, wo, xwo, ..., x"2 Ywo, L wy, xwy, ., x"’flwr} (5.10)

is a Chebyshev system ¢, b].

Theorem 5.2. Suppose: is a multi-index such thatfi, ..., f,) is an AT system ofu, b] for every
indexm for whichm j <n; (1< j<r). ThenP; has|i| zeros on(a, b) and hencei is a normal index for

type Il.

Proof. Letx, ..., x, be the sign changes &; on (a, b) and suppose that < |1|. We can then find a
multi-indexm such thatm | =m andm ; <n; for every 1< j <r andmy < ny for some Kk <r. Consider
the interpolation problem where we want to find a function

-
Lx)=)qjx)w;(x),
j=1
whereg; is a polynomial of degree:; — 1 if j # k andg, a polynomial of degree:, that satisfies

L(x;)=0, j=1,..m,
L(xo) =1, for some other poinkg € [a, b],

then this interpolation problem has a unique solution since this involves a Chebyshev system of basis
functions. The functionl. has, by construction zeros and the Chebyshev system has- 1 basis
functions, sal can have at most zeros ona, b] and each zero is a sign change. HeRgé& does not
change sign ofu, b]. Sinceu has infinite support, we thus have

b
/ L(x)P5(x) dux) # 0.

But the orthogonality (5.6) gives

b
/ qg;j(x)Pi(x)w;(x)du(x) =0, j=12...,r

and this contradiction implies tha&; has|n| simple zeros ofta, b). O
We have a similar result for type | Hermite—Padé approximation:

Theorem 5.3. Suppose is a multi-index such thatfs, ..., f,) is an AT system oja, b] for every index
m for whichm j <n; (1<j<r). Thenz;zlA,ljwj has|n| — 1 sign changes ortu, b) andz is a normal
index for type |

Proof. Letx, ..., x, be the sign changes @;:1Aﬁ’jwj' on (a, b) and suppose that < |n]| — 1. Let
n,, be the monic polynomial with these points as zeros, tzhﬁE;.:lAﬁ’jw_,- does not change sign on
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[a, b] and hence

b r
[ 7m0 Y Ao dute) 0,

j=1

But the orthogonality conditions (5.3) indicate that this integral is zero. This contradiction implies that
m>|n|—1.The sumZ ._145 jw; is alinear combination of the Chebyshev system (5.10), hence it has
at most|z| — 1 zeros or[a b]. Therefore we see that = |i1| — 1. To see that the indexis normal for
type I, we assume that for sorhevith 1<k <r the degree of\; ; is less tham; — 1. ThenZFlA W

is a linear combination of the Chebyshev system (5.10) from which the functiortwy, is removed.
This is still a Chebyshev system by assumption, and hence this linear combination has ja rdst
zeros ona, b]. But this contradicts our previous observation that it fids- 1 zeros. Therefore every
Aj; jhas degree exactly; — 1, so that the index is normal. O

5.4. Nikishin systems

A special construction, suggested by Nikispdi], gives an AT system that can be handled in some
detail. The construction is by induction. A Nikishin system of order 1 is a Markov funcftionfor
a measure; on the intervallay, b1]. A Nikishin system of order 2 is a vector of Markov functions
(f1,2, f2,2) on[az, b2] such that

sz(X )

b2d
f1,2(z)=/ Zui(i), f22(2) = f 1)

2 az

where f1 1 is a Nikishin system of order 1 dai, b1] and(az1, b1) N (a2, b2) = ¥. In general we have

Definition 5.5. A Nikishin system of order consists ofr Markov functions(fi,,..., frr) On
[a,, b,] such that
brdp, (x)
fl,r(Z):/ et (5.11)
ar =X
br dy, (x)
Jir (@) =/ Si-1r—1(x) Zﬂr_x . J=2,...,T, (5.12)
where (f1,-1,..., fr—1.,—1) is a Nikishin system of order — 1 on [a,_1, b,—_1] and (a,, b;) N

(ar—1,b,—1) =10

For a Nikishin system of orderone knows that the multi-indiceswith n1 >no> - - - >n, are normal
(the system is an AT-system for these indices), but it is an open problem whether every multi-index is
normal (forr > 2; forr = 2 it has been proved that every multi-index is normal).

What can be said about type Il Hermite—Padé approximation fo2? Recall (5.8) for the function

fi2:

b2 Pn n
Payny () f1200) — Qupnyt () = f yl—z(x)d ().
az
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Multiply both sides byy*, with k <n1, then the right-hand side is

by ok _ Lk b2 yk
/ y an nz(x) du x )_f 2 (y X )Pnl,nz(x) d,uz(x) +/ 2 )%,n)zc(x)d’uz(x).
az a a -

2 y—=x 2

Clearly (y* — x*)/(y — x) is a polynomial inx of degreek — 1<n1 — 1 hence the first integral on the
right vanishes because of the orthogonality (5.6). Integrate over the vayiable;, b1] with respect to
the measurg,, then we find fork <nj

kPnl nz(x)

b1 pbo
[Pnlnz(y)le()’) Onpnya(NIY* dug (v) = /f dup(x) dug (y).

ai

Change the order of integration on the right-hand side, then

by b2
[Payna(3) f1.2(9) = Qnyngi 1)1 dpug () = — f K Py np (%) f1.1(x) dpp (x)
ai az

and this is zero fok <np — 1. Hence ifnp<n1 + 1 then the expressioR,, »,(y) f1.2(y) — Oy 1()

is orthogonal to all polynomials of degreens — 1 on[as, b1]. This implies thatP,, »,(y) f1.2(y) —
Ony.n»:1(y) has at leastp sign changes o1, b1) using an argument similar to what we have been using
earlier. LetR,, be the monic polynomial with, of these zeros ofui, b1), then[ P, »,(y) f1.2(y) —
Oni1.n2:1(3)1/ Ry, (y) is an analytic function o\ [az, b2], which has the representation

Py f1.20) = Qg 1 7% Pynp(x)
an(Y) an(y) ap y—x

dp(x).

Multiply both sides byy* and integrate over a contodirencircling the intervalay, b,] in the positive
direction, but with all the zeros at,,, outsider’, then

1 Pn n - ni,ng; 1 k Pl’l n
_/yk 1, z(y)fl,Z(y) Q 1, 2,1(}’) dy = — y 1, 2()(?) d,uz(X) dy.

] y = :
2mi R, (y) 2ni Jr Ry,(y) y—x

If we interchange the order of integration on the right-hand side and use Cauchy’s theorem, then this
gives the integral

ba dus(x
/ XkPnl,nz(X) ,uz—)
a

5 Ry, (x)

By the interpolation condition (5.2) the integrand on the left is of the ofdef—"1—"2~1), so if we use
Cauchy’s theorem for the exterior 6f then the integral vanishes fbkn; + no — 1. Hence we get

b2 d
k fio(x)
X5 Ppyng(x) =0, k=0,1,...,n1+np— 1 (5.13)
/az P Ry (x)

This shows thatP,, ,, is an ordinary orthogonal polynomial day, b2] with respect to the measure
dus(x)/Rn,(x). Observe thatay, b1) N (a2, b2) = ¥ implies thatR,, does not change sign day, b>].
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Finally we have

sz PZ () dup(x) f”z P (o) P () = Prana () dia(x)
— ni,n
az y—x an(}C) az v y—x an(x)
b2 Py o (%) dutp(x)
+P 7 ( ) ni,np
et | TV S Rupx)
b2 Py p(x) dpp(x)
= Pnl,nz())) / L7 2 s
az y—=x an(x)

since[ Py ny(¥) — Puypny(X)1/(y — x) is a polynomial inx of degreen; + np — 1 and because of the
orthogonality (5.13). Hence

Rng()’) b2 Pnzl,nz(x) dNZ(x)
Pnl,nz(y) ap y—-X an(x)

Pnl,nz()’)fl,Z(y) - in,nz;l(y) = (514)

Both sides of the equation have zeros at the zerd@g,afbut there will not be any other zeros pn, b1]
since the integral on the right-hand side has constant sign.

5.5. Some applications

Many of the classical orthogonal polynomials have been extended to this multiple orthogonality setting:
the Jacobi, Laguerre and Hermite polynomials have multiple extensions worked 834m9,50] Dis-
crete multiple orthogonal polynomials have been fourjd j#3]. New special polynomials corresponding
to orthogonality measures involving Bessel functions were fouf2lyb2] Many of the properties of the
classical orthogonal polynomials have nice extensions in this multiple orthogonality setting: there will
be a higher order linear recurrence relation, there are nice differential or difference properties, such as a
linear differential equation (of higher order) and Rodrigues-type formulas. The weak asymptotics (and
the asymptotic distribution of the zeros) has been worked out by means of an equilibrium problem for
vector potential§31] and recently a matrix Riemann—Hilbert problem was found for multiple orthogonal
polynomials[51] which will be very useful for obtaining strong asymptotics, uniformly in the complex
plane.

5.5.1. Irrationality and transcendence

Hermite—Padé approximation finds its origin in number theory. Hermite’s proof of the transcendence
of ¢ is based on Hermite—Padé approximation(ef, €, ..., €*) at x = 0. Many proofs of irra-
tionality are also based on Hermite—Padé approximation, even though this is often not explicit in the
proof. Apéry’s proof that/(3) is irrational can be reduced to Hermite—Padé approximation to three
functions

1 d 1 d d
Jf1(@) :/ —, fa(z) = —/ log x al Y
0 T—X 0 —X

7—x

1 1
. fa) =2 / log® x
2 Jo
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which form an AT-system. The proof uses a mixture of types | and Il Hermite—Padé approximation: find
polynomials(A,, B,) (both of degree) and polynomialg”,, and D,, such that

Ap(D) =
An(2) f1(2) + Bu(2) f2(2) — Ca(z) = O(1/" ), 7z — o0
An(2) f2(2) + 2By (2) f3(z) — Dy(2) = 0(1/7"h), 7 — 0.

Observe thafs(1) ={(3), hence if we evaluate the approximationsatl, then we see that’, (1){(3) —
D, (1) will be small andD,,(1)/(2B,, (1)) is a good rational approximation t@3). In fact, asymptotic
analysis of the error and of the denominaBy1) and some simple number theory show that this rational
approximation is better than order 1, which implies 1@ is irrational. Se¢49] for details.

For another example we consider the two Markov functions

1 dx 0 dx
fi() = / X ho= f ,
0 Z—X 12— X

which form an Angelesco system. Some straightforward calculus gives

) .
fili) = =3 log 2—’{, foli) == Iogz -

hence the sum giveg (i) + f2(i) = —177:/2. The type Il Hermite—Padé approximants farand f> will
give approximations ta. Recall that

1 j .
0 I—X
°p
Pn,n(Z)fz(Z) — Qn,n;Z(Z) :f n,n(x) d
-1 Z—X

Summing both equations gives

dx.

! Py (x)
Pun (D f1(2) + f2(2)] = [Qnn;1(2) + Qnon;2(2)] = / R
So the fact that we are using a common denominator comes in very handy here. Then we evaluate these
expressions af =i and hope thaP, ,(i) and Q, ,.1(i) + O, »:2(i) are (up to the factot) integers or
rational numbers with simple denominators. Asymptotic properties of the Hermite—Padé approximants
and the multiple orthogonal polynomials then gives useful quantitative information about the order of
rational approximation ta. For this particular case the type Il multiple orthogonal polynomials are given
by a Rodrigues formula

n

e (x"(L—x?"),

and these polynomials are known as Legendre—Angelesco polynomials. They have been studied in detail
by Kalyagin[34] (see als¢49]). The Rodrigues formula in fact simplifies the asymptotic analysis, since
integration by parts now gives

0 (X) L XL —x?)"
/_z—xd_/(l)' )”Hd’

Pn,n(x) =
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which can be handled easily. Some trial and error shows that one gets better results bysiaktgazl
of n, and by differentiating: times extra:

dl’[
r@(PZn,Zn(Z)[fl(Z) + 2] = [Q20.20:1(2) + Q20.20:2(2)]) ,_;
1 x2n(l _ x2)2n

= (3n)!(—i)"*? /

_1 (1+l-x)3n+l
This gives rational approximants toof the form
by, N Ky

= —,

AapCnp an

(5.15)

wherea,, by, ¢, are explicitly known integers ankl, is the integral on the right-hand side of (5.15). The
rational approximants show thais irrational (which was shown already in 1761 by Lambert), but they
even show that you cannot approximatey rational at order greater than.231 (Beukerg9]). This
upper bound for the order of approximation can be reducedd® @lata[32]) by considering Markov
functions f1 and f3, with

0 d
f3(z)=/ .

—iZ—X

This f3 is now over a complex interval, and then Theorem 5.1 about the location of the zeros no longer
holds, and the asymptotic behavior will have to be handled by another method.

5.5.2. Random matrices

Multiple orthogonal polynomials appear in certain problems in the theory of random matrices. The
connection between eigenvalues of random matrices and orthogonal polynomials is well known: if we
define a matrix ensemble by giving the joint probability density function for its eigenvalues as

N

Py, ....xn) =[]re [] Gi—xp?

i=1 1<i<j<N

then the eigenvalues denstty; is given by

oo [e'e) 1 N-1
O-I’l(x)=/ / P(x,xz,...,xN)dxz---de=ﬁZp?(x),
—00 —00 i=0

where thep, are the orthonormal polynomials with weight functibrFurthermore the-point correlation
function is given in terms of the Christoffel-Darboux kernel

N-1

> pi@pio.

j=0

(see, e.g[37, Section 19.3] The Gaussian unitary ensemble corresponds to Hermite polynomials.
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Recently a random matrix ensemble with an external source was considered by Brézin and Hikami
[12] and Zinn-Justirf62]. The joint probability density function of the matrix elements of the random
Hermitian matrixM is of the form

—e

1 Trm2—am) dM
ZN ’

whereA is a fixedN x N Hermitian matrix (the external source). Bleher and Kuijlga® observed
that the average characteristic polynonfal(z) = E[det(zI — M)] can be characterized by the property

o0 2
/ Py(x)xfe @49 dx =0, k=0,1,...,N; -1,

—00

whereN; is the multiplicity of the eigenvalue; of A. This means thaky is a multiple Hermite polynomial
of type Il with multi-index(N1, ..., N,) whenA hasr distinct eigenvalueg;, . . ., a, with multiplicities
N1, ..., N, respectively. These multiple Hermite polynomials were investigat¢d]inrhe eigenvalue
correlations and the eigenvalue density can be written in terms of the kernel

N-1

> Px) 0x(y),

k=0

where theQ, are basically the type | multiple Hermite polynomials and theare the type Il multiple

Hermite polynomials. The asymptotic analysis of the eigenvalues and their correlations and universality

questions can therefore be handled using asymptotic analysis of multiple Hermite polynomials.
Another application is in the theory of coupled random matr{@826,35] The two-matrix model

deals with pairs of random matricés/1, M>) which are bothNV x N Hermitian matrices with joint

density function

1 e 1T(M{+M;—M1M2) 4 My dMo.

Zn

The statistical relevant quantities for the eigenvalued pandM> can be expressed in terms of biorthog-
onal polynomialsp; andg; which satisfy

] o0 4 4
| [ mwamet oty = (5.16)
—00 J =00
Due to the symmetry we have that = gx. Consider the functions
o0 4
R e
—00

then a simple integration by parts shows that

k Ty
wi4+3(y) = Zwk—l()’) - Zwk(y),
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so that eachwy is a linear combination aofig, w1, w2 with polynomial coefficients, in particular

w3k (y) = ar(Y)wo(y) + br—1(y)wi(y) + cxk—1(y)wa(y),
wak1(y) = ax (N wo(y) + by (Nw1(y) + E—1(y)wa(y),
wak42(y) = dx () wo(y) + b (M w1(y) + & (Mw2(y),

whereay, dy, g, by, b, by, ck, Ck, Cr are polynomials of degréle This means that

0,0y) = / D (y)e—x4+rxy dx

is a linear combination abg, w1, w2 With polynomials coefficients, in particular

03:,(y) = An(Mwo(y) + Br—1(y)wi(y) + Ch—1(y)w2(y),
Ozn+1(y) = én(y)wo(y) + En Mwi(y) + €n—1(y)U)2()7),
O3112(y) = A (Ywo(y) + By (y)wi(y) + Ch(y)wa(y).

ltturnsoutthatA,,, B,—1, C—1), (X,,, §n, 5,,,1), and(Zn, En, 5,1) are multiple orthogonal polynomials
of type I for the densities@4wo(x), e*x4w1(x), e*x4w2(x) with multi-indices(n + 1, n,n), (n+1, n+
1,n)and(n+1, n+1, n+1) respectively, angs,, p3,+1 andps, 2 are multiple orthogonal polynomials
of type Il with multi-indices(n, n,n), (n + 1,n,n) and (n + 1, n + 1, n) respectively. The multiple
orthogonality conditions (5.3) and (5.6) then lead to the biorthogonality (5.16). Noteghaidw, are
positive densities bub1 changes sign at the origin.

5.5.3. Simultaneous Gauss quadrature

In a number of applications we need to approximate several integrals of the same function, but with
respect to different measures. The following example comes [tdi Suppose thag is the spectral
distribution of light in the direction of the observer and, wo, w3 are weight functions describing the
profiles for red, green and blue light. Then the integrals

/g(x)wl(x) dx, fg(X)wz(X)dx, /g(X)ws(x) dx

give the amount of light after passing through the filters for red, green and blue. In this case we need to
approximate three integrals of the same funcgollVe would like to use as few function evaluations as
possible, but the integrals should be accurate for polynoriafsdegree as high as possible. If we use
Gauss quadrature withnodes for each integral, then we requiref@nction evaluations and all integrals

will be correct for polynomials of degreg2n — 1 (a space of dimensiom? This gives an efficiency of

%. In fact, with 3: function evaluations we can double the efficiency and the dimension of the space in
which the formula is exact. Consider the Markov functions

b . d

=[O j=12s
a =X

and the type Il Hermite—Padé approximation problem

Qn,n,n;j (Z)

= (9(574'171), 7 — Q.
Pn,n,n(z)

fi@) —
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Now we can multiply by a polynomiats,_1 of degree at most4— 1, and integrate along a contolr
encircling[a, b] in the positive direction, to obtain

3n

b
f Tan—1(X)w;(x) dx = Z Men:j8(Xkn), =123, (5.17)
a k=1

wherexy , are the zeros of, , , and/y ,.; are the residues @, ,, ./ Pn.n,» at the zeroc ,:

. Qn,n,n;j (Xk,n)

e j = .
15 p
r;,n,n(xk,ﬂ)

Therefore the three integrals will be evaluated exactly by the three sums in (5.17) for polynomials of
degree<4n — 1 (a space of dimensiom, giving an efficiency of 43. The convergence is somewhat
more difficult to handle, since we do not have a general result that the quadrature coefficientre
positive. The positivity has to be investigated separately for Angelesco and Nikishin systems.
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