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Abstract

Wegive a survey of recent generalizations of orthogonal polynomials. That includesmultidimensional (matrix and
vector orthogonal polynomials) and multivariate versions, multipole (orthogonal rational functions) variants, and
extensions of the orthogonality conditions (multiple orthogonality). Most of these generalizations are inspired by the
applications inwhich theyareapplied.Wealsogiveaglimpseof theseapplications,whichareusually generalizations
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of applications where classical orthogonal polynomials also play a fundamental role: moment problems, numerical
quadrature, rational approximation, linear algebra, recurrence relations, and random matrices.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Since the fundamental work of Szeg˝o [48], orthogonal polynomials have been an essential tool in the
analysis of basic problems in mathematics and engineering. For example moment problems, numerical
quadrature, rational and polynomial approximation and interpolation, linear algebra, and all the direct or
indirect applications of these techniques in engineering and applied problems, they are all indebted to the
basic properties of orthogonal polynomials.
Obviously, if we want to discussorthogonalpolynomials, the first thing we need is an inner product

defined on the space of polynomials. There are several formalizations of this concept. For example, one
can define a positive definite Hermitian linear functionalM[·] on the space of polynomials. This means
the following. Let�n be the space of polynomials of degree at mostn and� the space of all polynomials.
The dual space of�n is �n∗, namely the space of all linear functionals. With respect to a set of basis
functions{B0, B1, . . . , Bn} that span�n for n = 0,1, . . ., a polynomial has a uniquely defined set of
coefficients, representing this polynomial. Thus, given a nested basis of�, we can identify the space of
complex polynomials�n with the space of its coefficients, i.e., withC(n+1)×1 of complex(n + 1) × 1
column vectors.
Suppose the dual space is spanned by a sequence of basic linear functionals{Lk}∞k=0, thus�n∗ =

span{L0, L1, . . . , Ln} for n= 0,1,2, . . . . Then the dual subspace�n∗ can be identified withC1×(n+1),
the space of complex 1× (n+ 1) row vectors. Now, given a sequence of linear functionals{Lk}∞k=0, we
say that a sequence of polynomials{Pk}∞k=0 with Pk ∈ �k, is orthonormal with respect to the sequence
of linear functionals{Lk}∞k=0 with Lk ∈ �k∗, if

Lk(Pl)= �kl, k, l = 0,1,2 . . . .

Hereby we have to assure some non-degeneracy, which means that the moment matrix of the system is
Hermitian positive definite. This moment matrix is defined as follows. Consider the basisB0, B1, . . . in
� and a basisL0, L1, . . . for the dual space�∗, then the moment matrix is the infinite matrix

M =


m00 m01 m02 . . .

m10 m11 m12 . . .

m20 m21 m22 . . .
...

...
...

. . .

 , with mij = Li(Bj ).

It is Hermitian positive definite ifMkk = [mij ]ki,j=0 is Hermitian positive definite for allk = 0,1, . . . .

In some formal generalizations, positive definitenessmay not be necessary; a nondegeneracy condition
is then sufficient (all the leading principal submatrices are nonsingular rather than positive definite). In
other applications it is not even really necessary to impose this nondegeneracy condition, and in that case
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there should be some notion of block orthogonality because the existence of an orthonormal set is not
guaranteed anymore.
Note that if thecoefficientsofP ∈ �n andQ∗ ∈ �n∗ aregivenbyp=[p0, p1, . . . ]T andq=[q0, q1, . . .]

respectively, thenQ∗(P )= qMp.
Classical cases fall into this framework. For example consider a positive measure� of a finite or

infinite intervalI on the real line, a basis 1, x, x2, . . . for the space of real polynomials and a basis of
linear functionalsL0, L1, . . . defined by

Lk(P )=
∫

I

xkP (x)d�(x),

then we can chooseLk as the dual of the polynomialxk and therefore introduce an inner product in� as
(assuming convergence)

〈Q,P 〉 =
∞∑
k=0

∞∑
l=0

qkpl

〈
xk, xl

〉
=

∞∑
k=0

∞∑
l=0

qkplLk(x
l)=Q∗(P ),

if Q∗ =∑∞
k=0qk Lk,Q(x)=∑∞

k=0qk x
k, andP(x)=∑∞

k=0pk x
k. If � is a positive measure, the moment

matrix is guaranteed to be positive definite.
Note that in this case we need to define only one linear functionalL on � to determine the whole

moment matrix. Indeed, with the definitionL(xi)= ∫
I
xid�(x), the moment matrix is completely defined

by the sequencemk = L(xk), k = 0,1,2, . . . .

Another important case is obtained by orthogonality on the unit circle. ConsiderT= {t ∈ C : |t | = 1}
and a positive measure onT. The set of complex polynomials are spanned by 1, z, z2, . . . and we consider
linear functionalsLk defined by

Lk(z
l)= L(zl−k)=

∫
T

t l−k d�(t), k, l = 0,1,2, . . . .

Thus we can again use only one linear functionalL(P (z))= ∫
T
P(t)d�(t) and define a positive definite

Hermitian inner product on the set of complex polynomials by

〈Q,P 〉 =
〈 ∞∑
k=0

qkz
k,

∞∑
l=0

plz
l

〉
=

∞∑
k=0

∞∑
l=0

qkpl

〈
zk, zl

〉
=

∞∑
k=0

∞∑
l=0

qkplLk(z
l)=

∞∑
k=0

qkLk

( ∞∑
l=0

plz
l

)
=Q∗(P )

=
∞∑
k=0

∞∑
l=0

qkplL(zl−k)=
∫

T

( ∞∑
k=0

qkt
−k

)( ∞∑
l=0

plt
l

)
d�(t)

=
∫

T

Q∗(t)P (t)d�(t),

where we have abused the notationQ∗ for both the linear functionalQ∗ =∑∞
k=0 qkLk and for the dual

polynomialQ∗(z) =∑∞
k=0 qkz

−k, which is the dual ofQ(z) =∑∞
k=0 qkz

k, and we have setP(z) =∑∞
l=0plz

l . Note that here the linear functionalL is defined on the space of Laurent polynomials� =
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span{zk : k ∈ Z}. Themomentmatrix is completely defined by the one dimensional sequencemk=L(zk),
k ∈ Z, and because� is positive, it is sufficient to givemk, k=0,1,2 . . . becausem−k=L(z−k)=L(zk)=
mk.
Note that in the case of polynomials orthogonal on a real, finite or infinite interval, the moment matrix

[mkl] is real and has a Hankel structure and in the case of orthogonality on the circle, the moment matrix
is complex Hermitian and has a Toeplitz structure. This explains of course why a single sequence defines
the whole matrix in both cases.
In the moment problem, it is required to recover a representation of the inner product, given its positive

definite moment matrix. In the examples above, this means that we have to find the positive measure�
from the moment sequence{mk}. A first question is thus to find out whether a solution exists, and if it
exists, to find conditions for a unique solution, and when it is not unique, to describe all the solutions.
The relation with structured linear algebra problems has given rise to an intensive research on fast

algorithms for the solution of linear systems of equations and other linear algebra problems. The duality
between real Hankel matrices and complex Toeplitz matrices is in this context a natural distinction.
However, what is possible for one case is usually also true in some form for the other case.
For example, the Hankel structure is at the heart of the famous three-term recurrence relation for

orthogonal polynomials. For three successive orthogonal polynomials�n,�n−1,�n−2 there are constants
An,Bn, andCn with An >0 andCn >0 such that

�n(x)= (Anx + Bn)�n−1(x)− Cn�n−2(x), n= 2,3, . . .

Closely related to this recurrence is theChristoffel–Darboux relationwhich gives a closed formexpression
for the (reproducing) kernelkn(z,w)

kn(x, y) :=
n∑

k=0
�n(x)�n(y)=

�n

�n+1
�n+1(x)�n(y)− �n(x)�n+1(y)

x − y
,

where�n is the highest degree coefficient of�n. All three items: orthogonality, three-term recurrence,
and a Christoffel–Darboux relation are in a sense equivalent. The Favard theorem states that if there is a
three-term recurrence relation with certain properties, then the sequence of polynomials that it generates
will be a sequence of orthogonal polynomials with respect to some inner product. Brezinski showed[13]
that the Christoffel–Darboux relation is equivalent with the recurrence relation.
In the case of the unit circle, another fundamental type of recurrence relation is due to Szeg˝o. The

recursion is of the form

�k+1(z)= ck+1[z�k(z)+ �k+1�∗k(z)],
where for any polynomialPk of degreek we set

P ∗k (z)= zkPk∗(z)= zkPk(1/z),

so that�∗k is the reciprocal of�k, �k+1 is a Szeg˝o parameter andck+1 = (1− |�k+1|2)−1/2 is a normal-
izing constant. This recurrence relation plays the same fundamental role as the three-term recurrence
relation does for orthogonality on (part of) the real line. There is a related Favard-type theorem and a
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Christoffel–Darboux-type of relation that now has the complex form

kn(z,w) :=
n∑

k=0
�n(z)�n(w)= �∗n+1(z)�∗n+1(w)− �n+1(z)�n+1(w)

1− zw
.

Another basic aspect of orthogonal polynomials is rational approximation. Rational approximation is
given through the fact that truncating a continued fraction gives an approximant for the function to which
it converges. The link with orthogonal polynomials is that continued fractions are essentially equivalent
with three-term recurrence relations, and orthogonal polynomials on an interval are known to satisfy such
a recurrence. In fact if the orthogonal polynomials are solutions of the recurrence with starting values
�−1 = 0 and�0 = 1, then an independent solution can be obtained as a polynomial sequence{�k} by
using the initial conditions�−1=−1 and�0= 0. It turns out that

�n(x)= L

(
�n(x)− �n(y)

x − y

)
=
∫

I

�n(x)− �n(y)

x − y
d�(y),

whereL is the linear functional defining the inner product onI ⊂ R. (Note that�n is a polynomial of
degreen− 1.) Therefore, thenth approximant of the continued fraction

is given by�n(x)/�n(x). The continued fraction converges to the Stieltjes transform or Cauchy transform
(note the Cauchy kernelC(x, y)= 1/(x − y))

F�(x)= L

(
1

x − y

)
=
∫

I

d�(y)

x − y
.

The approximant is a Padé approximant at∞ because

�n(x)

�n(x)
= m0

x
+ m1

x2
+ · · · + m2n−1

x2n
+ O

(
1

x2n+1

)
= F�(x)+ O

(
1

x2n+1

)
, x →∞.

All the 2n+ 1 free parameters in the rational function�n/�n of degreen are used to fit the first 2n+ 1
coefficients in the asymptotic expansion ofF� at∞.
Again, there is an analog situation for the unit circle case. Then the function that is approximated is a

Riesz–Herglotz transform

F�(z)=
∫

T

t + z

t − z
d�(t).

where now theRiesz–Herglotz kernelD(t, z)=(t+z)/(t−z) is used. This function is analytic in the open
unit disk and has a positive real part for|z|<1. It is therefore a Carathéodory function. By the Cayley
transform, one can map the right half plane to the unit disk, by which we can transform a Carathéodory
functionF into a Schur function, since indeedS(z)= (F�(z)− F�(0))/[z(F�(z)+ F�(0))] is a function
analytic in the unit disk and|S(z)|<1 for |z|<1. It is in this framework that Schur has developed his
famous algorithm to check whether a function is in the Schur class. It is based on the simple lemma
saying thatS is in the Schur class if and only if|S(0)|<1 andS1(z)= 1

z
(S(z)− S(0))/(1− S(0)S(z))

is in the Schur class. Applying this lemma recursively gives the complete test. This kind of test is closely



62 A. Bultheel et al. / Journal of Computational and Applied Mathematics 179 (2005) 57–95

related to a stability test for polynomials in discrete time linear system theory or the solution of difference
equations. It is known as the Jury test. A similar derivation exists for the case of an interval on the real
line, which leads to the Routh–Hurwitz test, which is a bit more involved.
Note also that the moments show up as Fourier–Stieltjes coefficients ofF� because

F�(z)=
∫

T

[
1+ 2

∞∑
k=1

zk

tk

]
d�(t)=m0+ 2

∞∑
k=1

m−k z
k.

It is again possible to construct a continued fraction whose approximants are alternatingly�n/�n and
�n∗/�n∗, and these are two-point Padé approximants at the origin and infinity forF� in a linearized sense,
i.e., one has

F�(z)+ �n(z)/�n(z)= O(z−n−1), z→∞,

F�(z)�n(z)+ �n(z)= O(zn), z→ 0,

and

F�(z)�n∗(z)− �n∗(z)= O(z−n), z→∞,

F�(z)− �n∗(z)/�n∗(z)= O(zn+1), z→ 0.

Here the�n are defined by

�n(z)= L
(
D(t, z)[�n(t)− �n(z)]

)= ∫
T

t + z

t − z
[�n(t)− �n(z)]d�(t).

The term two-point Padé approximant is justified by the fact that the interpolation is in the points 0 and
∞ and the number of interpolation conditions equals the degrees of freedom in the rational function of
degreen. Since�n∗/�n∗ is a rational Carathéodory function, it is a solution of a partial Carathéodory
coefficient problem. This is the problem of finding a Carathéodory function with given coefficients for its
expansion at the origin. To a large extent the Schur interpolation problem, the Carathéodory coefficient
problem and the trigonometric moment problem are all equivalent.
Another important aspect directly related to orthogonal polynomials and the previous approxima-

tion properties is numerical quadrature formulas. By a quadrature formula for the integralI�(f ) :=∫
I
f (x)d�(x) is meant a formula of the formIn(f ) := ∑n

k=1wnkf (	nk). The knots	nk should be in
distinct points that are preferably inI, the support of the measure�, and the weights are preferably pos-
itive. Both these requirements are met by the Gauss quadrature formulas, i.e., when the	nk are chosen
as then zeros of the orthogonal polynomial�n. The weights or Christoffel numbers are then given by
wnk = 1/kn(	nk, 	nk)= 1/

∑n
k=0[�n(	nk)]2 and the quadrature formula has the maximal domain of va-

lidity in the set of polynomials. This means thatIn(f )= I�(f ) for all f that are polynomials of degree
at most 2n − 1. It can be shown that there is non-point quadrature formula that will be exact for all
polynomials of degree 2n, so that the polynomial degree of exactness is maximal.
In the case of the unit circle, the integralI�(f ) := ∫

T
f (t)d�(t) is again approximated by a formula

of the formIn(f ) :=∑n
k=1wnkf (	nk), where now the knots are preferably on the unit circle. However,

the zeros of�n are known to be strictly less than one in absolute value. Therefore, the para-orthogonal
polynomials are introduced as

Qn(z, 
)= �n(z)+ 
�∗n(z), 
 ∈ T.
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It is known that these polynomials have exactlyn simple zeros onT and thus they can be used as knots for
a quadrature formula. If the corresponding weights are chosen as before, namelywnk=1/kn(	nk, 	nk)=
1/
∑n

k=0|�n(	nk)|2, then these are obviously positive and the quadrature formula becomes a Szeg˝o for-
mula, again with maximal domain of validity, namelyIn(f ) = I�(f ) for all f that are in the span of
{z−n+1, . . . , zn−1}, a subspace of dimension 2n− 1 in the space of Laurent polynomials.
We have just given the most elementary account of what orthogonal polynomials are related to. Many

other aspects are not even mentioned: for example the tridiagonal Jacobian operator (real case) or the
unitary Hessenberg operator (circle case) which catch the recurrence relation in one operator equation,
also the deep studies by Geronimus, Freud and many others to study the asymptotics of orthogonal
polynomials, their zero distribution, and many other properties under various assumptions on the weights
and/or on the recurrence parameters[27,30,38,39,47], there are the differential equations like Rodrigues
formulas and generating functions that hold for so called classical orthogonal polynomials, the whole
Askey–Wilson scheme, introducing a wealth of extensions for the two simplest possible schemes that
were introduced above.
Also from the application side there are many generalizations, some are formal[17] orthogonality

relations inspired by fast algorithms for linear algebra, some are matrix and vector forms of orthogonal
polynomials which are often inspired by linear system theory and all kind of generalizations of rational
interpolation problems. And so further and so on.
In this paper we want to give a survey of recent achievements about generalizations of orthogonal

polynomials. What we shall present is just a sample of what is possible and reflects the interest of the
authors. It is far from being a complete survey. Nevertheless, it is an illustration of the diversity of
possibilities that are still open for further research.

2. Orthogonal rational functions

One of the recent generalizations of orthogonal polynomials that has emerged during the last decade
is the analysis of orthogonal rational functions. They were first introduced by Djrbashian in the 1960s.
Most of his papers appeared in the Russian literature. An accessible survey in English can be found in
[24]. Details about this section can be found in[15]. For a survey about their use in numerical quadrature
see the survey paper[16], for another survey and further generalizations see[14]. Several results about
matrix-valued orthogonal rational functions are found in[28,29,36].

2.1. Orthogonal rational functions on the unit circle

Some connections between orthogonal polynomials and other related problems were given in the
introduction to this paper. The simplest way to introduce the orthogonal rational functions is to look at a
slight generalization of the Schur lemma.With the Schur function constructed from a positive measure�
as it was in the introduction, the lemma says that if� has infinitely many points of increase, then for some
� ∈ D= {z ∈ C : |z|<1} we haveS(�) ∈ D andS1 is again a Schur function ifS1(z)= S�(z)/��(z) with
S�(z)= (S(z)−S(�))/(1−S(�)S(z)) and��(z)= (z−�)/(1−�z). As in the polynomial case, a recursive
application of this lemma leads to some continued fraction-like algorithm that computes for a given
sequence of points{�k}∞k=1 ⊂ D (with or without repetitions) a sequence of parameters�k = Sk(�k+1)
that are all inD and that are generalizations of the Szeg˝o parameters.
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Thus instead of taking all the�k = 0, which yields the Szeg˝o polynomials, we obtain a multipoint
generalization. Themultipoint generalization of the Schur algorithm is the algorithm of Nevanlinna–Pick.
It is well known that this algorithm constructs rational approximants of increasing degree that interpolate
the original Schur functionS in the successive points�k. Supposewedefine the successiveSchur functions
Sn(z) as the ratio of two functions analytic inD, namelySn(z)=
n1(z)/
n2(z), then the Schur recursion
reads (�n+1= Sn(�n+1) and�n(z)= zn

z−�n
1−�nz

with zn = 1 if �n = 0 andzn = �n/|�n| otherwise)

[
n+1,1 
n+1,2] = [
n,1 
n,2]
[

1 −�n+1
−�n+1 1

] [
1/�n+1 0

0 1

]
.

This describes the recurrence for the tails. The inverse recurrence is the recurrence for the partial numer-
ators and denominators of the underlying continued fraction:

[�n+1 �∗n+1] = [�n �∗n]
[

�n+1 0
0 1

]
1√

1− |�n+1|2
[

1 �n+1
�n+1 1

]
.

When starting with�0 = �∗0 = 1, this generates rational functions�n which are of degreen and which
are in certain spaces with poles among the points{1/�k}

�n,�∗n ∈Ln = span{B0, B1, . . . , Bn} =
{
pn

�n

: pn ∈ �n

}
,

where�n(z)=∏n
k=1(1− �j z) and the finite Blaschke products are defined by

B0= 1, Bk = �1�2 · · · �k.
Moreover, it is easily verified that�n(z)=Bn(z)�n∗(z)where�n∗(z)=�n(1/z). This should make clear
that the recurrence

�n+1(z)= cn+1[�n+1(z)�n(z)+ �n+1�∗n(z)], cn+1= (1− |�n+1|2)−1/2

is a generalization of the Szeg˝o recurrence relation.
Transforming back from the Schur to theCarathéodory domain, the approximants of the Schur function

correspond to rational approximants of increasing degree that interpolate the functionsF� in the points
�k. Defining the rational functions of the second kind�n exactly as in the polynomial case, then we have
multipoint Padé approximants since

zBn(z)[F�(z)+ �n(z)/�n(z)] is holomorfic in 1< |z|�∞,

[zBn−1(z)]−1[F�(z)�n(z)+ �n(z)] is holomorfic in 0� |z|<1

and

[zBn−1(z)][F�(z)�n∗(z)− �n∗(z)] is holomorfic in 1< |z|�∞,

[zBn(z)]−1[F�(z)− �n∗(z)/�n∗(z)] is holomorfic in 0� |z|<1.

The�k correspond toorthogonal rational functionswith respect to theRiesz–HerglotzmeasureofF�.They
can be obtained by a Gram–Schmidt orthogonalization procedure applied to the sequenceB0, B1, . . . .

If all �k are zero, the poles are all at infinity and the Szeg˝o polynomials emerge as a special case.
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Just asF� is amoment generating function by applying the linear functionalL to the (formal) expansion
of the Riesz–Herglotz kernel, we now have

F�(z)=
∫

T

[
1+ 2z

∞∑
k=1

�∗k−1(z)
�∗k(t)

]
d�(t)=m0+ 2

∞∑
k=1

m−kz�
∗
k−1(z),

where the generalized moments are now defined by

m−k =
∫

T

d�(t)

�∗k(t)
, �∗k(z)=

k∏
j=1

(z− �j ).

Note that also in this generalized rational case, we can define a linear functionalL operating onL =⋃∞
k=0Lk via the definition of the momentsL(1) = m0 andL(1/�∗k) = m−k for k = 1,2, . . . . If L is a

real functional, then by taking the complex conjugate of the latter and by partial fraction decomposition,
it should be clear that the functional is actually defined on the spaceL ·L∗ whereL∗ = {f : f∗ ∈L}.
Thus, we can useL to define a complex Hermitian inner product onL and so the use of the orthogonal
rational functions is possible for the solution of the generalized moment problem. The essence of the
technique is to note that the quadrature formula whose knots are the zeros{	nk}nk=1 of the para-orthogonal
functionQn(z, 
) = �n(z) + 
�∗n(z) (they are all simple and lie onT) and as weights the numbers
1/kn−1(	nk, 	nk)>0, then this quadrature formula is exact for all rational functions inLn−1 ·Ln−1. It
then follows that under certain conditions the discretemeasure that corresponds to the quadrature formula
converges forn → ∞ in a weak sense to a solution of the moment problem. The conditions for this to
hold are now involved, not only with the moments, but also with the selection of the sequence of points
{�k}∞k=q ⊂ D. A typical condition being that

∑∞
k=1(1 − |�k|) = ∞, i.e., thecondition that makes the

Blaschke product
∏∞

k=1�k diverge to zero.

2.2. Orthogonal rational functions on the real line

About the same discussion can be given for orthogonal rational functions on the real axis. If however
we want the polynomials (which are rational functions with poles at∞) to come out as a special case,
then the natural multipoint generalization is to consider a sequence of points that are allon the (extended)
real axisR̂= R ∪ {∞}. For technical reasons, we have to exclude one point. Without loss of generality,
we shall assume this to be the point at infinity. Thus we consider the sequence of points{�k}∞k=1 ⊂ R

and we define�n(z) =∏n
k=1(1− �kz). The spaces of rational functions we shall consider are given by

Ln = {pn/�n : pn ∈ �n}. If we define the basis functionsb0 = 1, bn(z) = zn/�n(z), k = 1,2, . . .,
then orthogonalization of this basis gives the orthogonal rational functions�n. The inner product can be
defined in terms of a positive measure onR̂ via (we assume functions with real coefficients)

〈f, g〉 =
∫

R

f (x)g(x)d�(x), f, g ∈L,

or via some positive linear functionalL defined on the spaceL ·L. Such a linear functional is defined
if we know the moments

mkl = L(bkbl), k, l = 0,1, . . .



66 A. Bultheel et al. / Journal of Computational and Applied Mathematics 179 (2005) 57–95

Thus in this case, defining the functional onL or onL ·L are two different things. In the first case
we only need the momentsmk0, in the second case we need a doubly indexed moment sequence. Thus,
there are two different moment problems: the one where we look for a representation onL and the one
representingL onL ·L. If all the�k=0, we get polynomials, and thenL=L ·L and the two problems
are the same. This is the Hamburger moment problem.Also when there is only a finite number of different
�k that are each repeated an infinite number of times, we are in that comfortable situation. An extreme
form of the latter is when the only� are 0 and∞ which leads to (orthogonal) Laurent polynomials, first
discussed[33].
We also mention here that this (and also the previous) section is related to polynomials orthogonal with

respect to varying measures. Indeed if�n = pn/�n, then fork = 0,1, . . . , n− 1

0= 〈�n, x
k/�n−1〉 =

∫
R

pn(x)x
kd�n(x),

where the (in general not positive definite) measure d�n(x)= d�(x)/[(1− �nx)�n−1(x)2] depends onn.
For polynomials orthogonal w.r.t. varying measures see e.g.[47].
The generalization of the three-term recursion of the polynomials will only exist if some regularity

condition holds, namelypn(1/�n) �= 0 for all k= 1,2, . . . . We say that the sequence{�n} is regular and
it holds then that

�n(x)=
(
En

x

1− �nz
+ Bn

1− �n−1x
1− �nx

)
�n(x)−

En

En−1
1− �n−2x
1− �nx

�n−2(x)

for n= 1,2, . . ., while the initial conditions are�−1= 0 and�0= 1. Moreover it holds thatEn �= 0 for
all n.
Functions of the second kind can be introduced as in the polynomial case by

�n(x)=
∫

R

�n(y)− �n(x)

y − x
d�(y), n= 0,1, . . .

They also satisfy the same three term recurrence relation with initial conditions�−1 = 1 and�0 = 0.
The corresponding continued fraction is called a multipoint Padé fraction or MP-fraction because its
convergents�n/�n aremultipoint Padé approximants of type[n−1/n] to the Stieltjes transformF�(x)=∫

R
(x − y)−1d�(y). These rational functions approximate in the sense that for� �= 0 and

lim
z→1/�

[
�n(x)

�n(x)
− F�(x)

](k)

= 0, k = 0,1, . . . , �# − 1

and if�= 0 then

lim
z→∞

[
�n(x)

�n(x)
− F�(x)

]
z0

# = 0,

where� ∈ {0, �1, �1, . . . , �n−1, �n−1, �n}, and�# is the multiplicity of� in this set and the limit to� ∈ R

is nontangential. The MP-fractions are generalizations of the J-fractions to which they are reduced in the
polynomial case, i.e., if all the�k = 0.
As for the quadrature formulas, one may consider the rational functionsQn(x, 
) = �n(x) + (1−

�n−1x)/(1−�nx)En�n−1(x). If �n is regular, then except for at most a finite number of
 ∈ R̂=R∪{∞},
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these quasi-orthogonal functions haven simple zeros on the real axis that differ from{1/�1, . . . ,1/�n}.
Again, taking these zeros{	nk}nk=1 as knots and the corresponding weights as 1/kn−1(	nk, 	nk) =
1/
∑n−1

k=0|�k(	nk)|2>0,weget quadrature formulas that areexact for all rational functions inLn−1·Ln−1.
If �n is regular and
 = 0 is not one of those exceptional values for
, then the formula is even exact in
Ln ·Ln−1. Since an orthogonal polynomial sequence is always regular and since there are no exceptional
values for
, one can thus always take the zeros of�n for the construction of the quadrature formula, so
that we are back in the case of Gauss quadrature formulas.
These quadrature formulas, apart from being of practical interest, can be used to find a solution for the

moment problem inL. Note that we use orthogonality, thus an inner product so that for the solution of
the moment problem inL, we need the linear functionalL to be defined onL ·L. It is not known how
the problem could be solved using only the moments definingL onL.

2.3. Orthogonal rational functions on an interval

Of course, many of the classical orthogonal polynomials are not defined with respect to a measure on
the unit circle or the whole real line, but they are orthogonal over a finite interval or a half-line.
Not much is known about the generalization of these cases to the rational case. There is a high potential

in there because the analysis of orthogonal rational functions on the real line suffered from technical
difficulties because the poles of the function spaces were in the support of the measure. If the support
of the measure is only a finite interval or a half-line, we could easily locate the poles on the real axis,
but outside the support of the measure. New intriguing questions about the location of the zeros, the
quadrature formulas, the moment problems arise. For further details on this topic we refer to[57–61].

3. Homogeneous orthogonal polynomials

In the presentation of one of the multivariate generalizations of the concept of orthogonal polynomials,
we follow the outline of Section 1.An inner product or linear functional is defined, orthogonality relations
are imposed on multivariate functions of a specific form, 3-term recurrence relations come into play and
some properties of the zeroes of these multivariate orthogonal polynomials are presented. The 3-term
recurrence relations link the polynomials to rational approximants and continued fractions. The zero
properties allow the development of some new cubature rules.
Without loss of generality we present the results only for the bivariate case.

3.1. Orthogonality conditions

The homogeneous orthogonal polynomials discussed here were first introduced in[5] in a different
formand later in[7] in the formpresented here.At that time theywere studied in the context ofmultivariate
Padé-type approximation. Originally they were not termed spherical orthogonal polynomials because of
a lack of insight into the mechanism behind the definition.
In dealing with multivariate polynomials and functions we shall often switch between the cartesian

and the spherical coordinate system. The cartesian coordinatesX = (x1, . . . , xn) ∈ Cn are then replaced
by X = (x1, . . . , xn) = (�1z, . . . , �nz) wherez ∈ R and the directional vector� = (�1, . . . , �n) in Cn

belongs to the unit sphereSn = {� : ‖�‖p = 1}. Here‖ · ‖p denotes one of the usual Minkowski norms.
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While � contains the directional information ofX, the variablez contains the (possibly signed) distance
information. Observe thatz can be positive as well as negative and hence two directional vectors can
generateX.
For the sequel of the discussion we need somemore notation.With the multi-index��= (�1, . . . , �n) ∈

Nn, the notationX��, ��! and|��| respectively denotes

X�� = x
�1
1 . . . x�n

n ,

��! = �1! . . . �n! ,
|��| = �1+ · · · + �n.

To simplify the notation of this section, we temporarily drop the arrow but we shall consequently use the
letter� to denote the multi-index. We denote byC[z] the linear space of polynomials in the variablez

with complex coefficients, byC[�] = C[�1, . . . , �n] the linear space ofn-variate polynomials in�k with
complex coefficients and byC[�][z] the linear space of polynomials in the variablez with coefficients
from C[�].
We introduce the linear functional� acting on the distance variablez, as

�(zi)= ci(�) ‖�‖p = 1, (3.1)

whereci(�) is a homogeneous expression of degreei in the�k:

ci(�)=
∑
|�|=i

c��
�. (3.2)

Ourn-variate spherical polynomials are of the form

Vm(X)=Vm(z)=
m∑

i=0
Bm2−i(�)z

i, (3.3a)

Bm2−i(�)=
∑

|�|=m2−i

b��
�. (3.3b)

The functionVm(X) is a polynomial of degreem in z with polynomial coefficients fromC[�]. The
coefficientsBm(m−1)(�), . . . , Bm2(�) are homogeneous polynomials in the parameters�k. The function
Vm(X) itself does not belong toC[X] but sinceVm(X) =Vm(z), it belongs toC[�][z]. Therefore the
functionVm(X) is given the name spherical polynomial: for every� ∈ Sn the functionVm(X)=Vm(z)

is a polynomial of degreem in the variablez.
The form (3.3a) has been chosen because, remarkably enough, the function

Ṽm(X)= Ṽm(z)= zm
2
Vm(z−1)

belongs toC[X], which proves to be useful later on.
We now impose the orthogonality conditions

�(ziVm(z))= 0 i = 0, . . . , m− 1 (3.4)
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or

�(ziVm(z))=
m∑

j=0
Bm2−j (�)�(zi+j )= 0 i = 0, . . . , m− 1.

As in the univariate case the orthogonality conditions (3.4) only determineVm(z) up to a kind of normal-
ization:m+1 polynomial coefficientsBm2−i(�)must be determined from them parameterized conditions
(3.4). How this is done, is shown now. For more information on this issue we refer to[7,22].
With theci(�) we define the polynomial Hankel determinants

Hm(�)= det

 c0(�) · · · cm−1(�)
... T

...

cm−1(�) · · · c2m−2(�)

 , H0(�)= 1.

We call the functional� definite if

Hm(�) /≡ 0, m�0.

In the sequel of the text we assume that� is a definite functional and also thatVm(z) as given by (3.3)
is primitive, meaning that its polynomial coefficientsBm2−i(�) are relatively prime. This last condition
can always be satisfied, because for a definite functional� a solution of (3.4) is given by[7]

Vm(z)= 1

pm(�)
det


c0(�) · · · cm−1(�) cm(�)

... T
...

cm−1(�) · · · c2m−1(�)
1 z · · · zm

 V0(z)= 1, (3.5)

where the polynomialpm(�) is a polynomial greatest common divisor of the polynomial coefficients of
the powers ofz in this determinant expression. Clearly (3.5) determinesVm(z) and consequentlyVm(X).
The associated polynomialsWm(X) defined by

Wm(X)=Wm(z)= �

(
Vm(z)−Vm(u)

z− u

)
(3.6)

are of the form

Wm(X)=Wm(z)=
m−1∑
i=0

Am2−1−i(�)z
i, (3.7a)

Am2−1−i(�)=
m−1−i∑
j=0

Bm2−1−i−j (�)cj (�). (3.7b)

The expressionAm2−1−i(�) is a homogeneous polynomial of degreem2−1− i in the parameters�. Note
again thatWm(X) does not necessarily belong toC[X] because the homogeneous degree in� does not
equal the degree inz. Instead it belongs toC[�][z]. On the other hand, the function

W̃m(X)= W̃m(z)= zm
2−1Wm(z−1)

belongs toC[X].
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3.2. Recurrence relations

In the sequel of the text we use both the notationVm(X) andVm(z) interchangeably to refer to (3.3),
and analogously forWm(X) andWm(z) in (3.7). For simplicity, we also refer to bothVm(X) andVm(z)

as polynomials, and similarly forWm(X) andWm(z).
The link between the orthogonal polynomialsVm(X), the associated polynomialsWm(X) and rational

approximation theory follows from the following and gives rise to a number of recurrence relations, the
proofs of which can be found in[7].
Assume that, from�, we construct then-variate series expansion

f (X)=
∞∑
i=0

∑
|�|=i

c�x
� =

∞∑
i=0

∑
|�|=i

c��
�z|�| =

∞∑
i=0

ci(�)z
i .

Then the polynomials

Ṽm(X)= Ṽm(z)= zm
2
Vm(z−1)=

m∑
i=0

Bm2−i(�)z
m2−i

=
m∑

i=0
Bm2−m+i(�)z

m2−m+i =
m∑

i=0

∑
|�|=m2−m+i

b�x
�

and

W̃m(X)= W̃m(z)= zm
2−1Wm(z−1)=

m−1∑
i=0

Am2−1−i(�)z
m2−1−i

=
m−1∑
i=0

Am2−m+i(�)z
m2−m+i =

m−1∑
i=0

∑
|�|=m2−m+i

a�x
�

satisfy the Padé approximation conditions(
f Ṽm − W̃m

)
(X)= (

f Ṽm − W̃m

)
(z)

=
∞∑

i=m2+m

di(�)z
i

=
∞∑

i=m2+m

 i∑
|�|=i

d�x
�

 ,

where, as in (3.2), (3.3b) and (3.7b), the subscripted functiondi(�) is a homogeneous function of degreei

in �. The rational functionW̃m(X)/Ṽm(X) coincides with the homogeneous Padé approximant forf (X).
More information about these approximants can be found in[21]. It is now easy to give a three-term
recurrence relation for theVm(X) and the associated functionsWm(X), as well as an identity linking the
Vm(X) and theWm(X).
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Theorem 3.1. Let the functional� be definite and let the polynomialsVm(z) andpm(�) be defined as
in (3.5).Then the polynomial sequences{Vm(z)}m and{Wm(z)}m satisfy the recurrence relations

Vm+1(X)= �m+1(�)((z− �m+1(�))Vm(X)− �m+1(�)Vm−1(X)),

V−1(X)= 0, V0(X)= 1
Wm+1(X)= �m+1(�)((z− �m+1(�))Wm(X)− �m+1(�)Wm−1(X)),

W−1(X)=−1, W0(X)= 0

with

�m+1(�)= pm(�)

pm+1(�)
Hm+1(�)
Hm(�)

,

�m+1(�)=
�(z[Vm(x, y)]2)
�([Vm(x, y)2]) ,

�m+1(�)=
pm−1(�)
pm(�)

Hm+1(�)
Hm(�)

, �1(�)= c0(�).

Theorem 3.2. Let the functional� be definite and let the polynomial sequencesVm(z) andpm(�) be
defined as in(3.5).Then the polynomialsVm(z) andWm(z) satisfy the identity

Vm(z)Wm+1(z)−Wm(z)Vm+1(z)= Vm(x, y)Wm+1(X)−Wm(X)Vm+1(X)

=
[
Hm+1(�)

]2
pm(�)pm+1(�)

.

The preceding theorem shows that the expression

Vm(z)Wm+1(z)−Wm(z)Vm+1(z)

is independent ofz and homogeneous in�. If pm(�) andpm+1(�) are constants, this homogeneous
expression is of degree 2m(m+ 1).

3.3. Relation with univariate orthogonal polynomials

Let us now fix�= �∗ and take a look at the projected spherical polynomials

Vm,�∗(z)= Vm(�∗1z, . . . , �∗nz) , ‖�∗‖p = 1.

From the definition ofVm(X) it is clear that for each�= �∗ the functionsVm,�∗(z) are polynomials of
degreem in z. Are these projected polynomials themselves orthogonal? If so, what is their relationship
to the univariate orthogonal polynomials? The answer to both questions follows from Theorem 3.3.
Let us introduce the (univariate) linear functionalc∗ acting on the variablez, by

c∗(zi)= ci(�
∗)= �(zi)|�=�∗ . (3.8)

In what follows we use the notationVm(z) to denote the univariate polynomials of degreem orthogonal
with respect to the linear functionalc∗. The reader should not confuse these polynomials with theVm(z)

or theVm(X). Note that theVm(z) are computed from orthogonality conditions with respect toc∗, which
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is a particular projection of�, while theVm,�∗(z) are a particular instance of the spherical polynomials
orthogonal with respect to�.

Theorem 3.3. Let the monic univariate polynomialsVm(z) satisfy the orthogonality conditions

c∗(ziVm(z))= 0 i = 0, . . . , m− 1

with c∗ given by(3.8), and let the multivariate functionsVm(X) = Vm(z) satisfy the orthogonality
conditions(3.4).Then

Hm(�∗)Vm(z)= pm(�∗)Vm,�∗(z)
=pm(�∗)Vm(X∗), X∗ = (�∗1z, . . . , �∗nz).

In words, Theorem 3.3 says that theVm(z) andVm,�∗(z) coincide up to a normalizing factorpm(�∗)/
Hm(�∗). Or reformulated in yet another way, it says that the orthogonality conditions and the projection
operator commute.
We illustrate theabove theorem in thebivariate caseby considering the following real definite functional

�(zi)= ci(�)=
i∑

j=0
ci−j,j�

i−j
1 �j2, (3.9a)

ci−j,j =
(

i

j

)∫ ∫
‖(x,y)‖p �1

xi−j yjw(‖(x, y)‖)p dx dy. (3.9b)

In the sequel of this section we letw(‖(x, y)‖p)= 1 andp= 2 in ‖(x, y)‖p. We then call the orthogonal
polynomialsVm(X) satisfying the orthogonality conditions (3.4) with respect to the linear functional
(3.9) bivariate spherical Legendre polynomials and denote them byLm(x, y) or Lm(z). From (3.9) it
follows that

�(zi)= ci(�)=
∫ ∫

‖(x,y)‖2�1
(x�1+ y�2)

i dx dy.

Henceci(�) equals zero for oddi and is given by the following expressions for eveni:

c0(�)= �, c2(�)= �

4
(�21+ �22), c4(�)= �

8
(�21+ �22)

2,

c6(�)= 5�

64
(�21+ �22)

3, c8(�)= 7�

128
(�21+ �22)

4 . . .

The orthogonality conditions (3.4) amount to

�(ziLm(z))=
m∑

k=0
Bm2−k(�)�(zi+k)

=
∫ ∫

‖(x,y)‖2�1

m∑
k=0

Bm2−k(�)(x�1+ y�2)
i+k dx dy i = 0, . . . , m− 1

=
∫ ∫

‖(x,y)‖2�1
(x�1+ y�2)

iLm(x�1+ y�2)dx dy = 0 i = 0, . . . , m− 1. (3.10)
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Fig. 1.L1(z) for x2 + y2�1, L2(z) for x2 + y2�1.

When writing(x, y)= (z�1, z�2) with

z= sd(x, y)= sgn(x)‖(x, y)‖2

a signed distance function, the first few orthogonal polynomials satisfying (3.4) with respect to (3.9), can
be written as (we use the notationLm(z) to designate bothLm(x, y) andLm(z)) (seeFig. 1):

L0(z)= 1,
L1(z)= z,

= sd(x, y),
L2(z)= z2− 1

4(�
2
1+ �22), (3.11)

= (
sd(x, y)− 1

2

) (
sd(x, y)+ 1

2

)
,

L3(z)= z3− 1
2(�

2
1+ �22)z

= sd(x, y)
(
sd(x, y)− 1√

2

) (
sd(x, y)+ 1√

2

)
,

L4(z)= z4− 3
4(�

2
1+ �22)z

2+ 1
16(�

2
1+ �22)

2

=
(
sd(x, y)−

√
3−√5
2
√
2

)(
sd(x, y)+

√
3−√5
2
√
2

)
(
sd(x, y)−

√
3+√5
2
√
2

)(
sd(x, y)+

√
3+√5
2
√
2

)
,

L5(z)= z5− (�21+ �22)z
3+ 3

16(�
2
1+ �22)

2z

= sd(x, y)
(
sd(x, y)− 1

2

) (
sd(x, y)+ 1

2

) (
sd(x, y)−

√
3
2

) (
sd(x, y)+

√
3
2

)
.
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For fixed (�∗1, �∗2) we know from Theorem 3.3 thatLm,�∗(z) is orthogonal with respect to the linear
functional

�(zi)|�=�∗ = c∗(zi)= ci(�
∗
1, �∗2)=

∫ ∫
‖(x,y)‖2�1

(x�∗1 + y�∗2)i dx dy ‖(�∗1, �∗2)‖ = 1. (3.12)

It is important to point out that thisc∗(zi) does not coincide with the univariate linear functional

c(zi)= ci =
∫ 1

−1
xi dx, (3.13)

which gives rise to the classical Legendre orthogonal polynomials. Hence we do not immediately retrieve
these classical univariate orthogonal polynomials from the projection, because the projected functional
c∗ given by (3.12) does not coincide with the functionalc given by (3.13). Then what is the connection
between the spherical orthogonal polynomialsLm(z) and their univariate counterpart, the Legendre
polynomials? This is explained next.
Foranother choiceof functional it is possible to retrieve theclassical familiesoforthogonalpolynomials.

At the same time the spherical orthogonal polynomials, for this particular choice of functional, coincide
with some particular radial basis functions. Let for simplicity againn= 2 inX= (x1, . . . , xn) andp= 2
in ‖X‖p. For the real functional

�(zi)= ci(�)=
i∑

j=0
ci−j,j�

i−j
1 �j2, (3.14a)

cj,i−j =


0 for j odd or i − j odd(

i
2
j
2

)∫ 1

−1
ui du elsewhere,

(3.14b)

we find

�(zi)= ci(�)=
(∫ 1

−1
ui du

)
(�21+ �22)

i/2. (3.15)

We obtain for the first few even-numberedci(�):

c0(�)= 2, c2(�)= 2

3
(�21+ �22), c4(�)= 2

5
(�21+ �22)

2 . . .

while the odd-numberedci(�) are zero.We obtain from (3.4) and (3.5) the bivariate orthogonal functions

R0(x, y)=R0(z)= 1,
R1(x, y)=R1(z)= z= sd(x, y),

R2(x, y)=R2(z)= z2− 1

3
= sd2(x, y)− 1

3
,

R3(x, y)=R3(z)= z3− 3

5
z= sd(x, y)

(
sd2(x, y)− 3

5

)
.

The projection property as formulated inTheorem3.3 is still valid, but now the projection of the functional
(3.15) equals the functionalc given in (3.13). Hence theseRm(z) coincide on every one-dimensional
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subspace ofR2 with the monic form of the well-known univariate Legendre polynomials. The main
difference between theRm(z) andLm(z) is that they satisfy different orthogonality conditions. While
theRm(z) satisfy∫ 1

−1
ziRm(z)dz= 0 z= sd(x, y) i = 0, . . . , m− 1,

which is a radial version of the classical orthogonality condition for the Legendre polynomials, the spher-
ical Legendre polynomialsLm(z)= Lm(x, y) satisfy (3.10) which is a truly multivariate orthogonality.

3.4. Gaussian cubature formulas

For a definite functional� the orthogonal polynomialsVm(X) andVm+1(X) have no common factors.
The same holds for the associated polynomialsWm(x, y) andWm+1(x, y) and for the polynomials
Vm(x, y) andWm(x, y). The proofs of these results can be found in[7].
To indicate that, as in the classical case, there is a close relationship between numerical cubature

formulas and homogeneous or spherical orthogonal polynomials, we consider the real functional� given
by

�(zi)=
∑
|�|=i

c��
�, (3.16a)

c� = |�|!
�!

∫
· · ·

∫
‖X‖p �1

w(‖X‖p)X� dX, (3.16b)

where dX = dx1 . . .dxn. This is then-variate generalization of the functional (3.9) and we find

�(zi)=
∫

. . .

∫
‖X‖p �1

w(‖X‖p)
(

n∑
k=1

xk�k

)i

dX.

If the functional� is positive definite, meaning that

∀� ∈ Rn : Hm(�)>0, m�0,

then so are all its projectionsc∗ and hence the zeroesz(m)
i (�∗) ofVm,�∗(z) are real and simple.According

to the implicit function theorem, there exists for eachz
(m)
i (�∗) a unique holomorphic function�(m)

i (�∗)
such that in a neighbourhood ofz

(m)
i (�∗),

Vm,�∗(z)= 0⇐⇒ z= �(m)
i (�∗). (3.17)

Since this is true for each�= �∗ because� is positive definite, this implies that for eachi= 1, . . . , m the
zeroesz(m)

i can be viewed as a holomorphic function of�, namelyz(m)
i = �(m)

i (�). Let us denote

A
(m)
i (�)= Wm−1,�(z(m)

i )

V′
m,�(z

(m)
i )

= Wm−1(�(m)
i (�))

V′
m(�(m)

i (�))
,
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Fig. 2.P(z) with (�1, �2)= (3/5,4/5), P(z) with (�1, �2)= (−√2/2,−√2/2).

where the functionsWm−1(z) are the associated polynomials defined by (3.6), which are of degreem−1
in z. Then the following cubature formula can rightfully be called aGaussian cubature formula. The proof
of this fact can be found in[6].

Theorem 3.4. LetP(z) be a polynomial of degree2m− 1 belonging toR(�)[z], the set of polynomials
in the variable z with coefficients from the space of multivariate rational functions in the real�k with real
coefficients. Let the functions�(m)

i (�) be given as in(3.17)and be such that

∀� ∈ Sn : j �= i  ⇒ �(m)
j (�) �= �(m)

i (�).

Then ∫
. . .

∫
‖X‖p �1

w(‖X‖p)P
(

n∑
k=1

�kxk

)
dX =

m∑
i=1

A
(m)
i (�)P(�(m)

i (�)).

Let us illustrateTheorem3.4withabivariateexample to render theachieved resultmoreunderstandable.
Take

P(z)= �1
�2+ 1

z3+ �2

�21+ 1
z2+ z+ 10

(Fig. 2) and consider again the-2-norm. Then∫ ∫
‖(x,y)‖�1

P(�1x + �2y)dx dy = �(�32+ �2�
2
1+ 40�21+ 40)

(�21+ 1)
. (3.18)

The exact integration rule given in Theorem 3.4 applies to (3.18) withw(‖X‖2)=1 andm=2. From the
orthogonal functionL2(x, y)=L2(z) given in (3.11), we obtain the zeroes

�(2)1 (�)= 1

2

√
�21+ �22, �(2)2 (�)=−1

2

√
�21+ �22.
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and the weights

A
(2)
1 (�)= A

(2)
2 (�)= �

2
.

The integration rule

A
(2)
1 P(�(2)1 (�))+ A

(2)
2 P(�(2)2 (�))

then yields the same result as (3.18). In fact, the Gaussianm-point cubature formula given in Theorem 3.4
exactly integrates a parameterized family of polynomialsP(

∑n
k=1�kxk)over a domain inRn. Themnodes

and weights are themselves functions of the parameters�. To illustrate this, we graph two instances of
this familyP(�1x+�2y), namely for the choices(�1, �2)= (3/5,4/5) and(�1, �2)= (−√2/2,−√2/2).
More properties of the spherical orthogonal functionsVm(X) can be proved, such as the fact that

they are the characteristic polynomials of certain parametrized tridiagonal matrices[8]. The connection
between their theory and the theory of the univariate orthogonal polynomials is very close, while more
multivariate in nature than their radial counterparts.

4. Vector and matrix orthogonal polynomials

In this section, we generalize some results of Section 1 on scalar orthogonal polynomials to the vector
and matrix case.
Let�� be the space of all vector polynomials with� components. Let��

�n be the subspace of�� of all
vector polynomials of degree (elementwise) at most�n ∈ N�. The dimension of this subspace is

|�n| + � with |�n| =
�∑

i=1
ni, �n= (n1, n2, . . . , n�).

Following the notation of Section 1, we denote a set of basis functions for��
�n as

{B1, B2, . . . , B|�n|+�}.
In contrast to the scalar case, a nested basis of increasing degree can be chosen in several different ways,
e.g., with�= 2, a natural choice could be[

1
0

]
,

[
0
1

]
,

[
x

0

]
,

[
0
x

]
, . . . . (4.1)

Another possibility is[
1
0

]
,

[
x

0

]
,

[
x2

0

]
,

[
0
1

]
,

[
x3

0

]
,

[
0
x

]
, . . . .

Once, we have chosen a (nested) basis in��
�n, each element of��

�n can be identified by an element of
C(|�n|+�)×1. Similarly, choosing a basis in the dual space, each linear functional on��

�n can be represented
by an element ofC1×(|�n|+�).
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Let � be a matrix-valued measure of a finite or infinite intervalI on the real line. Then, the components
of

Lk(P )=
∫

I

xk d�(x)P (x)

can be considered as the duals of the vector polynomials
xk

0
...

0

 ,


0
xk

...

0

 , . . .

The corresponding inner product for two vector polynomialsP andQ is introduced as follows:

〈Q,P 〉 =
∞∑
k=0

∞∑
l=0

qTk 〈xkI�, x
lI�〉pl =

∞∑
k=0

qTk Ll(P )

with Q(x) =∑∞
k=0qkx

k andP(x) =∑∞
k=0pkx

k. When we consider the natural nested basis (4.1), the
moment matrix is block Hankel and all blocks are completely determined by the matrix-valued function
L defined as

L(xi)=
∫

I

xi d�(x)

because the(k, l)th block of the moment matrix equals

Lk(x
l)= L(xk+l).

In a similar way, we can extend the results for scalar polynomials orthogonal on the unit circle into vector
orthogonal polynomials where, then, the moment matrix has a block Toeplitz structure.
Taking the natural nested basis, and taking the vector orthogonal polynomials together in groups of�

elements, we derive�×�matrix orthogonal polynomialŝPi , i=0,1, . . . of increasing degreei satisfying
the “matrix” orthogonality relationship

〈P̂i , P̂j 〉 = �ij I�

with 〈·, ·〉 defined in an obvious way based on the inner product of vector polynomials. Several other
properties of Section 1 can be generalized in the same way for vector and matrix orthogonal polynomials
[44–46].
Let us consider the following discrete inner product based on the pointszi ∈ C, i = 1,2, . . . , N and

the weights (vectors)Fi ∈ C�×1:

〈V,U〉 =
N∑
i=1

V (zi)
HFiF

H
i U(zi), with U,V ∈ ��

�n.

Note that this is a true inner product as long as there is no elementU from ��
�n such that〈U,U〉 = 0.

To find a recurrence relation for the vector orthogonal polynomials based on the natural nested basis for
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��
�n, we can solve the following inverse eigenvalue problem. Givenzi, Fi , i = 1,2, . . . , N , find the upper

triangular matrixR and the generalized Hessenberg matrixH such that

[QHF |QH�zQ] = [R|H ], (4.2)

where the right-hand side matrix has upper triangular structure, the rows of the matrixF are the weights
FH

i , the matrixQ is a unitaryN ×N matrix,�z is the diagonal matrix with the pointszi on the diagonal,
andR is aN × � matrix which is zero except for the upper� × � block which is the upper triangular
matrixR. Note that becauseH=[R|H ]

has the upper triangular structure,H is a generalizedHessenberg
matrix having� subdiagonals different from zero. Instead of the natural nested basis, we can take a more
complicated nested basis. In this case the matrix[R|H ] will still have the upper triangular structure, but
only after a column permutation.
The columns of the unitarymatrixQ are connected to the values of the corresponding vector orthogonal

polynomials�1,�2, . . . as follows

Qij = FH
i �j (zi), with i, j = 1,2, . . . , N.

Because the relation (4.2) gives us a recurrence for the columns ofQ, we get the corresponding recurrence
relation for the vector orthogonal polynomials�i :

hii�i(z)= ei −
i−1∑
j=1

hji hji�j (z), i = 1,2, . . . , �

= z�i−� −
i−1∑
j=1

hji hji�j (z), i = �+ 1, �+ 2, . . . , N,

wherehij is the(i, j)th element of the upper triangular (rectangular) matrixH .
Forzi arbitrary chosen in the complex plane, the previous inverse eigenvalue problem requires O(N3)

floating point operations. However, this computational complexity decreases by an order of magnitude
in the following two special cases.

(1) All the pointszi are real and the weights are real vectors
In this case, all computations can be done using real numbers. Hence, the matrixQ will also be real
(orthogonal). Therefore,H =QTZQ will be symmetric and becauseH is a generalized Hessenberg,
it will be a symmetric banded matrix with bandwidth 2�+1. Note that the recurrence relation for the
vector orthogonal polynomials only involves 2�+ 1 of these polynomials, i.e., for the special case of
�= 1, we obtain the classical 3-term recurrence relation.

(2) All the pointszi are on the unit circle
In this case,H is not only generalized Hessenberg but also unitary. In this case, the matrixH can be
written as a product of more simple unitary matricesGi :

H =G1G2 · · ·GN−�,

whereGi = Ii−1 ⊕Qi ⊕ IN−i−�−1 with Qi an� × � unitary matrix. When the inverse eigenvalue
problem is solved whereH is parameterized in terms of the unitary matricesQi , the computational
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complexity reduces to O(N2). The recurrence relation for the vector orthonormal polynomials turns
out to be a generalization of the classical Szeg˝o relation.

For more details on vector orthogonal polynomials with respect to a discrete inner product, we refer the
interested reader to[18,53,55]. These vector and/or matrix orthogonal polynomials can be applied in
system identification[19,42], to design fast and accurate algorithms to solve structured systems[54,56].

5. Multiple orthogonality and Hermite–Padé approximation

Hermite–Padé approximation is simultaneous rational approximation to a vector ofr functions
f1, f2, . . . , fr , which are all given as Taylor series around a pointa ∈ C and for which we require
interpolation conditions ata. We will restrict our attention to Hermite–Padé approximation around in-
finity and impose interpolation conditions at infinity. Certain polynomials which appear in this rational
approximation problem satisfy a number of orthogonality conditions with respect tor measures and
hence we call themmultiple orthogonal polynomials. These polynomials are one-variable polynomials
but the degree is a multi-index. A good source for information on Hermite–Padé approximation is the
book by Nikishin and Sorokin[40, Chapter 4], where the multiple orthogonal polynomials are called
polyorthogonal polynomials. Other good sources of information are the surveys byAptekarev[2] and de
Bruin [23].
Suppose we are givenr functions with Laurent expansions

fj (z)=
∞∑
k=0

ck,j

zk+1
, j = 1,2, . . . , r.

There are basically two different types of Hermite–Padé approximation. First we will need multi-indices
�n= (n1, n2, . . . , nr) ∈ Nr and their size|�n| = n1+ n2+ · · · + nr .

Definition 5.1 (Type I). Type I Hermite–Padé approximation to the vector(f1, . . . , fr) near infinity
consists of finding a vector of polynomials(A�n,1, . . . , A�n,r ) and a polynomialB�n, with A�n,j of degree
�nj − 1, such that

r∑
j=1

A�n,j (z)fj (z)− B�n(z)= O

(
1

z|�n|

)
, z→∞. (5.1)

In type I Hermite–Padé approximation one wants to approximate a linear combination (with poly-
nomial coefficients) of ther functions by a polynomial. This is often done for the vector of functions
f, f 2, . . . , f r , wheref is a given function. The solution of the equation

r∑
j=1

A�n,j (z)f̂ j (z)− B�n(z)= 0

is an algebraic function and then gives an algebraic approximantf̂ for the functionf .
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Definition 5.2 (Type II). Type II Hermite–Padé approximation to the vector(f1, . . . , fr) near infinity
consists of finding a polynomialP�n of degree� |�n| and polynomialsQ�n,j (j = 1,2, . . . , r) such that

P�n(z)f1(z)−Q�n,1(z)= O

(
1

zn1+1

)
, z→∞

... (5.2)

P�n(z)fr(z)−Q�n,r (z)= O

(
1

znr+1

)
, z→∞.

Type II Hermite–Padé approximation therefore corresponds to an approximation of each functionfj

separately by rational functionswith a common denominatorP�n. Combinations of type I and type II
Hermite–Padé approximation also are possible.

5.1. Orthogonality

When we considerr Markov functions

fj (z)=
∫ bj

aj

d�j (x)

z− x
, j = 1,2, . . . , r,

then Hermite–Padé approximation corresponds to certain orthogonality conditions.
First consider type I approximation. Multiply (5.1) byzk and integrate over a contour� encircling all

the intervals[aj , bj ] in the positive direction, then

1

2�i

∫
�

r∑
j=1

zkA�n,j (z)fj (z)dz− 1

2�i

∫
�
zkB�n(z)dz=

∞∑
-=|�n|

b-

1

2�i

∫
�
zk−- dz.

Clearly Cauchy’s theorem implies

1

2�i

∫
�
zkB�n(z)dz= 0.

Furthermore, there is only a contribution on the right-hand side when-= k+1, so whenk� |�n|−2, then
none of the terms in the infinite sum have a contribution. Therefore we see that

1

2�i

∫
�

r∑
j=1

zkA�n,j (z)fj (z)dz= 0, 0�k� |�n| − 2.

Now eachfj is a Markov function, so by changing the order of integration we get

1

2�i

∫
�
zkA�n,j (z)fj (z)dz=

∫ bj

aj

d�j (x)
1

2�i

∫
�

zkA�n,j (z)
z− x

dz.

Since� is a contour encircling[aj , bj ] we have that

1

2�i

∫
�

zkA�n,j (z)
z− x

dz= xkA�n,j (x),
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so that we get the following orthogonality conditions

r∑
j=1

∫ bj

aj

xkA�n,j (x)d�j (x)= 0, k = 0,1, . . . , |�n| − 2. (5.3)

These are|�n| − 1 linear and homogeneous equations for the|�n| coefficients of ther polynomialsA�n,j
(j = 1,2, . . . , r), so that we can determine these polynomials up to a multiplicative factor, provided that
the rank of the matrix in this system is|�n| − 1. If the solution is unique (up to a multiplicative factor),
then we say that�n is a normal index for type I. One can show that this is equivalent with the condition
that the degree of eachA�n,j is exactlynj −1.We call the vector(A�n,1, . . . , A�n,r ) themultiple orthogonal
polynomials of type Ifor (�1, . . . , �r ). Once the polynomial vector(A�n,1, . . . , A�n,r ) is determined, we
can also find the remaining polynomialB�n which is given by

B�n(z)=
r∑

j=1

∫ bj

aj

A�n,j (z)− A�n,j (x)
z− x

d�j (x). (5.4)

Indeed, with this definition ofB�n we have

r∑
j=1

A�n,j (z)fj (z)− B�n(z)=
r∑

j=1

∫ bj

aj

A�n,j (x)
z− x

d�j (x). (5.5)

If we use the expansion

1

z− x
=

∞∑
k=0

xk

zk+1
,

then the right-hand side is

∞∑
k=0

1

zk+1
r∑

j=1

∫ bj

aj

xkA�n,j (x)d�j (x),

and the orthogonality conditions (5.3) show that the sumoverk starts withk=|�n|−1, hence the right-hand
side isO(z−|�n|), which is the order given in the definition of type I Hermite–Padé approximation.
Next we consider type II approximation. Multiply (5.2) byzk and integrate over a contour� encircling

all the intervals[aj , bj ], then

1

2�i

∫
�
zkP�n(z)fj (z)dz− 1

2�i

∫
�
zkQ�n,j (z)dz=

∞∑
-=nj+1

b-

1

2�i

∫
�
zk−- dz.

Cauchy’s theorem gives

1

2�i

∫
�
zkQ�n,j (z)dz= 0,
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and on the right-hand side we only have a contribution when- = k + 1. So fork�nj − 1 none of the
terms in the infinite sum contribute. Hence

1

2�i

∫
�
zkP�n(z)fj (z)dz= 0, 0�k�nj − 1.

Interchanging the order of integration on the left-hand side gives the orthogonality conditions∫ b1

a1

xkP�n(x)d�1(x)= 0, k = 0,1, . . . , n1− 1,

... (5.6)∫ br

ar

xkP�n(x)d�r (x)= 0, k = 0,1, . . . , nr − 1.

This gives|�n| linear and homogeneous equations for the|�n| + 1 coefficients ofP�n, hence we can obtain
the polynomialP�n up to a multiplicative factor, provided the matrix of coefficients has rank|�n|. In that
case we call the index�n normal for type II. One can show that this is equivalent with the condition that
the degree ofP�n is exactly|�n|. We call this polynomialP�n themultiple orthogonal polynomial of type II
for (�1, . . . , �r ). Once the polynomialP�n is determined, we can obtain the polynomialsQ�n,j by

Q�n,j (z)=
∫ bj

aj

P�n(z)− P�n(x)
z− x

d�j (x). (5.7)

Indeed, with this expression forQ�n,j we have

P�n(z)fj (z)−Q�n,j (z)=
∫ bj

aj

P�n(x)
z− x

d�j (x), (5.8)

and if we expand 1/(z− x), then the right-hand side is of the form

∞∑
k=0

1

zk+1

∫ bj

aj

xkP�n(x)d�j (x)

and the orthogonality conditions (5.6) show that the infinite sumstarts atk=nj , which gives an expression
of O(z−nj−1), which is exactly what is required for type II Hermite–Padé approximation.

5.2. Angelesco systems

An interesting system of functions, which allows detailed analysis, was introduced by Angelesco[1]:

Definition 5.3. An Angelesco system(f1, f2, . . . , fr) consists ofr Markov functions for which the
intervals(aj , bj ) are pairwise disjoint.
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All multi-indices are normal for type II in an Angelesco system. We will prove this by showing that
the multiple orthogonal polynomialP�n has degree exactly equal to|�n|. In fact more is true, namely

Theorem 5.1. Suppose(f1, . . . , fr) is an Angelesco system with measures�j that have infinitely many
points in their support. ThenP�n hasnj simple zeros on(aj , bj ) for j = 1, . . . , r.

Proof. Let x1, . . . , xm be the sign changes ofP�n on (aj , bj ). Suppose thatm<nj and let�m(x)= (x −
x1) · · · (x− xm), thenP�n�m does not change sign on[aj , bj ]. Since the support of�j has infinitely many
points, we have∫ bj

aj

P�n(x)�m(x)d�j (x) �= 0.

However, the orthogonality (5.6) implies thatP�n is orthogonal to all polynomials of degree�nj −1 with
respect to the measure�j on [aj , bj ], so that the integral is zero. This contradiction implies thatm�nj ,
and henceP�n has at leastnj zeros on(aj , bj ). This holds for everyj , and since the intervals(aj , bj ) are
disjoint this gives at least|�n| zeros on the real line. But the degree ofP�n is � |�n|, henceP�n has exactly
nj simple zeros on(aj , bj ). �
The polynomialP�n can therefore be factored as

P�n(x)= qn1(x)qn2(x) · · · qnr (x),

where eachqnj
is a polynomial of degreenj with its zeros on(aj , bj ). The orthogonality (5.6) then gives∫ bj

aj

xk qnj
(x)

∏
i �=j

qni
(x)d�j (x)= 0, k = 0,1, . . . , nj − 1. (5.9)

The product
∏

i �=j qni
(x) does not change sign on(aj , bj ), hence (5.9) shows thatqnj

is an ordinary or-
thogonal polynomial of degreenj on the interval[aj , bj ]with respect to themeasure

∏
i �=j |qni

(x)|d�j (x).
The measure depends on the multi-index�n.

5.3. Algebraic Chebyshev systems

A Chebyshev system{�1, . . . ,�n} on [a, b] is a system ofn linearly independent functions such that
every linear combination

∑n
k=1ak�k has atmostn−1 zeros on[a, b]. This is equivalent with the condition

that

det


�1(x1) �1(x2) · · · �1(xn)

�2(x1) �2(x2) · · · �2(xn)
...

... · · · ...

�n(x1) �n(x2) · · · �n(xn)

 �= 0

for every choice ofn different pointsx1, . . . , xn ∈ [a, b]. Indeed, whenx1, . . . , xn are such that the
determinant is zero, then there is a linear combination of the rows that gives a zero row, but this means
that for this linear combination

∑n
k=1ak�k has zeros atx1, . . . , xn, givingn zeros, which is not allowed.
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Definition 5.4. A system(f1, . . . , fr) is an algebraic Chebyshev system (AT system) for the index�n if
eachfj is a Markov function on the same interval[a, b] with a measurewj(x)d�(x), where� has an
infinite support and thewj are such that

{w1, xw1, . . . , x
n1−1w1, w2, xw2, . . . , x

n2−1w2, . . . , wr, xwr, . . . , x
nr−1wr} (5.10)

is a Chebyshev system on[a, b].
Theorem 5.2. Suppose�n is a multi-index such that(f1, . . . , fr) is an AT system on[a, b] for every
index �m for whichmj �nj (1�j �r). ThenP�n has|�n| zeros on(a, b) and hence�n is a normal index for
type II.

Proof. Let x1, . . . , xm be the sign changes ofP�n on (a, b) and suppose thatm< |�n|. We can then find a
multi-index �m such that| �m|=m andmj �nj for every 1�j �r andmk <nk for some 1�k�r. Consider
the interpolation problem where we want to find a function

L(x)=
r∑

j=1
qj (x)wj (x),

whereqj is a polynomial of degreemj − 1 if j �= k andqk a polynomial of degreemk, that satisfies

L(xj )= 0, j = 1, ..., m,

L(x0)= 1, for some other pointx0 ∈ [a, b],
then this interpolation problem has a unique solution since this involves a Chebyshev system of basis
functions. The functionL has, by construction,m zeros and the Chebyshev system hasm + 1 basis
functions, soL can have at mostm zeros on[a, b] and each zero is a sign change. HenceP�nL does not
change sign on[a, b]. Since� has infinite support, we thus have∫ b

a

L(x)P�n(x)d�(x) �= 0.

But the orthogonality (5.6) gives∫ b

a

qj (x)P�n(x)wj (x)d�(x)= 0, j = 1,2, . . . , r

and this contradiction implies thatP�n has|�n| simple zeros on(a, b). �
We have a similar result for type I Hermite–Padé approximation:

Theorem 5.3. Suppose�n is a multi-index such that(f1, . . . , fr) is an AT system on[a, b] for every index
�m for whichmj �nj (1�j �r).Then

∑r
j=1A�n,jwj has|�n| −1 sign changes on(a, b) and�n is a normal

index for type I.

Proof. Let x1, . . . , xm be the sign changes of
∑r

j=1A�n,jwj on (a, b) and suppose thatm< |�n| − 1. Let
�m be the monic polynomial with these points as zeros, then�m

∑r
j=1A�n,jwj does not change sign on
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[a, b] and hence∫ b

a

�m(x)

r∑
j=1

A�n,j (x)wj (x)d�(x) �= 0.

But the orthogonality conditions (5.3) indicate that this integral is zero. This contradiction implies that
m� |�n| − 1. The sum

∑r
j=1A�n,jwj is a linear combination of the Chebyshev system (5.10), hence it has

at most|�n| − 1 zeros on[a, b]. Therefore we see thatm= |�n| − 1. To see that the index�n is normal for
type I, we assume that for somek with 1�k�r the degree ofA�n,k is less thannk−1. Then

∑r
j=1A�n,jwj

is a linear combination of the Chebyshev system (5.10) from which the functionxnk−1wk is removed.
This is still a Chebyshev system by assumption, and hence this linear combination has at most|�n| − 2
zeros on[a, b]. But this contradicts our previous observation that it has|�n| − 1 zeros. Therefore every
A�n,jhas degree exactlynj − 1, so that the index�n is normal. �

5.4. Nikishin systems

A special construction, suggested by Nikishin[41], gives an AT system that can be handled in some
detail. The construction is by induction. A Nikishin system of order 1 is a Markov functionf1,1 for
a measure�1 on the interval[a1, b1]. A Nikishin system of order 2 is a vector of Markov functions
(f1,2, f2,2) on [a2, b2] such that

f1,2(z)=
∫ b2

a2

d�2(x)

z− x
, f2,2(z)=

∫ b2

a2

f1,1(x)
d�2(x)

z− x
,

wheref1,1 is a Nikishin system of order 1 on[a1, b1] and(a1, b1) ∩ (a2, b2)= ∅. In general we have

Definition 5.5. A Nikishin system of orderr consists ofr Markov functions(f1,r , . . . , fr,r ) on
[ar, br ] such that

f1,r (z)=
∫ br

ar

d�r (x)

z− x
, (5.11)

fj,r (z)=
∫ br

ar

fj−1,r−1(x)
d�r (x)

z− x
, j = 2, . . . , r, (5.12)

where (f1,r−1, . . . , fr−1,r−1) is a Nikishin system of orderr − 1 on [ar−1, br−1] and (ar , br) ∩
(ar−1, br−1)= ∅.
For a Nikishin system of orderr one knows that the multi-indices�n with n1�n2� · · · �nr are normal

(the system is an AT-system for these indices), but it is an open problem whether every multi-index is
normal (forr >2; for r = 2 it has been proved that every multi-index is normal).
What can be said about type II Hermite–Padé approximation forr = 2? Recall (5.8) for the function

f1,2:

Pn1,n2(y)f1,2(y)−Qn1,n2;1(y)=
∫ b2

a2

Pn1,n2(x)

y − x
d�2(x).
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Multiply both sides byyk, with k�n1, then the right-hand side is∫ b2

a2

ykPn1,n2(x)

y − x
d�2(x)=

∫ b2

a2

(yk − xk)Pn1,n2(x)

y − x
d�2(x)+

∫ b2

a2

xkPn1,n2(x)

y − x
d�2(x).

Clearly(yk − xk)/(y − x) is a polynomial inx of degreek − 1�n1 − 1 hence the first integral on the
right vanishes because of the orthogonality (5.6). Integrate over the variabley ∈ [a1, b1] with respect to
the measure�1, then we find fork�n1∫ b1

a1

[Pn1,n2(y)f1,2(y)−Qn1,n2;1(y)]yk d�1(y)=
∫ b1

a1

∫ b2

a2

xkPn1,n2(x)

y − x
d�2(x)d�1(y).

Change the order of integration on the right-hand side, then∫ b1

a1

[Pn1,n2(y)f1,2(y)−Qn1,n2;1(y)]yk d�1(y)=−
∫ b2

a2

xkPn1,n2(x)f1,1(x)d�2(x)

and this is zero fork�n2 − 1. Hence ifn2�n1+ 1 then the expressionPn1,n2(y)f1,2(y)−Qn1,n2;1(y)
is orthogonal to all polynomials of degree�n2 − 1 on [a1, b1]. This implies thatPn1,n2(y)f1,2(y) −
Qn1,n2;1(y) has at leastn2 sign changes on(a1, b1) using an argument similar to what we have been using
earlier. LetRn2 be the monic polynomial withn2 of these zeros on(a1, b1), then[Pn1,n2(y)f1,2(y) −
Qn1,n2;1(y)]/Rn2(y) is an analytic function onC\[a2, b2], which has the representation

Pn1,n2(y)f1,2(y)−Qn1,n2;1(y)
Rn2(y)

= 1

Rn2(y)

∫ b2

a2

Pn1,n2(x)

y − x
d�2(x).

Multiply both sides byyk and integrate over a contour� encircling the interval[a2, b2] in the positive
direction, but with all the zeros ofRn2 outside�, then

1

2�i

∫
�
yk Pn1,n2(y)f1,2(y)−Qn1,n2;1(y)

Rn2(y)
dy = 1

2�i

∫
�

yk

Rn2(y)

Pn1,n2(x)

y − x
d�2(x)dy.

If we interchange the order of integration on the right-hand side and use Cauchy’s theorem, then this
gives the integral∫ b2

a2

xkPn1,n2(x)
d�2(x)

Rn2(x)
.

By the interpolation condition (5.2) the integrand on the left is of the orderO(yk−n1−n2−1), so if we use
Cauchy’s theorem for the exterior of�, then the integral vanishes fork�n1+ n2− 1. Hence we get∫ b2

a2

xkPn1,n2(x)
d�2(x)

Rn2(x)
= 0, k = 0,1, . . . , n1+ n2− 1. (5.13)

This shows thatPn1,n2 is an ordinary orthogonal polynomial on[a2, b2] with respect to the measure
d�2(x)/Rn2(x). Observe that(a1, b1) ∩ (a2, b2) = ∅ implies thatRn2 does not change sign on[a2, b2].



88 A. Bultheel et al. / Journal of Computational and Applied Mathematics 179 (2005) 57–95

Finally we have∫ b2

a2

P 2
n1,n2

(x)

y − x

d�2(x)

Rn2(x)
=

∫ b2

a2

Pn1,n2(x)
Pn1,n2(x)− Pn1,n2(y)

y − x

d�2(x)

Rn2(x)

+ Pn1,n2(y)

∫ b2

a2

Pn1,n2(x)

y − x

d�2(x)

Rn2(x)

=Pn1,n2(y)

∫ b2

a2

Pn1,n2(x)

y − x

d�2(x)

Rn2(x)
,

since[Pn1,n2(y) − Pn1,n2(x)]/(y − x) is a polynomial inx of degreen1 + n2 − 1 and because of the
orthogonality (5.13). Hence

Pn1,n2(y)f1,2(y)−Qn1,n2;1(y)=
Rn2(y)

Pn1,n2(y)

∫ b2

a2

P 2
n1,n2

(x)

y − x

d�2(x)

Rn2(x)
. (5.14)

Both sides of the equation have zeros at the zeros ofRn2, but there will not be any other zeros on[a1, b1]
since the integral on the right-hand side has constant sign.

5.5. Some applications

Many of the classical orthogonal polynomials have been extended to thismultiple orthogonality setting:
the Jacobi, Laguerre and Hermite polynomials have multiple extensions worked out in[3,34,49,50]. Dis-
cretemultiple orthogonal polynomials have been found in[4,43]. New special polynomials corresponding
to orthogonality measures involving Bessel functions were found in[20,52]. Many of the properties of the
classical orthogonal polynomials have nice extensions in this multiple orthogonality setting: there will
be a higher order linear recurrence relation, there are nice differential or difference properties, such as a
linear differential equation (of higher order) and Rodrigues-type formulas. The weak asymptotics (and
the asymptotic distribution of the zeros) has been worked out by means of an equilibrium problem for
vector potentials[31] and recently a matrix Riemann–Hilbert problem was found for multiple orthogonal
polynomials[51] which will be very useful for obtaining strong asymptotics, uniformly in the complex
plane.

5.5.1. Irrationality and transcendence
Hermite–Padé approximation finds its origin in number theory. Hermite’s proof of the transcendence

of e is based on Hermite–Padé approximation of(ex,e2x, . . . ,erx) at x = 0. Many proofs of irra-
tionality are also based on Hermite–Padé approximation, even though this is often not explicit in the
proof. Apéry’s proof that�(3) is irrational can be reduced to Hermite–Padé approximation to three
functions

f1(z)=
∫ 1

0

dx

z− x
, f2(z)=−

∫ 1

0
log x

dx

z− x
, f3(z)= 1

2

∫ 1

0
log2 x

dx

z− x
,
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which form an AT-system. The proof uses a mixture of types I and II Hermite–Padé approximation: find
polynomials(An, Bn) (both of degreen) and polynomialsCn andDn such that

An(1)= 0

An(z)f1(z)+ Bn(z)f2(z)− Cn(z)= O(1/zn+1), z→∞
An(z)f2(z)+ 2Bn(z)f3(z)−Dn(z)= O(1/zn+1), z→∞.

Observe thatf3(1)=�(3), hence if we evaluate the approximations atz=1, thenwe see that 2Bn(1)�(3)−
Dn(1) will be small andDn(1)/(2Bn(1)) is a good rational approximation to�(3). In fact, asymptotic
analysis of the error and of the denominatorBn(1) and some simple number theory show that this rational
approximation is better than order 1, which implies that�(3) is irrational. See[49] for details.
For another example we consider the two Markov functions

f1(z)=
∫ 1

0

dx

z− x
, f2(z)=

∫ 0

−1
dx

z− x
,

which form an Angelesco system. Some straightforward calculus gives

f1(i)=−1

2
log 2− i�

4
, f2(i)= 1

2
log 2− i�

4
,

hence the sum givesf1(i)+ f2(i)=−i�/2. The type II Hermite–Padé approximants forf1 andf2 will
give approximations to�. Recall that

Pn,n(z)f1(z)−Qn,n;1(z)=
∫ 1

0

Pn,n(x)

z− x
dx,

Pn,n(z)f2(z)−Qn,n;2(z)=
∫ 0

−1
Pn,n(x)

z− x
dx.

Summing both equations gives

Pnn(z)[f1(z)+ f2(z)] − [Qn,n;1(z)+Qn,n;2(z)] =
∫ 1

−1
Pn,n(x)

z− x
dx.

So the fact that we are using a common denominator comes in very handy here. Then we evaluate these
expressions atz = i and hope thatPn,n(i) andQn,n;1(i) +Qn,n;2(i) are (up to the factori) integers or
rational numbers with simple denominators. Asymptotic properties of the Hermite–Padé approximants
and the multiple orthogonal polynomials then gives useful quantitative information about the order of
rational approximation to�. For this particular case the type II multiple orthogonal polynomials are given
by a Rodrigues formula

Pn,n(x)= dn

dxn

(
xn(1− x2)n

)
,

and these polynomials are known as Legendre–Angelesco polynomials. They have been studied in detail
by Kalyagin[34] (see also[49]). The Rodrigues formula in fact simplifies the asymptotic analysis, since
integration by parts now gives∫ 1

−1
Pn,n(x)

z− x
dx =

∫ 1

−1
(−1)nn!x

n(1− x2)n

(z− x)n+1
dx,
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which can be handled easily. Some trial and error shows that one gets better results by taking 2n instead
of n, and by differentiatingn times extra:

r
dn

dzn
(
P2n,2n(z)[f1(z)+ f2(z)] − [Q2n,2n;1(z)+Q2n,2n;2(z)]

)
z=i

= (3n)!(−i)n+1
∫ 1

−1
x2n(1− x2)2n

(1+ ix)3n+1
dx. (5.15)

This gives rational approximants to� of the form

�= bn

ancn
+ Kn

an

,

wherean, bn, cn are explicitly known integers andKn is the integral on the right-hand side of (5.15). The
rational approximants show that� is irrational (which was shown already in 1761 by Lambert), but they
even show that you cannot approximate� by rational at order greater than 23.271 (Beukers[9]). This
upper bound for the order of approximation can be reduced to 8.02 (Hata[32]) by considering Markov
functionsf1 andf3, with

f3(z)=
∫ 0

−i

dx

z− x
.

Thisf3 is now over a complex interval, and then Theorem 5.1 about the location of the zeros no longer
holds, and the asymptotic behavior will have to be handled by another method.

5.5.2. Random matrices
Multiple orthogonal polynomials appear in certain problems in the theory of random matrices. The

connection between eigenvalues of random matrices and orthogonal polynomials is well known: if we
define a matrix ensemble by giving the joint probability density function for its eigenvalues as

P(x1, . . . , xN)=
N∏
i=1

f (xi)
∏

1� i<j �N

(xi − xj )
2,

then the eigenvalues density�N is given by

�n(x)=
∫ ∞

−∞
· · ·

∫ ∞

−∞
P(x, x2, . . . , xN)dx2 · · ·dxN = 1

N

N−1∑
j=0

p2
j (x),

where thepn are theorthonormal polynomialswithweight functionf . Furthermore then-point correlation
function is given in terms of the Christoffel–Darboux kernel

N−1∑
j=0

pj (x)pj (y).

(see, e.g.,[37, Section 19.3]). The Gaussian unitary ensemble corresponds to Hermite polynomials.
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Recently a random matrix ensemble with an external source was considered by Brézin and Hikami
[12] and Zinn-Justin[62]. The joint probability density function of the matrix elements of the random
Hermitian matrixM is of the form

1

ZN

e−Tr(M2−AM) dM,

whereA is a fixedN × N Hermitian matrix (the external source). Bleher and Kuijlaars[10] observed
that the average characteristic polynomialPN(z)=E[det(zI −M)] can be characterized by the property∫ ∞

−∞
PN(x)xke−(x2−aj x) dx = 0, k = 0,1, . . . , Nj − 1,

whereNj is themultiplicity of theeigenvalueaj ofA.Thismeans thatPN is amultipleHermitepolynomial
of type II with multi-index(N1, . . . , Nr)whenA hasr distinct eigenvaluesa1, . . . , ar with multiplicities
N1, . . . , Nr respectively. These multiple Hermite polynomials were investigated in[3]. The eigenvalue
correlations and the eigenvalue density can be written in terms of the kernel

N−1∑
k=0

Pk(x)Qk(y),

where theQk are basically the type I multiple Hermite polynomials and thePk are the type II multiple
Hermite polynomials. The asymptotic analysis of the eigenvalues and their correlations and universality
questions can therefore be handled using asymptotic analysis of multiple Hermite polynomials.
Another application is in the theory of coupled random matrices[25,26,35]. The two-matrix model

deals with pairs of random matrices(M1,M2) which are bothN × N Hermitian matrices with joint
density function

1

ZN

e−Tr(M4
1+M4

2−
M1M2) dM1 dM2.

The statistical relevant quantities for the eigenvalues ofM1 andM2 can be expressed in terms of biorthog-
onal polynomialspk andqk which satisfy∫ ∞

−∞

∫ ∞

−∞
pk(x)qj (y)e

−x4−y4+
xy dx dy = �k,j . (5.16)

Due to the symmetry we have thatpk = qk. Consider the functions

wk(y)=
∫ ∞

−∞
xke−x4+
xy dx,

then a simple integration by parts shows that

wk+3(y)= k

4
wk−1(y)− 
y

4
wk(y),
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so that eachwk is a linear combination ofw0, w1, w2 with polynomial coefficients, in particular

w3k(y)= ak(y)w0(y)+ bk−1(y)w1(y)+ ck−1(y)w2(y),

w3k+1(y)= âk(y)w0(y)+ b̂k(y)w1(y)+ ĉk−1(y)w2(y),

w3k+2(y)= ãk(y)w0(y)+ b̃k(y)w1(y)+ c̃k(y)w2(y),

whereak, âk, ãk, bk, b̂k, b̃k, ck, ĉk, c̃k are polynomials of degreek. This means that

Qn(y)=
∫ ∞

−∞
pj (y)e

−x4+
xy dx

is a linear combination ofw0, w1, w2 with polynomials coefficients, in particular

Q3n(y)= An(y)w0(y)+ Bn−1(y)w1(y)+ Cn−1(y)w2(y),

Q3n+1(y)= Ân(y)w0(y)+ B̂n(y)w1(y)+ Ĉn−1(y)w2(y),

Q3n+2(y)= Ãn(y)w0(y)+ B̃n(y)w1(y)+ C̃n(y)w2(y).

It turnsout that(An, Bn−1, Cn−1), (Ân, B̂n, Ĉn−1), and(Ãn, B̃n, C̃n)aremultiple orthogonal polynomials
of type I for the densities e−x4w0(x),e−x4w1(x),e−x4w2(x)with multi-indices(n+1, n, n), (n+1, n+
1, n) and(n+1, n+1, n+1) respectively, andp3n,p3n+1 andp3n+2 aremultiple orthogonal polynomials
of type II with multi-indices(n, n, n), (n + 1, n, n) and (n + 1, n + 1, n) respectively. The multiple
orthogonality conditions (5.3) and (5.6) then lead to the biorthogonality (5.16). Note thatw0 andw2 are
positive densities butw1 changes sign at the origin.

5.5.3. Simultaneous Gauss quadrature
In a number of applications we need to approximate several integrals of the same function, but with

respect to different measures. The following example comes from[11]. Suppose thatg is the spectral
distribution of light in the direction of the observer andw1, w2, w3 are weight functions describing the
profiles for red, green and blue light. Then the integrals∫

g(x)w1(x)dx,
∫

g(x)w2(x)dx,
∫

g(x)w3(x)dx

give the amount of light after passing through the filters for red, green and blue. In this case we need to
approximate three integrals of the same functiong. We would like to use as few function evaluations as
possible, but the integrals should be accurate for polynomialsg of degree as high as possible. If we use
Gauss quadrature withn nodes for each integral, then we require 3n function evaluations and all integrals
will be correct for polynomials of degree�2n− 1 (a space of dimension 2n). This gives an efficiency of
2
3. In fact, with 3n function evaluations we can double the efficiency and the dimension of the space in
which the formula is exact. Consider the Markov functions

fj (z)=
∫ b

a

wj (x)dx

z− x
, j = 1,2,3

and the type II Hermite–Padé approximation problem

fj (z)− Qn,n,n;j (z)
Pn,n,n(z)

= O(z−4n−1), z→∞.
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Now we can multiply by a polynomial�4n−1 of degree at most 4n− 1, and integrate along a contour�
encircling[a, b] in the positive direction, to obtain∫ b

a

�4n−1(x)wj (x)dx =
3n∑
k=1

�k,n;j g(xk,n), j = 1,2,3, (5.17)

wherexk,n are the zeros ofPn,n,n and�k,n;j are the residues ofQn,n,n;j /Pn,n,n at the zeroxk,n:

�k,n;j = Qn,n,n;j (xk,n)

P ′n,n,n(xk,n)
.

Therefore the three integrals will be evaluated exactly by the three sums in (5.17) for polynomials of
degree�4n − 1 (a space of dimension 4n), giving an efficiency of 4/3. The convergence is somewhat
more difficult to handle, since we do not have a general result that the quadrature coefficients�k,n;j are
positive. The positivity has to be investigated separately for Angelesco and Nikishin systems.
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