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Abstract

In this paper, we characterize the d-orthogonal polynomial sets given by their explicit expressions in a specific basis. As appli-
cation, we consider the generalized hypergeometric case to characterize d-orthogonal polynomial sets of Laguerre type, Meixner
type, Meixner–Pollaczek type, Krawtchouk type, continuous dual Hahn type, and dual Hahn type. For d = 1, we obtain a unification
of some characterization theorems in the orthogonal polynomials theory.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Over the past few years, there has been a growing interest in multiple orthogonal polynomials (see, for instance,
[4–7,32–34]). This notion has many applications in various domains of mathematics as analytic number theory, ap-
proximation theory, special functions theory, and spectral theory of operators (see, for instance, [20]). A convenient
framework to discuss explicit examples consists of considering a subclass of multiple orthogonal polynomials known
as d-orthogonal polynomials, introduced by Van Iseghem [35] and completed by Maroni [29] as follows.

Let P be the linear space of polynomials with complex coefficients and let P ′ be its algebraic dual. A polynomial
sequence {Pn}n�0 in P is called a polynomial set (PS, for short) if and only if degPn = n for all non-negative integer n.
We denote by 〈u,f 〉 the effect of the linear functional u ∈ P ′ on the polynomial f ∈P and by (u)n := 〈u,xn〉, n � 0,
the moments of u. Let {Pn}n�0 be a PS in P . The corresponding dual sequence (un)n�0 is defined by

〈un,Pm〉 = δn,m, n,m = 0,1, . . . ,

δn,m being the Kronecker symbol.
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Definition 1.1. (See Maroni [29] and Van Iseghem [35].) Let d be a positive integer and let {Pn}n�0 be a PS in P .
{Pn}n�0 is called a d-orthogonal PS (d-OPS, for short) with respect to the d-dimensional functional vector U =
t (u0, u1, . . . , ud−1) if it satisfies the following conditions:{ 〈uk,PmPn〉 = 0, m > nd + k, n � 0,

〈uk,PnPnd+k〉 �= 0, n � 0,
(1.1)

for each integer k ∈ {0,1, . . . , d − 1}.

For the particular case d = 1, we meet the well-known notion of orthogonality. Maroni [29] showed that the
conditions (1.1) are equivalent to the fact that the polynomials Pn, n � 0, satisfy a (d + 1)-order recurrence relation
of the type

xPn(x) =
d+1∑
k=0

αk,d(n)Pn−d+k(x), (1.2)

where αd+1,d (n)α0,d (n) �= 0, n � d, and by convention, P−n = 0, n � 1.
This result, for d = 1, is reduced to the so-called Favard Theorem [19]. It was used to give several characterization

theorems for d-OPS (see, for instance, [8–11,13–16,21–25]). This tool will be used in this paper to state other char-
acterization theorems related to polynomials given by their explicit expansion in a specific basis. As application we
solve some characterization problems associated with generalized hypergeometric polynomials.

The generalized hypergeometric functions are defined by (see, for instance, [28])

pFq

(
(αp)

(βq)
; z

)
=

∞∑
m=0

[αp]m
[βq ]m

zm

m! , (1.3)

where

• p and q are positive integers or zeros,
• z is a complex variable,
• (αp) designates the set {α1, α2, . . . , αp},
• (α)k is the Pochhammer’s symbol given by

(α)0 = 1, (α)k = α(α + 1) · · · (α + k − 1), k = 1,2,3, . . . ,

• the numerator parameters α1, . . . , αp and the denominator parameters β1, . . . , βq take on complex values, βj ,
j = 1, . . . , q , being non-negative integers,

• [αr ]k = ∏r
i=1(αi)k . By convention, a product over the empty set is 1.

Thus, if a numerator parameter is a negative integer or zero, the pFq series terminates and we are led to a gener-
alized hypergeometric polynomial. Many known orthogonal polynomials {Pn}n�0 have generalized hypergeometric
representation of the form

Pn

(
λ(x); c, (αp), (βq)

) = 1+s+pFq

(
−n, (λs(x)), (αp)

(βq)
; 1

c

)
, (1.4)

where λi(x), i = 1, . . . , s, are polynomials of degree one not depending on n and λ(x) = ∏s
i=1 λi(x).

If one of the βj is equal to a negative integer, the corresponding sequence is finite.
The generalized hypergeometric polynomials (1.4) contain the OPSs given by Askey Scheme [27] and for which

only one numerator parameter depends on n. That means: Laguerre, Meixner, Meixner–Pollaczek, continuous dual
Hahn, dual Hahn and Krawtchouk polynomials. The last two ones correspond to finite sequences.

As far as we know, the only known d-OPS, d > 1, of type (1.4) corresponds to s = 0, p = 0 and q = d . That is
a generalization of Laguerre polynomials, recently studied by the first author and Douak [8,10,11], Van Assche and
Coussement [33] and Van Assche and Yakubovich [34].
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The purpose of the paper is to state some conditions on the involved parameters in (1.4) to ensure the d-
orthogonality of the corresponding PSs. This will lead us to obtain new generalized hypergeometric d-OPSs in Special
Functions Theory.

The structure of the paper is as follows. In Section 2, we set and solve a d-Geronimus problem which consists to
find necessary and sufficient conditions on coefficients, in a suitable basis, of a PS to be d-OPS. The obtained result
is used in Section 3 to solve a characterization problem related to (1.4). We derive 2(d + 1) classes of d-OPSs having
generalized hypergeometric representation of type (1.4), that generalize in particular, Laguerre, Meixner, Charlier,
Meixner–Pollaczek, continuous dual Hahn, Krawtchouk, dual Hahn families. The six 2-OPSs of type (1.4) were
enumerated. The finite sequences obtained in this section seem to be the first finite ones introduced in the d-orthogonal
polynomials theory. In Section 4, we discuss some questions to be treated, related to the obtained polynomials as well
as to the method used in this paper.

2. A d-Geronimus problem type

A characterization problem consists to find all d-OPSs {Pn}n�0 satisfying a fixed property. When this property
is related to the explicit expression of Pn in certain basis, the corresponding characterization problem will be called
d-Geronimus problem type. More precisely, let us consider polynomial sequences {Pn}n�0 of the form

Pn(x) =
n∑

k=0

γn(k)

k−1∏
r=0

(x − xr), (2.1)

where the empty product is 1, γn(k) is independent of x and {xn = f (n)}n�0 is an arbitrary complex numbers se-
quence. A d-Geronimus problem type consists to characterize all d-OPSs {Pn}n�0 which take the form (2.1) for fixed
conditions on {γn(k)}n�0,0�k�n and {xn}n�0. This appellation is justified by the fact that Geronimus [26] was the first
to pose this problem for d = 1 and γn(k) = an−kbk where {an}n�0 and {bn}n�0 are two arbitrary complex sequences
such that bn �= 0, n � 0. He gave necessary and sufficient conditions on the sequences {an}, {bn} and {xn} for which
{Pn}n�0 is an OPS, but to identify such PS {Pn}n�0 more conditions, on the function f for instance, are required.
Some special cases are known: The case f ≡ 0 corresponds to Brenke PS. It has been completely solved by Chihara
[17,18]. The cases f (x) = a + b cosπx and f (x) = aqx were also treated by Al-Salam and Verma [2,3].

Recently, some d-Geronimus problem types, d � 1, were considered in [8,12,14,21,37], for f ≡ 0 and f (x) = ax

with various conditions on γn(k). In this section, we consider the case where the function f is a polynomial and the
coefficients γn(k) satisfy: the quotient γn(k+1)

γn(k)
is a rational function in k of the type (2.3) below. Such conditions on f

and γn(k) appear if we use (1.3) to rewrite (1.4) (with an additional condition on λi ; 1 � i � s) under the form (2.1)
(see the proof of Theorem 3.3 below).

In this paper, we will show that many characterization theorems for orthogonal generalized hypergeometric poly-
nomials may be deduced from the solution of this d-Geronimus problem for d = 1.

2.1. Necessary and sufficient conditions

Throughout this paper, we will use the following notations:

• d being a positive integer.
• π being a polynomial defined by π(x) = ∑degπ

k=1 akx
[k], where x[k] denotes the falling factorial polynomials given

by

x[0] = 1 and x[k] := k!
(

x

k

)
= x(x − 1) · · · (x − k + 1), k = 1,2, . . . .

• N = {0,1, . . .} being the set of non-negative integers.
• C being the set of complex numbers.
• B = {Bk}k�0 designates the basis in P given by

B0(x) = 1 and Bk(x) =
k−1∏(

x + π(r)
)
, k = 1,2, . . . .
r=0
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Let us consider the PS {Pn}n�0 of the form

Pn(x) =
n∑

k=0

γn(k)Bk(x), (2.2)

where

γn(k + 1)

γn(k)
= (−n + k)

(k + 1)

N(k)

cD(k)
, γn(0) = 1, k � n − 1, (2.3)

D(x) = ∑degD

r=0 brx
[r] and N being two monic coprime polynomials with non-positive integer roots, and c is a non-

zero complex number.
By convention, we put γn(k) = 0, k > n.
These polynomials verify the following property.

Lemma 2.1. The polynomial Pn defined by (2.2) satisfies the following relations:

Pn(x) =
n∑

k=0

n[k]AkBk(x) (2.4)

and

xPn(x) =
n+1∑
k=1

(
−ck

D(k − 1)

N(k − 1)
n[k−1] − π(k)n[k]

)
AkBk(x), (2.5)

where

A0 = 1, Ak = (−1)k

ckk!
k−1∏
r=0

N(r)

D(r)
, k � 1. (2.6)

Proof. From (2.3) and (2.6), it is easy to check that γn(k) = n[k]Ak , k = 0,1, . . . , n.
Substituting this identity in (2.2), we get (2.4).
Consequently

xPn(x) =
n∑

k=0

n[k]AkxBk(x).

Since Bk+1(x) = (x + π(k))Bk(x), we deduce

xPn(x) =
n∑

k=0

n[k]AkBk+1(x) −
n∑

k=0

n[k]Akπ(k)Bk(x).

On the other hand, we have π(0) = 0 and n[n+1] = 0. Then, to derive (2.5), we write

xPn(x) =
n+1∑
k=1

n[k−1]Ak−1Bk(x) −
n+1∑
k=1

n[k]Akπ(k)Bk(x)

=
n+1∑
k=1

(
−ck

D(k − 1)

N(k − 1)
n[k−1] − π(k)n[k]

)
AkBk(x). �

A d-Geronimus type problem may be set as follows:

(P) Find necessary and sufficient conditions on N , D, π and c ensuring the d-orthogonality of the polynomials given
by (2.2).

As a solution to this problem, we obtain the following theorem.
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Theorem 2.2. The only d-OPSs defined by (2.2) arise for N = 1 in the following cases.

Case I: degπ < degD = d .
Case II: degD < degπ = d .

Case III: degD = degπ = d , c �= ad .
Case IV: degD = degπ = d + 1, c = ad+1 and ad

c
− bd /∈ N.

Until now, we suppose that D has non-positive integer roots. If we remove this hypothesis by considering the case
where D has at least one positive integer root, say n0 the least one. The corresponding sequence is finite, that is
{Pn}n=n0

n=0 ,

Pn(x) =
n∑

k=0

γn(k)Bk(x), n = 0,1, . . . , n0, (2.7)

where

γn(k + 1)

γn(k)
= (−n + k)

(k + 1)

N(k)

cD(k)
, γn(0) = 1, n = 0,1, . . . , n0, k = 0, . . . , n − 1,

D(x) = (x − n0)D1(x), D1(k) �= 0, k = 0, . . . , n0 − 1,

and max(degD,d + degN,degπ + degN) � n0 − 1.
We derive the following corollary.

Corollary 2.3. The only d-OPSs defined by (2.7) arise for N = 1 in the following cases.

Case A: degπ < degD = d .
Case B: degD < degπ = d .
Case C: degD = degπ = d , c �= ad .
Case D: degD = degπ = d + 1, c = ad+1 and ad

c
− bd /∈ {0,1, . . . , n0 − d − 1}.

2.2. Proof of Theorem 2.2

To prove Theorem 2.2, we need the following three lemmas.

Lemma 2.4. Let L(x) = ∑degL

r=0 b′
rx

[r] be a polynomial. Put m = max(degπ,degL) and let c be a non-zero complex
number. Put

α′
j,m(n) = (−1)m−j

m∑
r=m−j

[
c

(
r + 1

m − j + 1

)
b′
r −

(
r

m − j

)
ar

]
n[r], j = 0,1, . . . ,m, (2.8)

and

α′
m+1,m(n) = −cL(n), (2.9)

with b′
j = 0 if degL < j � m, and aj = 0 if degπ < j � m.

Then

−ckL(k − 1)n[k−1] − π(k)n[k] =
m+1∑
r=0

α′
r,m(n)(n − m + r)[k], k ∈ N

∗, n ∈ N, (2.10)

and

m+1∑
r=0

α′
r,m(n) = 0, n ∈ N. (2.11)
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Proof. The use of the following identities:

k[r]x[k] = x[r]�r(x − r)[k], r ∈ N, k � 1, x ∈ C,

�r(x − r)[k] =
r∑

j=0

(
r

j

)
(−1)j (x − j)[k],

where �(P )(x) = P(x + 1) − P(x), leads to

π(k)x[k] =
m∑

r=0

ark
[r]x[k]

=
m∑

r=0

arx
[r]

r∑
j=0

(−1)j
(

r

j

)
(x − j)[k]

=
m∑

j=0

(−1)j

(
m∑

r=j

(
r

j

)
arx

[r]
)

(x − j)[k]

=
m∑

j=0

(−1)m−j (x − m + j)[k]
m∑

r=m−j

(
r

m − j

)
arx

[r].

On the other hand, using the following transformation:

k(k − 1)[r]x[k−1] = x[r]�r+1(x − r)[k], r ∈ N, k � 1, x ∈ C,

we obtain

ckL(k − 1)x[k−1] =
m∑

r=0

cb′
rk(k − 1)[r]x[k−1]

=
m∑

r=0

b′
rx

[r]
r+1∑
j=0

c(−1)j
(

r + 1

j

)
(x + 1 − j)[k]

= cL(x)(x + 1)[k] +
m+1∑
j=1

c(−1)j (x + 1 − j)[k]
m∑

r=j−1

(
r + 1

j

)
b′
rx

[r]

= cL(x)(x + 1)[k] +
m∑

j=0

c(−1)m−j+1(x − m + j)[k]
m∑

r=m−j

(
r + 1

m + 1 − j

)
b′
rx

[r].

It follows that

−ckL(k − 1)x[k−1] − π(k)x[k]

= −cL(x)(x + 1)[k] +
m∑

j=0

(−1)m−j (x − m + j)[k]
m∑

r=m−j

(
c

(
r + 1

m + 1 − j

)
b′
r −

(
r

m − j

)
ar

)
x[r]. (2.12)

Now, we put x = n in (2.12) to obtain (2.10).
From (2.8), we have

m∑
j=0

α′
j,m(n) =

m∑
j=0

(−1)m−j
m∑

r=m−j

[
c

(
r + 1

m − j + 1

)
b′
r −

(
r

m − j

)
ar

]
n[r]

=
m∑

(−1)j
m∑[

c

(
r + 1

j + 1

)
b′
r −

(
r

j

)
ar

]
n[r]
j=0 r=j
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=
m∑

r=0

r∑
j=0

(−1)j
[
c

(
r + 1

j + 1

)
b′
r −

(
r

j

)
ar

]
n[r]

=
m∑

r=0

(
r∑

j=0

(−1)j
(

r + 1

j + 1

))
cb′

rn
[r] −

m∑
r=0

(
r∑

j=0

(−1)j
(

r

j

))
arn

[r].

That, by virtue of the following identities:
r∑

j=0

(−1)j
(

r + 1

j + 1

)
= 1,

r∑
j=0

(−1)j
(

r

j

)
= 0,

leads to
∑m

j=0 α′
j,m(n) = cL(n) = −α′

m+1,m(n). From which, we deduce (2.11). �
Remark 2.5. From the identity (2.8), we deduce

• α′
0,m(n) �= 0, n � m, if cb′

m − am �= 0,
• α′

0,m(n) = 0, n ∈ N, if cb′
m − am = 0. In this case we have α′

1,m(n) �= 0, n � m − 1 iff am−1
c

− b′
m−1 /∈ N.

Lemma 2.6. Let Pn be a polynomial defined by (2.2) with N = 1. Put m = max(degπ,degD).
Then the PS {Pn}n�0 satisfies the following recurrence relation:

xPn(x) =
m+1∑
j=0

α′
j,m(n)Pn−m+j (x), (2.13)

where the coefficients α′
j,m(n) are defined by (2.8) and (2.9), and by convention P−n = 0, n � 1.

Proof. From Lemma 2.1, with N = 1, we have

xPn(x) =
n+1∑
k=1

(−ckD(k − 1)n[k−1] − π(k)n[k])CkBk(x),

where

C0 = 1, Ck = (−1)k

ckk!
k−1∏
r=0

1

D(r)
, k � 1. (2.14)

Using (2.10) with L = D, we obtain

xPn(x) =
n+1∑
k=1

(
m+1∑
j=0

α′
j,m(n)(n − m + j)[k]

)
CkBk(x)

=
m+1∑
j=0

α′
j,m(n)

(
n+1∑
k=0

(n − m + j)[k]CkBk(x)

)

=
m+1∑
j=0

α′
j,m(n)Pn−m+j (x). �

Lemma 2.7. Let Pn be a polynomial defined by (2.2) with N = 1. Put m = max(degπ,degD) and D(x) =∑m
r=0 brx

[r] where bj = 0 if j > degD. Then {Pn}n�0 is r-OPS with r ∈ {m,m − 1}.
Moreover

1. {Pn}n�0 is m-OPS if cbm − am �= 0.

2. {Pn}n�0 is (m − 1)-OPS if cbm − am = 0 and am−1 − bm−1 /∈ N, m � 2.

c
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Proof. From Lemmas 2.4–2.6, we deduce that the sequence {Pn}n�0 satisfies the following recurrence relation:

xPn(x) =
m+1∑
j=0

α′
j,m(n)Pn−m+j (x), (2.15)

where

α′
0,m(n) = (−1)m(cbm − am)n[m],

α′
1,m(n) = (−1)m−1[(m(cbm − am) + cbm

)
(n − m + 1) + cbm−1 − am−1

]
n[m−1],

α′
m+1,m(n) = −cD(n) �= 0.

From Remark 2.5, we deduce that: if cbm − am �= 0, then α′
0,m(n) �= 0, for n � m, α′

m+1,m(n) �= 0. Moreover, the
PS {Pn}n�0 satisfies the recurrence relation (2.15). Then, in view of (1.2), we conclude that {Pn}n�0 is m-OPS. For
cbm − am = 0 and am−1

c
− bm−1 /∈ N, the identity (2.15) leads to

xPn(x) =
m∑

j=0

α′
j+1,m(n)Pn−m+j+1(x), α′

1,m(n)α′
m+1,m(n) �= 0, n � m − 1.

Then, using (1.2), we deduce that {Pn}n�0 is (m − 1)-OPS. �
Remark 2.8. From Lemma 2.7, it follows that if Pn is a polynomial defined by (2.2) with N = 1 and {Pn}n�0 is
d-OPS, then max(degπ,degD) ∈ {d, d + 1}, moreover, if degπ �= degD, then max(degπ,degD) = d .

Proof of Theorem 2.2. If {Pn}n�0 is a d-OPS of type (2.2), then it satisfies the condition (1.2). For n � d , replace
in (1.2) xPn and Pn−d+k by their explicit expressions given, respectively, by (2.5) and (2.4), to obtain

n+1∑
k=0

(
−ck

D(k − 1)

N(k − 1)
n[k−1] − π(k)n[k]

)
AkBk(x) =

n+1∑
k=0

(
d+1∑
r=0

αr,d(n)(n − d + r)[k]
)

AkBk(x). (2.16)

By identification and using the identity (−x)[k] = (−1)k(x)k we get, for n � d ,

d+1∑
r=0

αr,d(n) = 0,

ck
D(k − 1)

N(k − 1)
(−n)k−1 − π(k)(−n)k =

d+1∑
r=0

αr,d(n)(−n + d − r)k, 1 � k � n + 1. (2.17)

Substituting in (2.17) the following identities:

(−n)k−1 =
{

(−n)d
(−n−1+k)d+1−k

if 1 � k � d + 1,

(−n)d(−n + d)k−d−1 if d + 1 � k � n + 1,

and

(−n + d − r)k =
{

(−n−1+k)d+1−r (−n+d−r)r
(−n−1+k)d+1−k

if 1 � k � d + 1,

(−n + d − r)r (−n + d)k−1−d(−n − 1 + k)d+1−r if d + 1 � k � n + 1,

multiplying both sides of the obtained expression by

ε(n, d, k) =
{

(−n − 1 + k)d+1−k if 1 � k � d + 1,
1

(−n+d)k−d−1
if d + 1 � k � n + 1,

we get, for 1 � k � n + 1,
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ck(−n)d
D(k − 1)

N(k − 1)
− (−n)dπ(k)(−n − 1 + k) =

d+1∑
r=0

αr,d(n)(−n + d − r)r (−n − 1 + k)d+1−r . (2.18)

Put Qn,d(x) = ∑d+1
r=0 αr,d(n)(−n+d − r)r (−n− 1 +x)d+1−r . It is easy to verify that Qn,d is a polynomial of degree

d + 1 and Qn,d(0) = 0.
Then the identity (2.18) can be rewritten under the form

cD(k − 1) − N(k − 1)

[
(−n − 1 + k)

π(k)

k
+ Qn,d(k)

(−n)dk

]
= 0, k = 1, . . . , n + 1. (2.19)

Put Rn,d(x) = cD(x − 1) − N(x − 1)[(−n − 1 + x)
π(x)

x
− Qn,d (x)

(−n)dx
]. Since π(0) = Qn,d(0) = 0, Rn,d is a polynomial

in x of degree less or equal to max(degD,degπ + degN,d + degN), not depending on n. Let n � max(d,degRn,d)

for the general case and n = n0 − 1 for the finite case. From (2.19), we deduce that Rn,d has n + 1 roots, namely
x = 1, . . . , n + 1. So Rn,d ≡ 0 and consequently D

N
is a polynomial. But D and N are coprime. Then N(x) = 1 for all

x ∈ C. As {Pn}n�0 is a d-OPS, by Lemma 2.7 max(degπ,degD) ∈ {d, d + 1} and degD � max(degπ,d).
That leads us to the following three cases:

1. degπ < d : For this case degD = d . Otherwise, according to Remark 2.8, {Pn}n�0 will not be a d-OPS.

2. degπ = d : For this case degD � d . But if degD = d , we have, according to Lemma 2.7, the additional condition
ad �= c.

3. degπ = d + 1: For this case, according to Lemma 2.7 and Remark 2.8, degD = d + 1 with the additional condi-
tions c = ad+1 and ad

c
− bd /∈ N. Otherwise {Pn}n�0 will not be a d-OPS.

From which we deduce the four cases described by Theorem 2.2.
To show the converse, we suppose N = 1 and we consider the following cases.

Case I: degπ < degD = d . In this case we have d = max(degπ,degD), ad = 0 and bd = 1. That leads to
cbd − ad �= 0. Using Lemma 2.7 we deduce that {Pn}n�0 is a d-OPS.

Case II: degD < degπ = d . In this case we have d = max(degπ,degD), ad �= 0 and bd = 0. That leads to
cbd − ad �= 0. Using Lemma 2.7 we deduce that {Pn}n�0 is a d-OPS.

Case III: degD = degπ = d , c �= ad . In this case we have cbd − ad �= 0. Using Lemma 2.7 we deduce that {Pn}n�0

is a d-OPS.
Case IV: degD = degπ = d + 1, c = ad+1 and ad

c
− bd /∈ N. Using Lemma 2.7 we deduce that {Pn}n�0 is a

d-OPS. �
2.3. Characterization of OPSs defined by (2.2)

Corollary 2.9. A PS {Pn}n�0 defined by (2.2) is an OPS if and only if it is one of the following:

(a) a Laguerre PS

Pn(x;β, c) = 1F1

(
−n

β
; x

c

)
, (2.20)

(b) a Charlier PS type

Pn(x;w,c) =
n∑

k=0

(−n)k

k!ck

k−1∏
r=0

(x + wr), w �= 0, (2.21)
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(c) a Meixner PS type

Pn(x;β,w, c) =
n∑

k=0

(−n)k

k!ck(β)k

k−1∏
r=0

(x + wr), w �= 0, w �= c, (2.22)

(d) a continuous dual Hahn PS type

Pn

(
x; (β2), c, a1

) =
n∑

k=0

(−n)k

k!ck[β2]k
k−1∏
r=0

(
x + cr [2] + a1r

)
,

a1

c
− (1 + β1 + β2) /∈ N, (2.23)

where if one of the parameters β , β1 and β2 is a negative integer, the corresponding sequence is finite.

Proof. According to Theorem 2.2, the only OPSs defined by (2.2) arise for N = 1 in the following cases:
Case I: degπ < degD = 1: If we put π = 0 and D(x) = x + β , we obtain (2.20) (see, for instance [27,31]).
Case II: degD < degπ = 1: If we put π(x) = wx and D = 1, we obtain (2.21) which, for w = 1, leads to Charlier

polynomials [19,27]

Cn(x; c) = 2F0

(
−n,x

− ; 1

c

)
.

Case III: degD = degπ = 1, c �= a1: If we put π(x) = wx and D(x) = x + β , c �= w, we obtain (2.22) which, for
w = 1, leads to Meixner polynomials [19,27]

Mn

(
−x;β,

c

c − 1

)
= 2F1

(
−n,x

β
;1 − 1

c

)
.

If β = −n0 and w = 1, we are faced to Krawtchouk polynomials [31]

Kn(x;n0,p) = 2F1

(
−n,x

−n0
; 1

p

)
, n � n0.

Case IV: degD = degπ = 2, c = a2, a1
c

− b1 /∈ N: If we put π(x) = cx[2] + a1x, D(x) = (x + β1)(x + β2), and
a1
c

−(1+β1 +β2) /∈ N, we obtain (2.23), which, for c = 1 and a1 = 2a+1, leads to continuous dual Hahn polynomials
[27,36]

Sn

(
x2;β1, β2, a

) = 3F2

(
−n,a + ix, a − ix

β1, β2
;1

)
,

with 2a − β1 − β2 /∈ N. If one of the parameters β1 and β2 is a negative integer, the corresponding sequence is the
dual Hahn polynomials [27]. �
3. Characterization theorems for some generalized hypergeometric polynomials

3.1. s-Separable product sets

To state our main result, in this section we introduce the following notion.

Definition 3.1. Let {λ1, . . . , λs} be a set of s polynomials of degree one, s � 1. {λ1, . . . , λs} is called an s-separable
product set if and only if there exists a polynomial π such that

s∏
i=1

(
λi(x) + y

) =
(

s∏
i=1

λi(x)

)
+ π(y). (3.1)

By convention, we say that the empty set is a 0-separable product set.
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As immediate consequences of this definition, we note that:

(i) π is a monic polynomial of degree s having the form

π(y) =
s∏

i=1

(
y + λi(0)

) −
(

s∏
i=1

λi(0)

)
. (3.2)

So π(0) = 0.
(ii) Every {ax + b} is a 1-separable product set.

For later applications, we need the following lemma which may be proved by simple calculation.

Lemma 3.2.

(i) The only 2-separable product sets are of the form {ax + b1,−ax + b2}.
(ii) The only 3-separable product sets are of the form {ax + b1, jax + b2, j

2ax + b3} where j = e
2iπ

3 and b1 + jb2 +
j2b3 = 0.

As an example of a general s-separable product set we mention {x exp( 2kiπ
s

), k = 0, . . . , s − 1}.

3.2. A characterization problem

Let us consider polynomial sequence {Pn}n�0 having generalized hypergeometric representations of the form

Pn

(
λ(x); c, (αp), (βq)

) = 1+s+pFq

(
−n, (λs(x)), (αp)

(βq)
; 1

c

)
, (3.3)

where {λi(x); i = 1, . . . , s} is an s-separable product set, s � 0, and λ(x) = ∏s
i=1 λi(x).

Notice that if one of the denominator parameters β1, . . . , βq is a negative integer, the corresponding sequence is
finite.

Definition (3.1) contains all the generalized hypergeometric orthogonal polynomials given in Askey scheme [27]
and for which only one numerator parameter depends on n. It contains also the finite sequence corresponding to
Laguerre polynomials considered by Routh [30]. Such orthogonal polynomials may be distributed into four classes of
polynomials defined by (3.3):

1. Laguerre class for which p = 0, s = 0, q = 1 and 1
c

= x. It contains Laguerre polynomials (β1 = α + 1) and
Routh polynomials (β1 = −N ) [30].

2. Charlier class for which p = 0, s = 1, q = 0, λ1(x) = ax + b. It contains Charlier polynomials (λ1(x) = x).
3. Meixner class for which p = 0, s = 1, q = 1, c �= 1, λ1(x) = ax +b. It contains Meixner polynomials (λ1(x) = x,

β1 = β), Meixner–Pollaczek (λ1(x) = ix + α,β1 = 2α) and Krawtchouk polynomials ( λ1(x) = x, β1 = −N ).
4. Dual Hahn class for which p = 0, s = 2, q = 2, c = 1, λ1(x) = ax +b1, λ2(x) = −ax +b2, b1 +b2 −β1 −β2 /∈ N.

It contains dual Hahn polynomial (λ1(x) = −x, λ2(x) = x + γ + δ + 1, β1 = γ + 1, β2 = −N) and continuous
dual Hahn polynomials (λ1(x) = ix + a, λ2(x) = −ix + a, β1 = a + b, β2 = a + c, −(b + c) /∈ N).

Here, two natural questions arise:

(Q1) Are there other OPSs in each one of the previous four classes?
(Q2) Are there other OPSs defined by (3.3)?

To treat these questions, we consider the following more general problem:

(P1) Find necessary and sufficient conditions on p, q , s and c such that the PS {Pn}n�0 defined by (3.3) is a d-OPS.
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This problem, for s = 0 and d = 1, was treated by Abdul-Halim and Al-Salam [1]. The generalization to a positive
integer d was solved by the first author and Douak [8,10,11]. The obtained polynomials for d = 2 were also considered
by Van Assche and Yakubovich [34].

As solution to this problem, we state the following.

Theorem 3.3. There exist only 2(d + 1) subclasses of d-OPSs defined by (3.3) corresponding to the following cases:

Case 1: p = 0; s = 0,1, . . . , d − 1; q = d .
Case 2: p = 0; s = d ; q = 0,1, . . . , d − 1.
Case 3: p = 0; s = q = d ; c �= 1.
Case 4: p = 0; s = q = d + 1; c = 1 and

∑d+1
i=1 λi(0) − ∑d+1

i=1 βi /∈ N.

Proof. Using (3.3), (1.3) and the fact that {λ1, . . . , λs} is an s-separable product set, we have

Pn

(
λ(x); c, (αp), (βq)

) = 1+s+pFq

(
−n, (λs(x)), (αp)

(βq)
; 1

c

)

=
n∑

k=0

(−n)k[αp]k
ckk![βq ]k

s∏
i=1

(
λi(x)

)
k

=
n∑

k=0

(−n)k[αp]k
ckk![βq ]k

s∏
i=1

k−1∏
r=0

(
λi(x) + r

)

=
n∑

k=0

(−n)k[αp]k
ckk![βq ]k

k−1∏
r=0

s∏
i=1

(
λi(x) + r

)

=
n∑

k=0

(−n)k[αp]k
ckk![βq ]k

k−1∏
r=0

(
λ(x) + π(r)

)
,

where π is the polynomial of degree s given by (3.2).
It follows that

Pn

(
x; c, (αp), (βq)

) =
n∑

k=0

(−n)k[αp]k
ckk![βq ]k

k−1∏
r=0

(
x + π(r)

)
. (3.4)

Put γn(k) = (−n)k[αp]k
ckk![βq ]k . Then the coefficient γn(k) satisfies the identity (2.3) with

N(x) =
{1 if p = 0,∏p

j=1(x + αj ) if p � 1,

and

D(x) =
{

1 if q = 0,∏q

i=1(x + βi) if q � 1.
(3.5)

Consequently, the polynomials given by (3.4) are of type (2.2). We apply Theorem 2.2 to obtain the desired result.
The different cases in Theorem 3.3 follow from the corresponding ones in Theorem 2.2. In fact, Case 1 (respec-
tively Case 2) in Theorem 3.3 follows from Case I (respectively Case II) in Theorem 2.2, i.e. the case “N = 1,
degπ = s < degD = q = d” (respectively “N = 1, degD = q < degπ = s = d”) may be enumerated by “p = 0,
s = 0,1, . . . , d − 1, q = d” (respectively “p = 0, s = d , q = 0,1, . . . , d − 1”).

For Cases 3–4, we need to rewrite the polynomials D and π given respectively by (3.5) and (3.2) under the form

D(x) =
q∑

brx
[r] and π(x) =

s∑
akx

[k],

r=0 k=1
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and to express as , as−1 and bq−1 in terms of βi,1 � i � q and λj ,1 � j � s. To this end, we recall that a monic
polynomial f of degree m may be written under the two following forms:

f (x) = xm + αm−1x
m−1 + Q1(x), Q1 being polynomial of degree < m − 1

= x[m] + βm−1x
[m−1] + Q2(x), Q2 being polynomial of degree < m − 1,

and we have

xm = x[m−1] + m(m − 1)

2
x[m−1] + Q3(x), xm−1 = x[m−1] + Q4(x),

where Q3 and Q4 are two polynomials of degree < m − 1. Then the coefficients αm−1 and βm−1 are related by

βm−1 = αm−1 + m(m − 1)

2
.

Apply now this result to the polynomials D and π . Since

D(x) = xq +
(

q∑
i=1

βi

)
xq−1 + D1(x) = x[q] +

(
q∑

i=1

βi + q(q − 1)

2

)
x[q−1] + D2(x)

and

π(x) = xs +
(

q∑
i=1

λi(0)

)
xq−1 + π1(x) = x[s] +

(
s∑

i=1

λi(0) + s(s − 1)

2

)
x[s−1] + π2(x),

we have

as = 1, bq−1 =
q∑

i=1

βi + q(q − 1)

2
, as−1 =

s∑
i=1

λi(0) + s(s − 1)

2
.

From which we deduce the conditions given in Cases 3–4. �
Theorem 3.3 and Lemma 3.2, for d = 1, provide negative answers to questions (Q1) and (Q2). For d = 2, that

allows us to enumerate the six classes of generalized hypergeometric 2-OPSs defined by (3.3) as follows.

Corollary 3.4. A PS {Pn}n�0 defined by (3.3) is a 2-OPS iff it is one of the following:

1F2

(
−n

β1, β2
;x

)
,

2F2

(
−n,ax + b

β1, β2
; 1

c

)
, a �= 0,

3Fq

(
−n,ax + b1,−ax + b2

(βq)
; 1

c

)
, q = 0,1,2, a �= 0 (c �= 1 if q = 2),

4F3

(
−n,ax + b1, jax + b2, j

2ax + b3

β1, β2, β3
;1

)
, a �= 0, (b1 + b2 + b3) − (β1 + β2 + β3) /∈ N,

where j = e
2iπ

3 and b1 + jb2 + j2b3 = 0.

An equivalent version of Theorem 3.3 is given by the following

Theorem 3.5. For fixed d and s, the only d-OPSs defined by (3.3) are the following

Pn

(
λ(x); c, (βq)

) = 1+sFq

(
−n, (λs(x))

(βq)
; 1

c

)
,
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where

q =
⎧⎨
⎩

0,1, . . . , d − 1 if s = d,

d if s = d and c �= 1 or s ∈ {0,1, . . . , d − 1},
d + 1 if s = d + 1 and c = 1,

where for the last case the (βd+1) are chosen such that
∑d+1

i=1 λi(0) − ∑d+1
i=1 βi /∈ N.

For s = 0, we deduce the following main result obtained in [11] and characterizing d-OPSs of Laguerre type.

Corollary 3.6. (See Ben Cheikh and Douak [11].) The only d-OPS of type

p+1Fq

(
−n, (αp)

(βq)
;x

)

arises for p = 0, q = d .

Similar characterization theorems related to d-OPSs of Meixner type, Meixner–Pollaczek type, Krawtchouk type,
continuous dual Hahn type, and dual Hahn type may be deduced from Theorem 3.5 for s > 0.

4. Concluding remarks

4.1. Limit relations

The limit relations between generalized hypergeometric orthogonal polynomials in Askey scheme are well
known [27]. It is possible to state analogue ones for the polynomials obtained in this paper by the use of the fol-
lowing relations [28]:

pFq

(
(ap−1),μ

(bq−1),μ
;x

)
= p−1Fq−1

(
(ap−1)

(bq−1)
;x

)
,

lim
λ→+∞ pFq

(
(ap−1), λap

(bq)
; x

λ

)
= p−1Fq

(
(ap−1)

(bq)
;apx

)
,

lim
λ→+∞ pFq

(
(ap)

(bq−1), λbq

λx

)
= pFq−1

(
(ap)

(bq−1)
; x

bq

)
,

lim
λ→+∞ pFq

(
(ap−1), λap

(bq−1), λbq

λx

)
= p−1Fq−1

(
(ap−1)

(bq−1)
; apx

bq

)
.

4.2. Further d-OPSs

In this paper, we solved a d-Geronimus problem type to characterize generalized hypergeometric d-OPSs for
which only one numerator depends on n. The method may be extended to investigate d-OPSs having generalized
hypergeometric representations with more than one numerator parameters, depending on n and their q-analogues.

4.3. Properties of the obtained polynomials

The polynomials corresponding to s = 0 and q = d obtained in Theorem 3.3 were deeply investigated by the first
author and Douak [8,10,11]. They state some of the properties generalizing in a natural way the Laguerre polynomials:
a differential equation of order d + 1, a generating functions, a differential formulas, links with known polynomial
families, an explicit expression of the corresponding d-dimensional function vector. It is then significant to investigate
analogue properties for some other d-OPSs given by Theorem 3.3, especially the finite sequences.
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