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I. INTRODUCTION

COMBINATORIAL identities play an important role in
many areas of mathematics, including combinatorial

analysis, graph theory, number theory, statistics and proba-
bility. So some methods should be attention that can help
establish the Computation of Combinatorial Sums(see[6]),
the symbolic calculus with operators �(difference operator),
E(displacement operator), D(derivative operator)(see[1],[5]),
is one. Since all the symbolic expressed as power series in
�(DorE)(see[5]) over the real or complex number fields, it
is clear that the theoretical basis of the calculus may be found
within the general theory of the formal power series.

In this paper, we shall show that a variety of operators for-
mulas and identities containing famous combinatorics number
sequences by using a symbolic method with operators �, E,
D. The key idea is a suitable application of a certain symbolic
substitution rule (see [4]) to the generation functions for those
number sequences, so that a number of symbolic expressions
could be obtained, which then can be used as stepping-stones
to yielding particular formulas or combinatorial identities, as
in [5].

II. THE DEFINITION OF THE FORMAL R.G OPERATORS

First, let �, E, D is respectively difference, displacement
and derivative operator. There is a operator T , and if
TEα = EαT and Tt is a non-zero constant, then T is called
a delat operator, as in [3]. Future, we will use the Q to
represent the delta operators.

Definition 2.1 A formal R.G Operator is a Operator sequence
group that be composed by three formal power summa-
tion operator, that is (G(Q), F (Q), H(Q)), where G(Q) =
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∑
k≥0 gkQ

k, F (Q) =
∑
k≥1 fkQ

k, H(Q) =
∑
k≥0 hkQ

k,
then for any �(x) ∈ C∞ at x = a, have

(G(Q), F (Q), H(Q))�(a) =
∑
n≥0

(
n∑
k=0

dn,khk

)
Qn�(a)

= G(Q)H(F (Q))�(a) ,

where, dn,k = [Qn]G(Q)H(F (Q)).
Now, let Ω is a set that composed by all R.G op-
erators. Next we will definition a Computation (⊗), let
(G1(Q), F1(Q), H(Q)), (G2(Q), F2(Q), H(Q)) ∈ Ω then

(G1(Q), F1(Q), H(Q))⊗ (G2(Q), F2(Q), H(Q))

= (G1(Q)G2(F1(Q)), F2(F1(Q)), H(Q)) ,

Still is a R.G Operators, therefore Ω is closed with
mathematical operation (⊗). So we have the following
theorem.

Theorem2.1(Ω is a formal R.G Operators Group)
Suppose G(Q), F (Q) is respectively reversible
formal power summation operator and delta formal
power summation operator,then Ω is a Group with
mathematical operation (⊗), and (1, Q,H(Q)) is unit
element of group, (G(Q), F (Q), H(Q)) is inverse
element for

(
1/G(F (Q)), F (Q), H(Q)

)
, here F (Q)

is composite inversion for F (Q), be satisfied with
F (F (Q)) = F (F (Q)) = Q.

Proof: First Ω is closed for the mathematical operation
(⊗), and let (G1(Q), F1(Q), H(Q)), (G2(Q), F2(Q), H(Q)),
(G3(Q), F3(Q), H(Q)) ∈ Ω, Since

[(G1(Q), F1(Q), H(Q))⊗ (G2(Q), F2(Q), H(Q))]

⊗ (G3(Q), F3(Q), H(Q))

= (G1(Q) ·G2(F1(Q)), F2(F1(Q)), H(Q))⊗ (G3(Q), F3(Q), H(Q))

= (G1(Q) ·G2(F1(Q)) ·G3(F2(F1(Q))), F3(F2(F1(Q))), H(Q)) ,

As well as

(G1(Q), F1(Q), H(Q))⊗ [(G2(Q), F2(Q), H(Q))

⊗ (G3(Q), F3(Q), H(Q))]

= (G1(Q), F1(Q), H(Q))⊗ (G2(Q) ·G3(F2(Q)), F3(F2(Q)), H(Q))

= (G1(Q) ·G2(F1(Q)) ·G3(F2(F1(Q))), F3(F2(F1(Q))), H(Q)) .

So the mathematical operation (⊗) of Ω is contented to the
associative laws. Second, as (1, Q,H(Q)) is unit element of
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Ω, and for any (G(Q), F (Q), H(Q)) ∈ Ω, we always have its
inverse element

(
1/G(F (Q)), F (Q)

) ∈ Ω. In fact, for

(G(Q), F (Q), H(Q))⊗ (1, Q,H(Q))

= (G(Q), F (Q), H(Q))

= (1, Q,H(Q))⊗ (G(Q), F (Q), H(Q))

= (1 ·G(Q), F (Q), H(Q)) ,

and

(G(Q), F (Q), H(Q))⊗
(

1

G(F (Q))
, F (Q), H(Q)

)

=

(
G(Q) · 1

G(F (F (Q)))
, F (F (Q), H(Q))

)
= (1, Q,H(Q))

=

(
1

G(F (Q))
, F (Q), H(Q)

)
⊗ (G(Q), F (Q), H(Q)) ,

So we can obtain that Ω is a Group, we call it for R.G
Operators Group.

III. THE GENERALIZATION OF THE FORMAL R.G
OPERATOR

In this section, we will present Generalization of the
formal R.G operator based on generalized Riordan array
theory(see[2],[3]).

Definition 3.1. Let G(Q) =
∑
k≥0

gk
Nk
Qk, F (Q) =∑

k≥1
fk
Nk
Qk, H(Q) =

∑
k≥0

hk

Nk
Qk then, we note

(G(Q), F (Q), H(Q))Nk
for Generalization R.G operator,

where Nk is a sequence with k. Then for any �(x) ∈ C∞

at x = a, have

(G(Q), F (Q), H(Q))Nk
�(a) = G(Q) ·H(F (Q))�(a)

=
∑
n≥0

⎛
⎝ n∑
k≥0

dn,khk

⎞
⎠Qn�(a)

Where, dn,k = [Q
n

Nn
]G(Q) (F (Q))

k. Now, we note ΩNk
is a

set of Generalization R.G Operator, which composed by all
(G(Q), F (Q), H(Q))Nk

.

Theorem 3.1( ΩNk
is Generalization of the formal

R.G Operators Group) Let G(Q)Nk
, F (Q)Nk

is
respectively reversible formal power summation operator
and delta formal power summation operator, then for
the mathematical operation(⊗), ΩNk

also is a group.
Especially, (1, Q,H(Q)Nk) is unit element of ΩNk

,
(G(Q)Nk, F (Q)Nk, H(Q)Nk) is inverse element for(
1/G(F (Q)Nk)Nk, F (Q)Nk, H(Q)Nk

)
. here, F (Q)Nk

is composite inversion for F (Q)Nk, be satisfied with
F (F (Q)Nk)Nk = F (F (Q)Nk)Nk = Q.

Proof: First, let (G1(Q)Nk, F1(Q)Nk, H(Q)Nk),
(G2(Q)Nk, F2(Q)Nk, H(Q)Nk),
(G3(Q)Nk, F3(Q)Nk, H(Q)Nk) ∈ ΩNk,then since

(G1(Q)Nk, F1(Q)Nk, H(Q)Nk)⊗
(G2(Q)Nk, F2(Q)Nk, H(Q)Nk)

= (G1(Q)Nk ·G2(F1(Q)Nk)Nk, F2(F1(Q)Nk)Nk, H(Q)Nk) ,

Where,(G1(Q)Nk ·G2(F1(Q)Nk)Nk, F2(F1(Q)Nk)Nk, H(Q)Nk)
∈ ΩNk, therefore ΩNk is closed with mathematical operation
(⊗). And also because

[(G1(Q)Nk, F1(Q)Nk, H(Q)Nk)⊗ (G2(Q)Nk, F2(Q)Nk, H(Q)Nk)]

⊗ (G3(Q)Nk, F3(Q)Nk, H(Q)Nk)

= (G1(Q)Nk ·G2(F1(Q)Nk)Nk, F2(F1(Q)Nk)Nk, H(Q)Nk)

⊗ (G3(Q)Nk, F3(Q)Nk, H(Q)Nk)

= (G1(Q)Nk ·G2(F1(Q)Nk)Nk ·G3(F2(F1(Q)Nk)Nk)Nk,

F3(F2(F1(Q)Nk)Nk)Nk, H(Q)Nk) ,

As well as

(G1(Q)Nk, F1(Q)Nk, H(Q)Nk)⊗ [(G2(Q)Nk, F2(Q)Nk, H(Q)Nk)

⊗ (G3(Q)Nk, F3(Q)Nk, H(Q)Nk)]

= (G1(Q)Nk, F1(Q)Nk, H(Q)Nk)

⊗ (G2(Q)Nk ·G3(F2(Q)Nk)Nk, F3(F2(Q)Nk)Nk, H(Q)Nk)

= (G1(Q)Nk ·G2(F1(Q)Nk)Nk ·G3(F2(F1(Q)Nk)Nk)Nk,

F3(F2(F1(Q)Nk)Nk)Nk, H(Q)Nk) .

So the mathematical operation (⊗) in set of
ΩNk is contented to associative laws. Second, as
(1, Q,H(Q)Nk) is unit element of ΩNk, and for any
(G(Q)Nk, F (Q)Nk, H(Q)Nk) ∈ ΩNk, we always have its
inverse element

(
1/G(F (Q)Nk)Nk, F (Q)Nk

) ∈ ΩNk. In
fact, as

(G(Q)Nk, F (Q)Nk, H(Q)Nk)⊗ (1, Q,H(Q)Nk)

= (G(Q)Nk, F (Q)Nk, H(Q)Nk)

= (1, Q,H(Q)Nk)⊗ (G(Q)Nk, F (Q)Nk, H(Q)Nk)

= (1 ·G(Q)Nk, F (Q)Nk, H(Q)Nk) ,

and

(G(Q)Nk, F (Q)Nk, H(Q)Nk)⊗
(

1

G(F (Q)Nk)Nk
, F (Q)Nk, H(Q)Nk

)

=

(
G(Q)Nk · 1

G(F (F (Q)Nk)Nk)Nk
, F (F (Q)Nk)Nk, H(Q)Nk

)
= (1, Q,H(Q)Nk)

=

(
1

G(F (Q)Nk)Nk
, F (Q)Nk, H(Q)Nk

)
⊗ (G(Q)Nk, F (Q)Nk, H(Q)Nk) ,

Thus ΩNk also is a Group, and we call it for Generalization
R.G Operator Group.

IV. SOME THEOREM OF THE FORMAL R.G OPERATOR AND
ITS APPLICATION

This section we will introduce some theorem about the
formal R.G operator, and then we will gives some Corollary
based on this.

Theorem 4.1 Suppose (G(Q), F (Q), H(Q)) ∈ Ω, and here
H(Q) = Qk that is
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(G(Q), F (Q), H(Q))=
(
G(Q), F (Q), Qk

)
, then for any

�(x) ∈ C∞ at x = a we have ,(
G(Q), F (Q), Qk

)
�(a) = G(Q) · (F (Q))k�(a)

=
∑
n≥0

(
n∑
k=0

dn,khk

)
Qn�(a)

=
∑
n≥0

dn,kQ
n�(a)

where, dn,k = [Qn]G(Q) · (F (Q))k.

Proof: For any (G(Q), F (Q), H(Q)) ∈ Ω, where G(Q),
F (Q), Q is respectively reversible formal power summation
operator, delta formal power summation operator and delta
operator, we always have(

G(Q), F (Q), (Q)k
)
= G(Q) · (F (Q))k

=
∑
n≥0

dn,kQ
n,

So for any �(x) ∈ C∞ evaluate at x = a we have,(
G(Q), F (Q), (Q)k

)
�(a) = G(Q) · (F (Q))k�(a)

=
∑
n≥0

(
n∑
k=0

dn,khk

)
Qn�(a)

=
∑
n≥0

dn,kQ
n�(a) .

The proof is complete.

Corollary 4.1.1 Let n, k(n ≥ k) be a nonnegative integer,
and �(x) ∈ C∞, then

(�)k

k!
�(a) =

∑
n≥0

{
n
k

}
Dn

n!
�(a)

where,
{
n
k

}
is the second Stirling numbers, see [3].

Proof: Let G(Q) = 1, F (Q) = eQ − 1, H(Q) = Qk

so
(
1, eQ − 1, Qk

) ∈ Ω, then for any �(x) ∈ C∞ evaluate at
x = a have(

1, eQ − 1, Qk
)
�(a) =

(
eQ − 1

)k
�(a)

=
∑
n≥0

{
n
k

}
k!

n!
Qk�(a)

if we let D = Q then we have

(
eD − 1

)k
�(a) =

∑
n≥0

{
n
k

}
k!

n!
Dk�(a)

and

(�)k

k!
�(a) =

∑
n≥0

{
n
k

}
Dn

n!
�(a)

The proof is complete.

Example . Let �(x) = xn(n ≥ 1)in Corollary(4.1.1), and
evaluate at x = 0 then

∑
n≥0

{
n
k

}
=

1

k!
(�)k�(0) =

1

k!

k∑
m≥0

(
k

m

)
(−1)k−m�(m)

=
k∑

m≥0

(−1)k−mmn

(k −m)!m!
.

and by the same way, if we let �(x) = αx(α > 0, α �= 1),
the same time since (�)kαa = αa(α − 1)k and Dnαa =
αa(lnα)n, so we have the following result,

(α− 1)k

k!
=
∑
n≥0

{
n
k

}
(lnα)n

n!
,

when α = 2 we have

1

k!
=
∑
n≥0

{
n
k

}
(ln 2)n

n!
.

So we obtain two beautiful results.

Theorem 4.2 Let (G(Q), F (Q), H(Q)) ∈ Ω, and Q is a
delta operator, then for any �(x) ∈ C∞, if G(Q) = Qm

(1−Q)m+1 ,

F (Q) = Q(β−α)

(1−Q)β
evaluate at x = a, we have

Qm

(1−Q)m+1
·H(

Q(β−α)

(1−Q)β
)�(a) =

∑
n≥0

(
n∑
k=0

(
n+ αk

m+ βk

)
hk

)

·Qn�(a) ,

where α > β, α− β is the integers, and n is the variables, m
is the parameter , and if G(Q) = (1+Q)n, F (Q) = Q(−β)

(1+Q)(−α)

then we have

(1 +Q)n ·H(
Q(−β)

(1 +Q)(−α)
)�(a) =

∑
m≥0

(
m∑
k=0

(
n+ αk

m+ βk

)
hk

)

·Qm�(a) .

where b is the integer(b < 0), n is the parameter, m is the
variables.

Proof: Use the same method as Theorem(4.1), we can
obtain these results easily, not be repeated here.

Corollary 4.2.1 Let n, k (n ≥ k ≥ 0) be a nonnegative
integer, and then we have

H((−�)b−a · E−b)�(a−m− 1) =
∑
n≥0

(
n∑
k=0

(
n+ ak

m+ bk

)
hk

)

· (−�)n−m�(a) ,

and

H((�)−b · Ea)�(a+ n) =
∑
n≥0

(
m∑
k=0

(
n+ ak

m+ bk

)
hk

)
�n�(a) .
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Proof: Let Q = −� in the first identities of Theo-
rem(4.1), then we have

(−�)m

(1 +�)m+1
·H(

(−�)(b−a)

(1 +�)b
)�(a)

=
∑
n≥0

(
n∑
k=0

(
n+ αk

m+ βk

)
hk

)
(−�)

n�(a),

or

H((−�)b−a · E−b)�(a−m− 1)

=
∑
n≥0

(
n∑
k=0

(
n+ αk

m+ βk

)
hk

)
(−�)

n−m�(a) .

and then if we let Q = � in the second identities of
Theorem(4.1), then we have

(1 +�)n ·H(�(−b) · Ea)�(a)
= H((�)−b · Ea)�(a+ n)

=
∑
n≥0

(
m∑
k=0

(
n+ ak

m+ bk

)
hk

)
�n�(a) .

So we got the result.

Theorem 4.3 Let n, k(n ≥ k) be a nonnegative integer, then
we have

H(−D)�(a) =
∑
n≥0

⎛
⎝ n∑
k≥0

k!

n!

[
n
k

]
hk

⎞
⎠ · (−�)n�(a)

where, D, � respectaly is different and difference operator,

and
[
n
k

]
is the first Stirling numbers, as in [3].

Proof: Use the same method as Theorem(4.2), let
G(Q) = 1, F (Q) = − ln(1 − Q), H(Q) =

∑
k≥0 hkQ

k,
then for any �(x) ∈ C∞ evaluate x = a we have

H(ln
1

1−Q )�(a) =
∑
n≥0

(
n∑
k=0

k!

n!

[
n
k

]
hk

)
Qn�(a) ,

let Q = −� in this formula, then we can obtain

H(ln
1

1 +� )�(a) = H(−D)�(a)

=
∑
n≥0

(
n∑
k=0

k!

n!

[
n
k

]
hk

)
(−�)n�(a)

The proof is complete.

Corollary 4.3.1 Let n, k(n ≥ k) be a nonnegative integer,
for any �(x) ∈ C∞ then we have

�(a+ 1) =
∑
n≥0

(
n∑
k=0

k!

n!

[
n
k

])
(�)n

n!
�(a)

Proof: Let H(Q) = e−Q in the Theorem(4.3), meanwhile
hk = (−1)n

n! then we have

eD(�(a)) =
∑
n≥0

(
n∑
k=0

k!

n!

[
n
k

]
(−1)n
n!

)
(−1)n(−�)n�(a) ,

Since eD(�(a)) = E(�(a)), so we have

�(a+ 1) =
∑
n≥0

(
n∑
k=0

k!

n!

[
n
k

])
(�)n

n!
�(a) ,

The proof is complete.

Example. Let �(x) = αx(α > 0, α �= 1) in the Corol-
lary(4.3.1), since �n(αx) = (α− 1)nαx, so we have

αa+1 =
∑
n≥0

(
n∑
k=0

k!

n!

[
n
k

])
(α− 1)n

n!
αa ,

if a = 0 then we have

α =
∑
n≥0

(
n∑
k=0

k!

n!

[
n
k

])
(α− 1)n

n!
,

and if α = 1 then

1 =
∑
n≥0

(
n∑
k=0

k!

n!

[
n
k

])
0n

n!
,

and if α = 2 then we have

2 =
∑
n≥0

(
n∑
k=0

k!

n!

[
n
k

])
1

n!
.

This is a beautiful result.

Theorem 4.4 Let G(Q) = 1, F (Q) = eQ − 1, and
(G(Q), F (Q), H(Q)) ∈ R.G, Q = D is a delta operator,
then for any �(x) ∈ C∞ evaluate at x = a we have

H(�) · �(a) =
∑
n≥0

(
n∑
k=0

k!

n!

{
n
k

}
hk

)
Dn · �(a) .

where, D, � respectaly is different and difference operators,

and
{
n
k

}
is the second Stirling numbers.

Proof: Let n, k be a nonnegative integer, by the same
ways as Theorem(4.3) have ,

H(eQ − 1)�(a) =
∑
n≥0

(
n∑
k=0

k!

n!

{
n
k

}
hk

)
Qn�(a) ,

and let Q = D in the formula, then we have following result

∑
n≥0

(
n∑
k=0

k!

n!

{
n
k

}
hk

)
Dn · �(a) = H(eD − 1) · �(a)

= H(�) · �(a)
So we got the result.

Corollary 4.4.1 Let n, k be a nonnegative integer, �(x) ∈
C∞ evaluate at x = a we have

�(a− 1) =
∑
n≥0

(
n∑
k=0

k!

n!

{
n
k

}
(−1)k

)
Dn · �(a)
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Proof: let H(Q) = 1
1+Q , in the Theorem(4.4) then

∑
n≥0

(
n∑
k=0

k!

n!

{
n
k

}
(−1)k

)
Dn · �(a)

= H(
1

1 +� ) · �(a) = �(a− 1).

The proof is complete.

Theorem 4.5 Let G(Q) = (ln 1
1−Q )

k, F (Q) = eQ − 1,
H(Q) = ln 1

1+Q and (G(Q), F (Q), H(Q)) ∈ R.G, then for
any �(x) ∈ C∞ evaluate x = a we have ,

∑
n≥0

⎛
⎝ n∑
j=0

(
n∑
l=0

(j!)2

l!(n− l)!
[
n− l
j

]{
n
j

}
(−1)j
j

)⎞
⎠

· (−1)n+k(�)n�(a)

=
(
Dk�(a+ 1)−Dk�(a)

)
Proof: Let n, j be a nonnegative integer, by the same

methods as Thorem(4.4) we have

∑
n≥0

⎛
⎝ n∑
j=0

(
n∑
l=0

(j!)2

l!(n− l)!
[
n− l
j

]{
n
j

})
hj

⎞
⎠

·Qn�(a)
= (ln

1

1−Q )k ·H(eQ − 1)�(a)

Let Q = −�, then

∑
n≥0

⎛
⎝ n∑
j=0

(
n∑
l=0

(j!)2

l!(n− l)!
[
n− l
j

]{
n
j

}
hj

)⎞
⎠

· (−�)n�(a)

= (−D)k ·H(e−� − 1)�(a) ,

and H(Q) = ln 1
1+Q , so H(e−� − 1) = �, then we have

∑
n≥0

⎛
⎝ n∑
j=0

(
n∑
l=0

(j!)2

l!(n− l)!
[
n− l
j

]{
n
j

}
(−1)j
j

)⎞
⎠

· (−�)n�(a)

= � · (−D)k�(a) ,

or

∑
n≥0

⎛
⎝ n∑
j=0

(
n∑
l=0

(j!)2

l!(n− l)!
[
n− l
j

]{
n
j

}
(−1)j
j

)⎞
⎠

· (−1)n+k(�)n�(a)

=
(
Dk�(a+ 1)−Dk�(a)

)
The proof is complete.

Theorem 4.6 Let G(Q) = (eQ − 1)k, F (Q) = ln 1
1−Q ,

H(Q) = e(−Q) and (G(Q), F (Q), H(Q)) ∈ R.G, then for

any �(x) ∈ C∞ evaluate x = a we have

∑
n≥0

⎛
⎝ n∑
j=0

(
n∑
l=0

(j!)2

l!(n− l)!
[
n− l
j

]{
n
j

}
(−1)j
j!

)⎞
⎠

·Dn�(a)

=
k∑
l=0

(
k

l

)
(−1)k−l

(
�(a+ k)− �

′
(a+ k)

)
Proof: Let n, j, l be a nonnegative integer, by the same

methods as Theorem(4.5) we have,

∑
n≥0

⎛
⎝ n∑
j=0

(
n∑
l=0

(j!)2

l!(n− l)!
[
n− l
j

]{
n
j

}
hj

)⎞
⎠ ·Qn�(a)

= (eQ − 1)k ·H(ln
1

1−Q )�(a) ,

then let Q = D in it, we have

∑
n≥0

⎛
⎝ n∑
j=0

(
n∑
l=0

(j!)2

l!(n− l)!
[
n− l
j

]{
n
j

}
hj

)⎞
⎠ ·Qn�(a)

= �k ·H(ln
1

1−D )�(a) ,

and since H(Q) = e−Q, so hk = (−1)k

k! , then we have

∑
n≥0

⎛
⎝ n∑
j=0

(
n∑
l=0

(j!)2

l!(n− l)!
[
n− l
j

]{
n
j

}
(−1)j
j!

)⎞
⎠ ·Dn�(a)

= �k · (1−D)�(a)

so we got the result,

∑
n≥0

⎛
⎝ n∑
j=0

(
n∑
l=0

(j!)2

l!(n− l)!
[
n− l
j

]{
n
j

}
(−1)j
j!

)⎞
⎠ ·Dn�(a)

=
k∑
l=0

(
k

l

)
(−1)k−l

(
�(a+ k)− �

′
(a+ k)

)
The proof is complete.
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