RENDICONTI

SEMINARIO MATEMATICO

 della Università di Padova
J. P. Singhal

Operational formulae for certain classical polynomials

Rendiconti del Seminario Matematico della Università di Padova, tome 38 (1967), p. 33-40.
http://www.numdam.org/item?id=RSMUP_1967__38__33_0
© Rendiconti del Seminario Matematico della Università di Padova, 1967, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova »(http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal. php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{2}$

OPERATIONAL FORMULAE FOR CERTAIN OLASSIOAL POLYNOMIALS

J. P. Singhal *)

1. Recently Srivastava [7, p. 43] has defined a set of polynomials $A_{n}^{(a)}(x)$ related to the Laguerre polynomials by means of the relations

$$
\begin{equation*}
\sum_{r=0}^{n} A_{r}^{(\alpha)}(x) L_{n-r}^{(\alpha+r)}(x)=0, \quad n \geq 1 \tag{1.1}
\end{equation*}
$$

$$
A_{0}^{(a)}(x)=1
$$

He also gave the generating function, hypergeometric representation and the Rodrigues' formula for these polynomials [7, pp. 44-45] in the forms:

$$
\begin{equation*}
(1+t)^{-1-\alpha} e^{x t}=\sum_{r=0}^{\infty} t^{r} A_{r}^{(\alpha)}(x) \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
A_{n}^{(\alpha)}(x)=\frac{1}{(n)!} \sum_{r=0}^{\infty} \frac{(-n)_{r}(1+\alpha)_{r}}{(r)!} x^{n-r} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{n}^{(\alpha)}(x)=\frac{x^{n+\alpha+1}}{(n)!} D^{n}\left\{x^{-\alpha-1} e^{x}\right\}, \quad\left(D=\frac{d}{d x}\right) \tag{1.4}
\end{equation*}
$$

respectively.
*) Indirizzo dell'A. : Deptt. of Maths. - University of Jodhpar - Jodhpur — India.

In this paper we give some operational formulae for these as well as Laguerre polynomials and employ them to derive many interesting results.

The first operational formula to be proved is

$$
\begin{equation*}
\prod_{j=1}^{n}(x D+x-\alpha-j)=(n)!\sum_{r=0}^{n} \frac{x^{r}}{(r)!} A_{n-r}^{(\alpha)}(x) D^{r} \tag{1.5}
\end{equation*}
$$

Note that the formula (1.5) corresponds to the one given by Carlitz [3, p. 219] in the case of Laguerre polynomials [8, p. 428].

To prove (1.5) we observe that if

$$
\Omega_{n}=\prod_{j=1}^{n}(x D+x-\alpha-j), \quad \Omega_{0}=1
$$

it can be proved very easily by the method of induction that

$$
\Omega_{n}(y)=x^{n+\alpha+1} e^{-x} D^{n}\left\{e^{x} x^{-\alpha-1} y\right\}
$$

where y is some differentiable function of x.
Next since

$$
\begin{aligned}
& D^{n}\left\{e^{x} x^{-\alpha-1} \cdot y\right\}=\sum_{r=0}^{n}\binom{n}{r} D^{n-r}\left\{e^{x} x^{-a-1}\right\} D^{r} y \\
&=\sum_{r=0}^{n} x^{-n-\alpha-1} e^{x}(n)!\frac{x^{r}}{(r)!} A_{n-r}^{(\alpha)}(x) D^{r} y
\end{aligned}
$$

(1.5) follows immediately.

In (1.5) if we take $y=1$, we obtain

$$
\begin{equation*}
\prod_{j=1}^{n}(x D+x-\alpha-j) \cdot 1=(n)!A_{n}^{(\alpha)}(x) \tag{1.6}
\end{equation*}
$$

As an application of (1.5) and (1.6), let us consider

$$
\begin{aligned}
(m+n)!A_{m+n}^{(\alpha)}(x) & =\prod_{j=1}^{m}(x D+x-\alpha-n-j) \prod_{j=1}^{n}(x D+x-\alpha-j) \cdot 1 \\
& =(n)!\prod_{j=1}^{m}(x D+x-\alpha-n-j) A_{n}^{(\alpha)}(x) \\
& =(m)!(n)!\sum_{r=0}^{n} \frac{x^{r}}{(r)!} A_{m-r}^{(\alpha+n)}(x) D^{r} A_{n}^{(\alpha)}(x)
\end{aligned}
$$

But since

$$
D^{r} A_{n}^{(\alpha)}(x)=A_{n-r}^{(a)}(x)
$$

we readily get

$$
\begin{equation*}
\binom{m+n}{n} A_{m+n}^{(\alpha)}(x)=\sum_{r=0}^{\min (m, n)} \frac{x^{r}}{(r)!} A_{m-r}^{(\alpha+n)}(x) A_{n-r}^{(\alpha)}(x) \tag{1.7}
\end{equation*}
$$

Further, from (1.7) we have

$$
\begin{aligned}
\sum_{m=0}^{\infty}\binom{m+n}{n} t^{m} A_{m+n}^{(\hat{\alpha})}(x) & =\sum_{r=0}^{n} \frac{(x t)^{r}}{(r)!} A_{n-r}^{(\alpha)}(x) \sum_{m=0}^{\infty} t^{m} A_{m}^{(\alpha+n)}(x) \\
& =\sum_{r=0}^{n} \frac{(x t)^{r}}{(r)!} A_{n-r}^{(\alpha)}(x) \cdot e^{x t}(1+t)^{-(\alpha+n+1)}
\end{aligned}
$$

and making use of the relation [7, p. 45]

$$
A_{n}^{(\alpha)}(x+y)=\sum_{r=0}^{n} \frac{y^{r}}{(r)!} A_{n-r}^{(\alpha)}(x),
$$

we get the known formula [6, p. 7]

$$
\begin{equation*}
\sum_{m=0}^{\infty}\binom{m+n}{n} t^{m} A_{m+n}^{(\alpha)}(x)=e^{x t}(1+t)^{-(\alpha+n+1)} A_{n}^{(\alpha)}\{x(1+t)\} \tag{1.8}
\end{equation*}
$$

Another operational formula for the polynomials $A_{n}^{(\alpha)}(x)$ is

$$
\begin{equation*}
(1+D)^{-1-\alpha} x^{n}=(n)!A_{n}^{(\alpha)}(x), \quad\left(D=\frac{d}{d x}\right) \tag{1.9}
\end{equation*}
$$

To prove it we note that
$(1+D)^{-1-\alpha} x^{n}=\sum_{r=0}^{n}(-1)^{r} \frac{(1+\alpha)_{r}}{(r)!} D^{r} x^{n}=\sum_{r=0}^{n} \frac{(1+\alpha)_{r}(-n)_{r}}{(r)!} x^{n-r}$,
which evidently yields the formula (1.9).

From (1.9) we have

$$
\begin{gather*}
(n)!A_{n}^{(\alpha+\beta)}(x)=(1+D)^{-1-\alpha-\beta} x^{n} \\
A_{n}^{(\alpha+\beta)}(x)=(1+D)^{-\beta} A_{n}^{(\alpha)}(x) \tag{1.10}
\end{gather*}
$$

the last formula gives us

$$
\begin{equation*}
A_{n}^{(\alpha+\beta)}(x)=\sum_{r=0}^{n}(-1)^{r} \frac{(\beta)^{r}}{(r)!} A_{n-r}^{(\alpha)}(x) \tag{1.11}
\end{equation*}
$$

Further let us operate on the identity

$$
e^{x t}=\sum_{n=0}^{\infty} \frac{t^{n}}{(n)!} x^{n}
$$

by $(1+D)^{-1-a}$; the familiar shift rule then gives us
$(1+D)^{-1-a} e^{x t}=e^{x t}(1+t)^{-1-a}\left\{1+\frac{D}{1+t}\right\}^{-1-a} \cdot 1=(1+t)^{-1-\alpha} e^{x t}$.
On the other hand the second member yields

$$
\sum_{n=0}^{\infty} t^{n} A_{n}^{(\alpha)}(x)
$$

with the help of (1.9).
We thus arrive at the familiar generating function (1.2).
Now replace by $t D_{y},\left(D_{y}=\frac{d}{d y}\right)$ in (1.2) and operate on both sides by $\left(1+D_{y}\right)^{-1-\beta}$. The left-hand side gives us $\left(1+D_{y}\right)^{-1-\beta} e^{x t y}(1+t y)=e^{x t y}\left\{1+x t+D_{y}\right\}^{-1-\beta}(1+y t)^{-1-\alpha}$

$$
=e^{x y t}(1+x t)^{-1-\beta} \sum_{r=0}^{\infty}(-1)^{r} \frac{(1+\beta)_{r}}{(r)!} \cdot \frac{D_{y}^{r}}{(1+x t)^{r}}(1+y t)^{-1-a}
$$

$\simeq e^{x y l}(1+x t)^{-1-\beta}(1+y t)^{-1-\alpha}{ }_{2} F_{0}\left[1+\alpha, 1+\beta ;-; \frac{t}{(1+x t)(1+y t)}\right]$
and the right-hand side yields

$$
\sum_{n=0}^{\infty}(n)!t^{n} A_{n}^{(\alpha)}(x) A_{n}^{(\beta)}(y) .
$$

Combining these two sides we finally get

$$
\begin{equation*}
\sum_{n=0}^{\infty}(n)!t^{n} A_{n}^{(\alpha)}(x) A_{n}^{(\beta)}(y) \tag{1.12}
\end{equation*}
$$

$\simeq e^{x y t}(1+x t)^{-1-\beta}(1+y t)^{-1-\alpha}{ }_{2} F_{0}\left[1+\alpha, 1+\beta ;-; \frac{t}{(1+x t)(1+y t)}\right]$.

From the relation (1.12) we have
$(1+x t)^{-1-\beta}(1+y t)^{-1-a}{ }_{2} F_{0}\left[1+\alpha, 1+\beta ;-; \frac{t}{(1+x t)(1+y t)}\right]$
$=\sum_{r, \varepsilon, k=0}^{\infty} \frac{(1+\alpha)_{r}(1+\beta)_{r}(1+\alpha+r)_{s}(1+\beta+r)_{k}}{(r)!(s)!(k)!}(-1)^{s+k} x^{k} y^{s} \cdot t^{r+s+k}$
$=\sum_{n=0}^{\infty}(-t)^{n} \sum_{k=0}^{n} \sum_{r=0}^{k}(-1)^{r} \frac{(1+\alpha)_{n+r-k}(1+\beta)_{k}}{(r)!(k-r)!(n-k)!} x^{k-r} y^{n-k}$
$=\sum_{n=0}^{\infty}(-t)^{n} \sum_{k=0}^{n} \frac{(1+\beta)_{k}(1+\alpha)_{n-k}}{(n-k)!} y^{n-k} \sum_{r=0}^{k}(-1)^{r} \frac{(1+\alpha+n-k)_{r}}{(r)!(k-r)!} x^{k-r}$
$=\sum_{n=0}^{\infty}(-t)^{n} \sum_{k=0}^{n} \frac{(1+\beta)_{k}(1+\alpha)_{n-k}}{(n-k)!} y^{n-k} A_{k}^{(\alpha+n-k)}(x)$.

Thus (1.12) is equivalent to

$$
\begin{align*}
& \sum_{r=0}^{n} \frac{(r)!}{(n-r)!}(-1)^{r}(x y)^{n-r} A_{n}^{(\alpha)}(x) A_{n}^{(\beta)}(y) \tag{1.13}\\
&=\sum_{k=0}^{n} \frac{(1+\beta)_{k}(1+\alpha)_{n-k}}{(n-k)!} y^{n-k} A_{k}^{(\alpha+n-k)}(x)
\end{align*}
$$

2. Making use of the relation [7, p. 45]

$$
L_{n}^{-(a+n+1)}(-x)=A_{n}^{(a)}(x)
$$

and our formula (1.8), we get

$$
\begin{equation*}
(1-D)^{a+n}(-x)^{n}=(n)!L_{n}^{(\alpha)}(x) \tag{2.1}
\end{equation*}
$$

which yields the following interesting result

$$
\begin{equation*}
L_{n}^{(a+\beta)}(x)=(1-D)^{\beta} L_{n}^{(\alpha)}(x) \tag{2.2}
\end{equation*}
$$

Now consider

$$
\begin{aligned}
L_{n}^{(a+\beta+1)}(x) & =(1-D)^{\beta+1} L_{n}^{(a)}(x)=\left[1+\frac{D}{1-D}\right]^{-\beta-1} L_{n}^{(a)}(x) \\
& =\sum_{r=0}^{n}(-1)^{r} \frac{(\beta+1)_{r}}{(r)!}(1-D)^{-r} D^{r} L_{n}^{(a)}(x)
\end{aligned}
$$

and it follows that

$$
\begin{equation*}
L_{n}^{(\alpha+\beta+1)}(x)=\sum_{r=0}^{n} \frac{(\beta+1)_{r}}{(r)!} L_{n-r}^{(\alpha)}(x) \tag{2.3}
\end{equation*}
$$

Formula (2.3) was proved earlier in a different way by Al-Salam [1, p. 131], and our proof differs markedly with that of Rainville [5, p. 209].

Next let us consider the expression,

$$
(-1)^{n} e^{x} D^{n}\left[e^{-x} L_{n}^{(\alpha)}(x)\right]
$$

which by the usual shift rule gives us

$$
(-1)^{n} e^{x} D^{n}\left[e^{-x} L_{n}^{(a)}(x)\right]=(1-D)^{n} L_{n}^{(\alpha)}(x)
$$

On making use of the relation (2.2) we obtain

$$
(-1)^{n} e^{x} D^{n}\left[e^{-x} L_{n}^{(\alpha)}(x)\right]=L_{n}^{(\alpha+n)}(x)
$$

which may be put in the form

$$
\begin{equation*}
R_{n}(1+\alpha, x)=(-1)^{n} e^{x} D^{n}\left[e^{-x} L_{n}^{(\alpha)}(x)\right] \tag{2.4}
\end{equation*}
$$

where $R_{n}(a, x)$ is the pseudo Laguerre set defined by Shively [5, p. 298] as

$$
R_{n}(a, x)=\frac{(a)_{2 n}}{(n)!(a)_{n}}{ }_{1} F_{1}(-n ; a+n ; x) .
$$

The formula (2.4) has been proved recently by Khandekar in a different way (see [4], p. 2).

Further, from (2.1) we have

$$
\frac{(-x)^{n}}{(n)!}=(1-D)^{-\alpha-n} L_{n}^{(\alpha)}(x)=\sum_{r=0}^{n} \frac{(\alpha+n)_{r}}{(r)!} D^{r} L_{n}^{(\alpha)}(x)
$$

which gives

$$
\begin{equation*}
\frac{(-x)^{n}}{(n)!}=\sum_{r=0}^{n}(-1)^{r} \frac{(\alpha+n)_{r}}{(r)!} L_{n-r}^{(\alpha+r)}(x) . \tag{2.5}
\end{equation*}
$$

Next consider the identity

$$
e^{-x t}=\sum_{n=0}^{\infty}(-x)^{n} \frac{t^{n}}{(n)!},
$$

operate on both sides by $(1-D)^{a}$, make use of (2.1) and proceed as in the cases of (1.12) and (1.13). We then get the generating function

$$
\begin{equation*}
(1+t)^{\alpha} e^{-x t}=\sum_{n=0}^{\infty} t^{n} L_{n}^{(\alpha-n)}(x) \tag{2.6}
\end{equation*}
$$

due to Erdélyi, and the known formula [2, p. 151]

$$
\begin{align*}
& \sum_{n=0}^{\infty}(n)!t^{n} L_{n}^{(\alpha-n)}(x) L_{n}^{(\beta-n)}(y) \tag{2.7}\\
& \quad=\left\{\begin{array}{l}
e^{x y t}(1-y t)^{a-\beta} t^{\beta}(\beta)!L_{\beta}^{(\alpha-\beta)}\left(-\frac{(1-x t)(1-y t)}{t}\right) \\
e^{x y t}(1-x t)^{\beta-\alpha} t^{\alpha}(\alpha)!L_{a}^{(\beta-\alpha)}\left(-\frac{(1-x t)(1-y t)}{t}\right)
\end{array}\right.
\end{align*}
$$

ACKNOWLEDGEMENT

I am grateful to Dr. H. M. Srivastava of Jodhpur University for his kind guidance and invaluable help during the preparation of this paper.

REFERENCES

1. W. A. Al-Salam, Operational representations for the Laguerre and other polynomials, Dake Math. J., 31 (1964), 127-142.
2. H. Buchholz, Die konfluente hypergeometrische funktionen, Berlin (1953).
3. L. Carlitz, A note on the Laguerre polynomials, Michigan Math. J., 7 (1960), 219-223.
4. P. R. Khandekar, Rodrigues' formula for some generalized hypergeometric polynomials, Math. Stu. of the Indian Math. Soc. (1) 34 (1966), 1-3.
5. E. D. Rainville, Special Functions, Macmillan, New York (1960).
6. R. P. Singh, Some polynomials of Srivastava related to the Laguerre polynomials, Math. Japonicae, 9 (1964), 5-9.
7. K. N. Srivastava, Some polynomials related to the Laguerre polynomials, J. Indian Math. Soc. (2), 28 (1964), 43-50.
8. H. M. Srivastava, On Bessel, Jacobi and Laguerre polynomials, Rend. Semin Mat. Univ. Padova, 35 (1965), 424-432.

Manoscritto pervenato in redazione il 1^{0} settembre 1966.

