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OPERATOR METHODS AND LAGRANGE INVERSION:
A UNIFIED APPROACH TO LAGRANGE FORMULAS

CH. KRATTENTHALER

ABSTRACT. We present a general method of proving Lagrange inversion for-

mulas and give new proofs of the s-variable Lagrange-Good formula [13] and

the 9-Lagrange formulas of Garsia [7], Gessel [10], Gessel and Stanton [11, 12]

and the author [18]. We also give some g-analogues of the Lagrange formula

in several variables.

1. Introduction. Let f(z) be a formal power series (fps) and g(z) a formal

Laurent series (fLs) with finitely many coefficients with negative index different

from zero (g(z) = J2k>i 9kZk for an integer /). Let /(0) = 0 and /'(O) ^ 0. The

coefficients of the expansion g(z) — ^2kezckfkiz) can be computed by the two

versions of the Lagrange formula, the first of which can be written as

(1.1) cn = n-1(z-1)g'(z)f-n(z)    for n ¿ 0, n G Z (integers),

where (zk) means the coefficient of zk; the second can be written as

(1-2) c„ = {z*)g{z)jl£Ù-    forneZ.

These formulas are based on the orthogonality relation

(Wit) ■ ji^ = **

for all n, k G Z (Snk is the Kronecker delta).

Using Hofbauer's method [16] for an orthogonality relation (fk,fn) = Snk we

can transfer certain properties of the sequence (fk)k&z to the sequence (fk)kez,
where ( , ) denotes a bilinear form. Hofbauer used it to prove some one-variable

Lagrange formulas. We extend this method in §4 by our Theorems 1 and 5 in order

to give a unified "recipe" for proving Lagrange inversion formulas. All known finite-

dimensional Lagrange formulas can be treated, as we show in §§5 to 8. Moreover

we use this recipe to find new Lagrange inversion formulas.

§5 deals with the Lagrange-Good formula [13]. Using our method, we give a

short new proof in which the Jacobian appears in a natural way. We are also

able to find multivariable generalizations even of (1.1), the "first version" of the

Lagrange formula (identities (5.6) and (5.7)).

Received by the editors November 1, 1985.

1980 Mathematics Subject Classification (1985 Revision). Primary 05A19; Secondary 05A15,

05A10.
Key words and phrases. Lagrange inversion formula, (/-Lagrange inversion formula, inverse re-

lations, umbral operators, (/-exponential function, g-Catalan numbers.

©1988 American Mathematical Society

0002-9947/88 $1.00 + $.25 per page

431
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



432 CH. KRATTENTHALER

§6 contains a new and extended presentation of Garsia's q-Lagrange theory [7].

The main idea is to extend his definition of <j-powers to powers with integral expo-

nents. We show that all of Garsia's results remain true in this more general context.

Garsia [7] points out the connection between his theory and Gessel's g-Lagrange

theorem [10, Theorem 6.9], but he is unable to prove it. Our extension to inte-

gral powers together with Theorem 8, where we discover the connection between

Garsia's "right" and "left" inverses, is the key for finding a new proof of Gessel's

theorem, within the setting of Garsia's (extended) theory. (Gessel derives it as a

special case of a noncommutative generalization of the Lagrange inversion formula.)

In §7 Gessel and Stanton's [11, 12] g-Lagrange formula is discussed. Earlier Car-

litz [2] proved an inverse relation which generalizes Gessel and Stanton's formula.

We prove both of these results by our operator method and obtain multidimensional

generalizations (Theorem 12, Corollary 13).

§8 concerns our [18, 19] g-Lagrange formula. In trying to find an s-variable

g-analogue of the Lagrange-Good formula, we succeed only when s = 2 (Theorems

20, 22 and 23), where we find ç-analogues for special cases of the two-variable

Lagrange-Good formula. In Example 21 we give an application to MacMahon's

fj-Catalan numbers.

2. Definitions. Let Z be the set of integers. For a natural number s TA denotes

the set of s- tuples with the integers as components. For m = (mi,... ,ms) and n =

(ni,... ,ns) G Zs we set as usual |m| = $3<=i m*i m + n = (mi +ni,... ,ma + ns)

and m < n if and only if m, < n¿ for all integers i, 1 < i < s. If all ro,'s

are nonnegative m! means mi\---ma\. For the special vectors of Zs where all

components are zero except the z'th, which is 1, we write e¿. The vector e is

(1,1,...,1). For (0,0,..., 0) we simply write 0. For a set of commuting variables

{zi,z2,...,zk} we set zk = zkl ■ zk2 ■ ■ ■ zk", where k G Zs.

In this paper sections in which only a single variable is considered are always

separated from multivariable sections. Although multi-indices (elements of Za) are

not denoted differently than one-dimensional indices (the same is true for variables),

no confusion should arise. In the multivariable sections we assume a fixed s G N

(natural numbers) except in §8, where s = 2.

Let A be a (commutative) integral domain with unity. We shall consider the A-

module Ls(z) = Ls(zi,... ,zs) of all formal Laurent series having the form a(z) =

Hn>fc anZn for some k G TA and an G A. Adding elements of Ls(z) is done

by adding the components. The multiplication of a(z) (as above) and b(z) =

¿m>¡ bmzm is defined by

a(z) ■ b(z) =   Y2  J2o,n-mbmzn.
n>k+l  ro

The inner sum J2m an-mbm is finite because of the special form of the elements of

Ls(z); in fact n — k > m > I. Of course (Ls(z), +, ■) is an integral domain.

Next we define some linear operators on Ls(z). L0a(z) denotes the coefficient of

z° in a(z). The coefficient of zn in a(z) is then L0(z~n ■ a(z)), for which we write

(zn)a(z). The partial differential operators D, are defined by DiZn = ni-zn~ei. Fur-

thermore for the g-analogues we need the operators e\9" given by et- i'zn — q1¡izn,

where the <7,'s are indeterminates.   Finally we introduce the partial q-difference
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OPERATOR METHODS AND LAGRANGE INVERSION 433

operators by

Z^ = [fe-i)^]-i(£t-J)
denotes the identity operator). The bilinear form (a(z),b(z)) = L0(a(z) ■ b(z)) will

be crucially important. For a linear operator U on Ls(z), the adjoint operator U* is

the operator which satisfies (Ua{z), b(z)) = {a{z), U*b(z)) for all a(z), b(z) G Ls(z).

For the indeterminate q we define

n-l

ia,q)n= Y[(l-aq%
¿=0

W = 7=T'        [n]! = [n]-[n-l]---[l],     [0]! = 1

and
[a]-[a-l]---[a-n + l] _ ((?<*,(T1)«

["]! {l,<l)n

The g-exponential series is

ZK

<(2) = £ïfcïr
k=0 l   '

Alternative expressions are

oo

eq(z) = Y[(l + (q-l)qkz)-1    and    e1/q(z) = ]J(1 + (1 - q)qkz),

k=0 k=0

where the infinite products converge as formal power series in q, yet may be viewed

as formal power series in z. For a definition of infinite products of that type as

fps in z see [7, p. 217]. In addition eq(z)~1 = ei/q(—z). For an introduction to

our notation and q-identities see Cigler's paper [3]. Note that in the one-variable

sections we write z for Z\, D for £>i, D^ for D\9   , etc.

3.   Preliminaries. We start with a sequence f = (fk(z))k£z> of elements of

Ls(z) having the form

(3.1) fk(z) = ^2 fnkZn    and    fkk invertible in A.
n>k

We call f a diagonal sequence.

Given another diagonal sequence g = (gi(z))t<zZ>, where g¡(z) = Ylk>i 9kizk, the

substitution fj(f) is the sequence (hi(z))i€zs, where

hi(z) = X^fci-ffcW
k>l

or, more precisely,

h¡(Z) =EE    fnk9klZn.
n   n>k>l

This substitution is associative; the neutral element is the sequence 1 = (2n)„ezs-

The sequence 5 = (F;(^))¡ezs is called the inverse sequence or short inverse of f if

3Tf) = ^"jnez*- This means that if we set

(3.2) Fl(z) = Y,Fklzk,
k>l
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434 CH. KRATTENTHALER

then

(3.3) zl =J2Fkifk(z)    forall/eZs.
k>l

Obviously for any diagonal sequence f there exists a uniquely determined inverse

sequence $. In particular Fkk = fj^k is invertible in A; therefore $ is also a diagonal

sequence. Comparing the coefficients of zn in (3.3) leads to the relation

(3-4) J2    fnkEkl=Snl.
n>k>l

Defining the operator U¡zk = fk(z) by extending it linearly to Ls(z), we see that

t/fF.(z) = zl by (3.3); moreover this implies t/f_1 = Ud. Applying t/f_1 to (3.1)

yields

(3.5) Zk = £ fnkFn(z).

77>fc

Again comparing the coefficients of zm, we have

(3-6) 2^,     Fmnfnk = <W-
m>n>k

Identities (3.3)-(3.6) are equivalent. The "inverse relations" [22, Chapters 2,

3] are essentially based on identities (3.4) and (3.6), respectively. Concerning the

connection between inverse relations and the Lagrange formula, see [1, 18, 19 and

12, Introduction], In fact (3.4) and (3.6) simply say that the matrices (fnk)n,kezs

and (Fkt)kti€z> are inverses of each other. This point of view leads to the concept

of "recursive matrices" introduced by Barnabei, Brini and Nicoletti (see [24] and

the references cited there).

As indicated in the introduction, we need a sequence f = (fk(z))k&zs satisfying

the orthogonality relation

(3.7) (fkiz)Jn{z)) = 6nk.

Using (3.6) we get

(3.8) fkiz)=J2F*'z~l-
l<k

Analogously, by (3.4),

Fn(z) = J2fnkZ~h-
k<n

4. The main theorems.

THEOREM l. Given Mi and M2 modules over the integral domain A, (, ) a

bilinear form from Mi xM2 into A, and I a set of indices, let (fk)kei be a sequence

of elements of Mi with the property

(4.1) (fk, h) = 0 for all kGl if and only ifh = 0.
Let Uj and V denote linear operators on Mi, V bijective, and let gj be arbitrary

functions from I into A such that

(4.2) Ujfk = gj(k)Vfk for all k G I and j = 1,2,.'.., r.
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OPERATOR METHODS AND LAGRANGE INVERSION 435

(4.3) For all indices m,n G I, m ^ n, there exists a j with 1 < j < r and

Suppose there exist the adjoint operators ofV, V~l andllj denoted byV*, V~l

and U*(this means (Vf, h) = (f, V*h) for all f G Mi and h G M2, etc.).

(A) // the system

(4.4) U;hk=9j(k)V*hk,        kGl,j = l,2,...,r,

has a nontrivial solution (hk)k€i—i.e., hk ^ 0 for all k G I—then (fk,V*hn) =

(fk,V*hk)6nk, where (fk,V*hk) / 0 for all k G I. If (fk,V*hk) is an invertible

element of A for all k G I, then there exists a (unique) sequence (fk)k£i of elements

of M2 satisfying

(4.5) (fk, /„) = 6nk,        n,kGl,

and given by

(4.6) fk = (fk,V*hk)-1-V*hk.

(B) Let (fk)kei, Uj, V and gj be defined as above such that (4.1) and (4.2) hold.

For a sequence (fk)kei satisfying (4.5) the equations

(4.7) U;V-imfk = gj(k)fk,        kGl,j = l,2,...,r,

hold.

PROOF. (A) Suppose (hk)kei satisfies (4.4). By using (4.2) we have

9fik){fk,V*hn) = gj(k)(Vfk,hn) = (Ujfk,hn)

= (fk,U*hn) = gj(n)(fk,V*hn).

From (4.3) this immediately implies (fk,V*hn) = 0 for n ^ k. For n = k suppose

(fn,V*hn) = 0 for some n G I. Together with the above calculation this means

(fk, V*hn) = 0 for all k G I. From (4.1) we conclude V*hn = 0. It is easy to show

that with our assumptions V* is bijective, and, therefore, hn = 0, in contradiction

to the condition hk ^ 0 for all k G I.

Defining fk = (fk,V*hk)~1V*hk, we evaluate

(fk,fn) = (fn,V*hn)-1(fk,Vhn)=6nk.

The uniqueness of the sequence (fk)kçi is obvious because of (4.1).

(B) Suppose (fk, fn) — 6nk for all n, k G I by (4.2), we get

(f^UfV-1'fn) = (V-'UjfkJn) - 9j(k)(fk,fn)

= 9j(n)6nk = (fk,9j(n)fn)

which, combined with (4.1), proves (4.7).    D

We choose Mi — M2 — Ls(z) and I = Zs. A usually can be considered a field.

In this case (fk, V*hk) in Theorem 1(A) automatically is invertible because it is not

zero. For the g-analogues we choose A = K(g), the set of all rational functions in

the indeterminates qi,q2,. ■ ■ ,qs over the field K. The bilinear form we use is (,),

as in §2. For the sequence (fk)k^i we choose a diagonal sequence of Ls(z) (defined

by (3.1)). Then condition (4.1) certainly holds. The Lagrange formulas then have

the following form.
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COROLLARY 2. Let (fk(z))kezs be a diagonal sequence and Uj, V linear op-

erators as in Theorem 1 satisfying (4.1)-(4.3). If g(z) G Ls(z) and (fk(z))kez>

is given by (4.6), where the sequence (hk(z))kez>, with hk(z) ^ 0 for all k G Zs,

satisfies (4.4), then the following hold: The coefficients in the expansion

9(z) = H ckfk(z)
fcezs

are computed by

(4.8) cn = (g(z)Jn(z)),

or> if (fn,y*hn) and gj(n) are invertible in A,

(4.9) cn = g](n)'lUn,V*hn)-1(U3g(z),hn(z)).

PROOF. The first formula is obvious because of (4.5). The second is just a

rearrangement of the first, where we use (4.4) and (4.6).    □

The first version of Lagrange formula (1.1) corresponds to the second expression

for cn; the second version (1.2), to the first. When s — 1 in the "ordinary" Lagrange

formula, the form (4.9) (i.e., the first version) is simpler and usually easier to use

than (4.8) (the second version). Because of the complexity of the operators Uj, in

general (4.9) will be rather complicated or even inapplicable.

For a diagonal sequence (fk(z))kezs, the procedure of finding a Lagrange for-

mula for this sequence is as follows: First we try to find a system of "eigenvalue"

equations for the fk(zys of the form (4.2) where the operators satisfy the condi-

tions of Theorem 1. Then we establish the dual system (4.4) deduced from the

system above. Next we try to find a sequence (hk(z))kez° of nontrivial solutions

of the dual system and from this compute (fk(z))kezs the system orthonormal to

(fk(z))k£Z*. Having performed these steps, by Corollary 2 we get (two) Lagrange

formulas for (fk(z))kezs- We demonstrate this method by deriving the classical

Lagrange inversion formulas (1.1) and (1.2).

But first we need the adjoint operators relative to the bilinear form (, ) which

belong to the elementary operators introduced in §2. They are listed below. Given

a(z) G Ls(z), the multiplication operator a(z) is defined by a(z)(b(z)) = a(z) -b(z).

Then

(4.10) a(zY = a(z),    (z^y =-z%Du    e¡qi)* = ef/qi),

{ZiDMy = _LZiD^M = _sAMZiD<f7).
Qi

These identities are easily verified. We prove the second. For all k,n G Zs,

(zlDizk,zn) = ki6k-n = -niôk-n = (zk,-ZiDiZn).

By linearity we can extend this to a(z),b(z) G Ls(z):

(ziDxa(z),b(z)) = (a(z),-ZiDib(z)).

Next we introduce another class of operators, the shift operators. Given a se-

quence f = (fk(z))keZ>, we set

iSifk = fk-a,        jTifk = fk+ei-
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If f = (fkiz))kçi satisfies (3.7), then elementary considerations show that

(4.11) ffi?/k = /*+«.        fS;=]T¿,

fî7/fc = /fc-ei, fTt* =   |S¿.

Moreover for f/j holds:

(4.12) U*sz~h = fk(z).

Now we turn to the one-variable Lagrange formula (see also [16]). We take A = K

a field of characteristic zero, s = 1 and fk(z) — fk(z) for a fixed formal power series

f(z) with /(0) = 0 and /'(O) ¿ 0. This assures us of (3.1). Hence f = (fk(z))kez
is a diagonal sequence. Thus

(4.13) zDfk(z) = kZ-j^fk(z).

Now applying Theorem 1(A), for r = 1, U\ — zD, V — zf'(z)/f(z), gi(k) — k, and
(4.10) we get the dual equation

(4.14) -zDhk(z) = k^Mhk{z),
f(z)

from which we immediately obtain hk(z) = f~k(z). So

AM = zJ^4hk{z) = zf'{z)

Cn = v(2)' J^Hz)/ = {z)9{z) ' T^m

/O)    "v '     fk^(z)

by (4.6) since

/fk(2)    zf'(z) \ _ T  zf'(z) _

Corollary 2 then reads as follows. For g(z) G Ls(z) the coefficients in the expan-

sion g(z) — J2kez ckfk(z) can be computed by

zf'(±
l(z)

or

cn = l-(zDg(z), f-n(z)) = {z~l)lj^    for n¿0.

These are exactly formulas (1.2) and (1.1).

In §6 it will be necessary to transfer eigenvalue equations of (fk(z))kez of the

form (4.2) to the inverse sequence {Fk{z))keZ- We demonstrate this first for fk(z) =

fk(z) before stating a general result. Suppose F(f(z)) = z. The coefficients of the

fps F(z) are determined uniquely. We start with (4.13), which can be rewritten as

zDfk(z) = k-jt^--fk(z).

Since, as is well known, f'(F(z)) = 1/F'(z), this is equivalent to

(4.15) zDfk(z) = k-£^fk(z).
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The dual identity for (fk(z))k&z is, according to Theorem 1(B) and using (4.10)

and (4.11),

-zDfS^)fk(k) = kfk(z).

Suppose tF'(t)/F(t) — Y^jLo $]& • Then comparing the coefficients of z~l by (3.8),

leads to
oo

l^jFk-f,i = kFkl.
j=o

Multiplying both sides by zk and summing up over all A; G Z yield, with respect to

(3.2),
zF'(z)

lZ-j^-F,(z) = zDFl(z),

the eigenvalue equation for F¡(z) = Fl(z).

The next theorem gives the general background of these considerations. But first

we need some notation.

DEFINITION 3. The linear operator £(f, d, C) is called a generalized shift for the

sequence f = (fk(z))kez' of degree d G Z9 and the associated sequence C = (ck)k€zs

with ck G A if

(4.16) C(,,d,C)fk(z) = ckfk-d(z).

All operators previously defined (with the exception of t/f) are generalized shifts

(or sums of them):

z? = £,(l,-mei,(l)kez>),

Di = £(l,ei,(ki)kez>),

ZiDi = L(1, Q,(ki)kez>),

e¡9i) = Ca^iqf'hez.),
fS< = £(f, e¿,(l)fc€Z.).

fT¿ = £(f, -e,,(l)fc€Z.).

Note that the weak composition rule

(4.17) £(f, di, C)C(l, d2,05) = C(f, dx + d2, (cfc_d2 • bk)k€Z.)

holds. Moreover, writing

£(f, d,C)fk(z) = ck¡Sdfk(z),

where f5d = \$=i ,Sf' (d = (di,...,da)), by applying Theorem 1(B), gives

û(l,d,Cr1Sdfk(z) = ckfk(z)

or, after substituting k + d for k,

£({, d,Cyfk(z) = ck+dfk+d(z).

Therefore

(4.18) £((, d,(ck)keZ.)* = £(?, -d,(ck+d)kez.).
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LEMMA 4. Let f = (fk(z))k£Z> be a diagonal sequence with inverse sequence

5 = (Fi(z))i£Z*, d G Zs, and C an arbitrary sequence of elements of A. Then the

operator identities

(4.19) Us£(l, d,C) = £(l,d,C)Us

and

(4.20) U5£(l,d,C) = £(S, d,C)Us

hold.

PROOF. This is easily verified by applying both sides of (4.19) to fk(z) and

both sides of (4.20) to zk, respectively.    D

For convenience we write *£((, d,C) = £(l,d,C) and *£(1, d, C) = £($, d,C).

THEOREM 5. Let f = (fk(z))k£Z> be a diagonal sequence with inverse sequence

5 = (Fi(z))iç.Zi> and L = {Ln/n G N} a set of generalized shifts for either f or 1.

Mi(L) denote monomials of elements of L. Then

]T Mi(L) = 0    if and only if   ^ M¿(*L) = 0,
» i

where M,(*L) means the monomial obtained from M¿(L) by replacing each Ln by

*Ln.

PROOF. By Lemma 4, U$Ln = *LnU%. This implies UçMi(L) = Mi(*L)Us and

Us¿2Mi{L) = ¿2Mi(*L)Us.
i i

Since U¡ is bijective, the equivalence of the above operator identities is proved.    D

Let us try out this result by applying it to (4.15), which in this new terminology

is written
oo

¿a, o, (k)kez) - y, *r^(f. -*. (fc)*ez)=o,
7 = 0

where Ylilo ®7lz* = F(z)/zF'(z), by definition. By Theorem 5, which simply says

that f is to be replaced by 1 and 1 by #, respectively, this becomes

oo

m, o, (k)k€Z) - 53 fc-^a, -i, (k)k€Z) = o.
i=0

Applying this identity to Fi(z) gives

kFl{z)- zF^jzDFl{z)=°

and

zDFl(z) = kZ-Ç^Fl(z),

as desired.

From Theorem 1 and Definition 3 the eigenvalue equation (4.2) could also be

written

Ujfk(z) = V£(l, 0,(gAn))neZs)fk(z).
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This equation is valid for all fk(z), which is supposed to be a diagonal sequence;

hence

U3=V£(¡, 0,(ffi(n))n6Z.)-

Then the adjointed operators must also be equal.

U; = £ß, 0,(g3(n))neZ')V*

by (4.18). This identity is applied to V*~1fk{z) to get

U;V-1fk(z)=gj(k)fk(z),

which is (4.7).

5. The Lagrange-Good formula. In this section we start with s fps fi(z)

(i=l,2,...,s)in the variables Z\,... ,zt with coefficients in the integral domain

A and the property fi(z)\Zi=o = 0 and (Difi)(z)\z.=0 is invertible in A for all ».

Set f(z) = (fi(z),f2(z),...,f9(z)). Then the sequence f = (fk(z))kez>, where

fk(z) — fkl(z)f22(z) ■ ■ ■ fk"(z) is a diagonal sequence. Differentiation with respect

to Zi yields

(5.1) ZiDifk(z) = ¿ kjZt{D;{j]{z)fk(z),        i=l,2,...,s.

j=i W>
From these s equations we are able to compute the fc,'s by Cramer's rule, and thus

we will get s eigenvalue equations in the sense of Theorem 1.

We write for convenience [f](z) for the matrix

( Zi(Djf3)(z)Y

V     ff(z)      ),»J = l

Its determinant is denoted by Af(z). Let Aijf(z) be the determinant of the matrix

obtained from [/](z) by omitting the ith row and jth column. Then

(5.2)        (¿(-îy+'A,,/^)*,!?.J fk(z) = kjAf(z)fk(z),        j = l,2,...,s.

With Uj = £¡=i(-1)J+ÍAb7(z)2i-Di, V = Af(z) and gj(k) = kj, we can apply
Theorem 1, since all other conditions are satisfied. First we compute Uf:

uj = rt(-íY+l¿ijHz)ziDi\

= -Yé{-ï)i+lzlDlAljf{z)
i=i

= -Yá(-l)j+l^i3fiz)zlDl - ¿(-íy+^AAtf/Xz).
¡=i í=i

We shall show that the second sum in this expression is equal to zero. When this

is done (4.4) reads

- \J2(-iy+lAl3f(z)zlDl j hk(z) = kjAf(z)hk(z).
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By comparing this relation with (5.2), we immediately get the solutions

Since (fk(z),V*hk(z)) = L0Af(z) = 1, by (4.6) we obtain

(5.3) fk(z)=Af(z)f-k(z)=ze-fcr-V! - -e¿f(z)/°~z
fk+e(z) '

with 6f(z)/6z the Jacobian of /.
We now must prove £/s=1(-l)J+'zi(D'A/.,/)(z) = 0. Let Es be the set of ejec-

tions on the set of integers between 1 and s. Then

(5.4)

¡=i

En        I  TT z*(i)(D*(i)fi)(z)
sgmrz^D^    [[ y

Tres, -•-' JiI   7=1
Wf

(Z)

= J2 sgmrY, El
7r6E. fc=l   t=l

Zn(i)(Dir(i)fi)(z)

h{z)

(zn(j)Zn(k)(D*(j)Dn(k)fk)(z)  _ Z^ij-)(Dn{j)fk)(z)zn{k)(D^k-)fk)(z)\

\ hiz) Pk(z) )

= E3 sgn7r^^(f,y,rc,7r)
7r€E, fc=l

s

= ^2 5Z sgnTrÁtf.j.fc.Tr).
7C=l7r6S,
Mi

We divide Es into two classes for fixed j and fc: E^_¿ . = {ö-|fj(j) < o-(fc)} and

E^ ¿   the complementary set with respect to Es; i.e., E^ ¿   = {a\a(j) > cr(k)}. We

introduce the map tjk from E^¿ • onto E^¿ • by ijfctr = (<j(j)tr(fc))<T = o(jk). This

implies sgn^jfco-) = - sgncr. Obviously tjk is a bijection for all k / /. Furthermore

we note A(l, j, k,n) = A(l, j, k, tjkn). Hence

J2 sgnwA(l,j,k,w)
Tres,

=    J2    sgnirA(f,j,k,ir)+    J^    sgnirA(f,j,k,ir)

=    Yl   (sgnirA(l,j,k,w)+sgntjkwA(l,j,k,tjk7r))

= 0.

This is valid for each k; therefore (5.4) is equal to zero, as desired.
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Combined with Corollary 2, this completes the proof of

THEOREM 6  (LAGRANGE-GOOD FORMULA).   The coefficients in the expan-
sion

9(z)

fc€Zs

are computed by

v     ' \yK ''    fn+e(z)   I     x      '     fn+e(z)

This is the analogue for (1.2).

Trying to get an analogue of (1.1) by (4.9) we get (if Uj is invertible in A)

(5.6) cn = n-1(z°) ¿(-l)>+'A„-/(«)i,Aff(*)
Li=l

rn(z)

for j = 1,2,..., s. These s formulas are put together in a symmetrical formula by

multiplying the jth formula by Uj ■ |n|-1 and then summing over all j. The result

is

(5.7) c„ = \n\
-V)

£ (-iy+lAljf(z)zlDlg(z)

1,3 = 1

rn(z)

(if |n| is invertible in A), but it seems to be only of theoretical interest if s > 1,

since there is no improvement to formula (5.5) (which is the case for s — 1), because

in (5.7) s2 determinants have to be computed, in (5.5) only one.

REMARK. (1) In the proofs of the Lagrange-Good formula the Jacobian of f(z)

is usually "pulled out of a hat" ; generally (e.g., in [16, 24, 27]) Loze(6f(z)/6z)fk(z)

= 6ke is first proved. The advantage of our proof is that the Jacobian of f(z), or

better Af(z), appears naturally when transforming system (5.1) to system (5.2) in

order to get eigenvalue equations which can be treated by Theorem 1.

(2) Brini [24] and Henrici [27] extend the Lagrange-Good formula to a larger

set of series. For a fixed s G N consider fLs of the form

(5.8) a(z)

¡ez»

where for all m G Z there is only a finite number of a/'s with |/| < m which are

different from zero. Let the set of all fLs of the form (5.8) be denoted by Ls(z).

Then Brini and Henrici start with fi(z) G Ls(z) of the form

(5.9) fi(z) = blzi+ ^2 buz1,        i = l,2,...,s,

l¿l>2

where the 6¿'s are invertible in A. They show that the Lagrange-Good formula

remains true for these more general series. To establish this we can use our proof

of Theorem 6 verbatim. The only difference is that when applying Theorem 1 and

Corollary 2 we have to take Mi — M2 = Ls(z) instead of Ls(z).

Concluding, we turn our attention to Abhyankar's [23] inversion formula, re-

discovered independently by Garsia and Joni [8, 9, 17] and Viskov [28].    Let
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fi(z) (i = 1,2,...,s) be fLs of the form (5.9) and bi = 1, f = (fk(z))kez> and
5 = (Fl(z))i€Z> its inverse sequence, where F(z) = (Fi(z),... ,Fs(z)) with i<(e)

being of the form (5.9), too. (Such a system F(z) does exist; see [24, 27].) Ab-

hyankar's formula gives an expression in terms of /t for the umbral operator U$,

i.e., the substitution by the inverse sequence #. The above-mentioned authors only

prove it for /¿ being fps of the form (5.9). A slight modification of Henrici's [27]

proof establishes its validity even for fLs of the form (5.9) with bi = 1.

THEOREM 7.  Let fi(z), Fi(z) (i = 1,2,... ,s) be defined as above. Then

(5-10) ^=£^(*)<^
ro>0

where Gi(z) = zx - fi(z).

PROOF. Let g(z) - ¿2kez> ckfk(z). Then by definition of U%,

Us9{z) = £ ckzk.

fcez»

Therefore cn = (zn)U$g{z). But considering Remark (2) above, we can compute

cn by the Lagrange-Good formula (5.5). Hence

(z°)zeg(z)6f(z)/6z
(5.11) (zn)Udg(z) =

fn+e(z)

{z°)g(z)(6f(z)/6z)z-n

(1 - G(z)/z)n+e

= (z°)g(z)6/z(z)z--j:(n+mm)(G(z)/zy

ro>0 ^ '

= J2(zn+n(nim)j:(z)G(zrg(z)

m>0

Dm fi f

= (zn)Y,zrr-j-(zMzr9(z).
m>0

Note that the application of the multinomial theorem was possible because the

order (for definition see [27, (1.3)]) of Gí(z)/zí is at least 1, since the /,'s are of

the form (5.9) and 6, = 1. Equation (5.11) holds for all n G Zs; therefore

u,g(z)=J2^Tj:(z)Gm(z)9(z)^
'—?   m\ oz

77l>0

which is true for all g(z) G Ls(z). This furnishes the operator identity (5.10).    D

The generalization of Theorem 6 to Ls(z) seems to be a little artificial, but there

are beautiful applications which can be found in [27, §5]. For surveys and references

concerning multivariable Lagrange formulas, see [27 and 26, Part II].

6. Garsia's ^-analogue of the Lagrange formula. Here we take s = 1 and

A = K((j) to be the set of all rational functions over a field K in the indeterminate

q. Let f(z) be an fps (in one variable z) over K(q) with /(0) = 0 and f'(0) / 0.
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The powers fk(z) are replaced by the "g-powers" f(z)-f(qz) ■ ■ ■ f(qk~1z) for k G N.

To apply our method, we need an extension for Ác G Z. Hence we define

( f(z)-f(qz)---f(qk-1z) forfc>0,

1 for k = 0,

I  f(z/q)f(z/q*)---f(z/q-*)    ÎOTk<0-

With the help of Garsia's [7] starring operator this could be written in closed form:

flk>4{z) = f*{z)/f*(qkz)    for/c€Z.

This definition warrants the following properties for k, l G Z:

(6.1) /•*•«> (z) ■ /['•«' (qkz) = f[k+l>q] (z),

(6.2) /[*•«! (*)//"•«'(*) = f[k-l>q](qlz),

(6.3) l/f^(z) = f[-k'1/9](z/Q),

(6.4) f^^{z) = f^k'llq]{qk-1z).

These identities are easily verified by trying all cases.

Let fk(z) — f[k'q](z). Then f = (fk(z))k€Z is a diagonal sequence. Then

fi1'il(z)f^q\qz) = /1*+1-«] (z)

by (6.1). But this is

f(z)e^fk{z) = fTfk(z).

By Theorem 1(B) the dual equation would be, by (4.10) and (4.11),

£(1/q)f(z)-7Tfk(z) = fk(z).

This leads to

fk+i(z) = fk(qz)/f(z),

and therefore we get

(6.5) fk(z)=fo(qkz)/ßk'qHz),

which is proved inductively. The orthogonality relation (3.7) then becomes

Using (6.2) and replacing z by q~nz give

Loflk-n<q](z)fo(z) = 6nk,

or, using (6.3),

T /o(*) _ £
L° f[n-k,l/q]{z/q) - Önk-

Setting n — k = m, we get

fo(z)

'f[^/g)(z/q)
OmO-
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Since /o(z) is an fps, the last identity does not give any information about fo(z)

when m < 0. For m > 0 we have

(6-7) (*°> „   /  /°{Zl   I  rrn  = ¿-0-f(z/q)---f(z/qm)

By this identity the coefficients of /o(z) can be successively evaluated. By compar-

ing with Garsia [7, identity (1.7)], we see that our fo(z) is, in Garsia's notation,

zf°(z)/f(z) or, vice versa,

(6.8) f°(z) = (f(z)/z)fo(z).

(In our context this is to be regarded as a definition. Moreover we remark that in

Garsia's paper the roles of f(z) and F(z) are exchanged.)

With his roofing and starring operations, Garsia is able to give an explicit expres-

sion for his f°(z). This cannot be deduced by our method (starring is a nonlinear

operator). We refer the reader to Garsia's paper. We intend to give a survey of

the usefulness of our method by deriving and extending Garsia's results that do

not involve roofing or starring operations within our setting, finding some new ones

((6.14), (6.24), Theorems 8 and 10), and proving Gessel's [10] g-Lagrange theorem.

Next we study properties of the inverse sequence $ = (Fk(z))k€Z. Equation

(3.3) in terms of the g-powers fk(z) = /[*•«] (z) becomes, for / = 1,

00

(6.9) £*a/^(*) = *.
7 = 1

We denote the fps Fi(z) — J^iLi -^»i2' °y F(z). Substituting z for qkz and multi-

plying by f\k,q\(z) transform (6.9) into

oo

£í¿i/[fc+'i'9l(z) = qkzf\k>q\z)

i=l

with respect to (6.1). In the operator terminology of §4 this is

oo

£ £(l, -i, (Fji)jez) = £(1, -1, (l)i€Z)£(f,0, (qj)j€Z).
¿=i

The dual equation, according to Theorem 5, is

oo

£ £(i, -i, (Fji)jez) = £(d, -i, (i)jez)£(i,o, ry)iez)
i=i

or, in terms of the elementary operators,

F(z)= ,re(«>.

Applying this operator identity to £^/q^Fi(z) yields

F{z)F,{z/q) = Fl+i{z).

Combining this with Fi(z) = F(z), we get immediately the surprising beautiful

form

(6.10) Fl(z) = F^l'1^(z).
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From this point of view Garsia calls F(z) the right inverse of f(z) (and f(z) the

left inverse of F(z)).

As a corollary we get

(6.11X1) £afcz* = £öfc/[M1(.z)
k k

if and only if

(6.11X2) £aiFli-1/"](z) = £6iz'.

i i

The second equation is derived from the first by applying the operator t/f_1, and

vice versa.

By (6.5) the Lagrange formula (4.8) reads as follows: The coefficients in the

expansion

(6.12) !/(*) = £c*/IM(*).
fcez

where g(z) G Ls(z), are given by

(By comparing with (1.2) we note that fQ(z) is the g-analogue for zf'(z)/f(z);

hence f°(z) by (6.8) for f'(z).)
Interesting new facts arise by studying the adjoint of [/¡j. First we find an ex-

pression for the coefficients of fo(z)fin'q\z). For g(z) = z~k the Lagrange formula

yields for the expansion (6.12)

c»-Lo[z    Jl^ijzj)-

On the other hand, by applying (6.11) to (6.12) we get

c„ = (zn)F^k'xlq\z) = L0(z-nFt-fc,1/«l(z)).

Therefore by changing n into —n, we get

L0(z F'    •'*(z))-L0yz     /[_n,,](j?)J •

On the left side we substitute g_fcz for z; on the right, qnz for z. This is allowed

because L0(a(z)) = Lo(a(pz)) for all a(z) G Ls(z) and constant p. Together with

(6.2) this leads to

L0(*7¿?'tM/,1(z)) = L0(z-kfo(z)f^(z))

or

(6.14) <z*>/o(z)/l"'9I(z) = (z-n)lfF^l'q\z).

This identity plays a significant role in the proof of Gessel's theorem [10, Theorem

6.9].   In addition, it is easy to extend Garsia's g-Lagrange inversion formulas [7,
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identity (1.10) and 25, identity (5.6)] to integral n and arbitrary 3>(z) G Ls(z) with

the help of (6.14). In fact each of them valid for all n G Z and $(z) G Ls(z) is

equivalent to (6.14).

In particular, we get, for n = 0,

After we substitute qk~1z instead of z on the right side, (6.4) implies

(6.15) <z*)/o(z) = (z^jr^       (= <z°>Fl-^](z)).

This briefly means, if we remember (6.11), that /o(z) is the same for the left and

right inverses of F(z). (6.14) for n — 1 and k + 1 instead of k is

which turns out to be Garsia's coefficient representation of his f°(z) [7, Theorem

1.3]; compare to (6.8).

Now we consider U£.

y>US Fl-n,l/q]tz))   = X^'Fl-n,!/«)^)

\ KZhF\-^li\(z)/

= L0F^k+n'1^(qnz)

by (6.2). Using (6.3), we rewrite (6.14), for n = 0, as

(zk)f0(z) = (*°>F[-MA,1(g*) = LoF^-k'1^(pz)

for an arbitrary constant p. Therefore

(*k>U*Fl-^/*\(z)) = ^"fc_n)/oW = (*k>fo(z)z").

As valid for all k G Z

U^F[-n,l/q]{z)=fo(z)zn.

After using (6.3) again, we get

(6.17) foiz^U^F^iz) = zn.

But according to (4.12) and (6.5),

(6.18) Mzr'U^z" = qnfo(z)-1f-n(z)

Jo{q-nz)        1
= q

foiz)    f\-n^(z)

\ [n,l/q]

fo(z/q)ffz\Y= Lhmf (i
V Mz)   v<
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Therefore the right inverse of F(z) is q(fo(z/q)/f0(z))f(z/q). This proves

THEOREM 8.   Let f(z) be the left inverse and if(z) the right inverse of F(z).

The coefficient of zn of the fps fo(z) is defined by (6.15).  Then the relation

(6.19) i/(z) = q(fo(z/q)/fo(z)) ■ f(z/q)

holds, and the operator identity

(6.20) DJ - fo(z)U, fe(V9)

where if =df^1^(z))kez.

Quite analogously read the results for F(z), namely

(6.21) lF(z) = \^ElF{qz)
q F0(z)

if iF(z) denotes the left inverse of f(z) and

(6.22) U; = Fo(z)U^£^.   D

Because Us = Df-1, we have by (6.20) and (6.22) that

(6.23) foizpt feW«> = ¿^U^Foiz)-1.

Combining (6.8) and (6.19) yields

if(z)fo{z)/z = f°{z/q)

and, analogously,

iF(z)F0(z)/z = °F(qz).

(Garsia has to distinguish between f°(z) and °/(z) or F°(z) and °F(z), respec-

tively, because these fps are not independent of whether we take the right or left

inverse. The advantage of our /o(z) is that we need not bother about this. For

clarity f°(z) arises by taking the right inverse of /(z); °/(z), by taking the left

inverse of f(z) or, in other words, the coefficient of zk in f°(z) is given by the right

side of (6.16), and the coefficient of zk in °/(z) is given by the right side of (6.16)

after q is replaced by 1/q and F is replaced by iF. The same holds analogously for

F°(z) and °F(z).)

Moreover, we state the operator identities

urfif(z)£^=zu^

and

U-1i^iF(z)e^^zU^,

which are verified by applying i/'n,1/''(z) and iF'n'9'(z), respectively. Then (6.23)

reduces to

(6.24) f°(z)Uli = Uj°F(z)-1.
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Garsia's g-analogues of the chain rule for derivatives are special cases of this oper-

ator identity. Here it is convenient to adopt Garsia's notation for his «/-analogue of

functional composition:

*(7) = £**/'*•«](»    or    $(F) = £$,Ft'-1/9l(z),

k I

respectively, with $(z) = J2k ®kZk an element of Ls(z). Applying (6.24) to °F(z)

then yields

(6-25) f°(z)°F(iJ) = 1

[7, Theorem 2.6]. By (6.19) and (6.8) we know that

/ (z) z

which transforms the last identity into

oo

(6.26) £ °Fk g<7[fc+M/9]iz)fo(z/qk) = z

k=0

([7, Theorem 1.4], where q is replaced by 1/q. The equality of fo(z) and Garsia's

eq(z) are proved in Theorem 8). Applying (6.24) to 1 yields

(6.27) f°(z)=°F-1(l)

which is another g-analogue of f'(z) = F'(f(z))~1.

Now we are in a position to give a new proof of Gessel's (strong) theorem [10,

Theorem 6.9], which in our notation reads as follows.

THEOREM 9 (GESSEL).   Let f(z) satisfy

OO

(6.28) f(z)=qzJ29nfln'q](z)
77 = 0

with g(z) = X3^Lo 9nZn an fPs wüh 9(®) ¥" 0- Let f(z) satisfy

oo

(6-29) 7iz)=Z-Zsn7[n'1/q\z).
Q  77=0

Then there for n,k G Z,

(6.30) (zn)fo(z)f[k'q](z) = q^(zn-k)g\n>llq\z/q)

holds, where fo(z) = (1 - d(z))~1 with

oo

(6.31) d(z) = z £ gl+3+ifW(z)J[3'1/q](z).

i,3=0

PROOF. Division by zf(z) and substitution of z/q instead of z turn (6.28) into

1 °°
(6-32) -=  £ gn+if^(z).

Z 7l = -l
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But Er=-iSn+izn = g(z)/z. If we set F(z) = z/g(z), then Fl-W«](*/fl) =
g(z)/z. By (6.11) we obtain that the left inverse of F(z/q) exactly satisfies (6.32).

Therefore (because of uniqueness) f(z) must be the left inverse of F(z/q). Since

U^[F(z/q)f'i'q\ = zl, we get f(z) = Dae<«>« = q(Usz). Usz is the left inverse

of F(z); therefore f(z)/q is the left inverse of F(z). Similar considerations starting

with (6.29) show that qf(z) is the right inverse of F(z). This and (6.19) give

(6-33) 7W = g-i^fM/(z/g))
fo(z)

where fo(z) is defined as in Theorem 8.

Since (6.30) is obviously just a rearrangement of (6.14) with n and k exchanged,

only 1 — l//o(z) = d(z) is left to be proved. We have

= T— (l-^/l))-!  (zfo{z)   ¿2   gn+lfM<z)
f0(Z) V 77=^1

-(;)A(;)£-«^(i))

by (6.28) and (6.29). Using (6.33) and (6.4), we obtain

~ q^+í^0 v^+î) * n'q \'r+ï,

1     °° 1 _p(l/«)"+1

1 OO 77

= Ti-£!3n+1££(1/^(,/o(2)/[n,,](2))

fo{z) n=0 j=0

f^9i+j+iq-ih^fU^i(i)fM(z).
r~to Mz)       v«/

Again using (6.33), we get the desired equation

oo

Z

«,-» =

oo

i-7^T = ^£ft+i+i/[i"lW7[3'1/9lW. a
M2)       ,->J=o

The next theorem adds another identity of this rather strange type; it is a q-

analogue of the chain rule for derivatives.
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THEOREM 10. Let F(z) = £~=1F„zn, f(z) be the left inverse and if(z) the

right inverse of F(z) and f°(z) as in (6.8). Then

(6.34) £ Ft+J+1 /[«•«! (qz) if^l'q\z)f(z) = 1.

»,.7=0

PROOF. By (6.19) and (6.8),
OO

(l_£(i/*)) £ Fl+j+if^(qz) if^qKz)f°(z)
i,3=0

r~io Mz)       v«/    z

OO 71 f   (    \

=(i-iW«))Efn+iEf(1/"—/[n+1,,1w
n=0 j=0

= £ Fn+1(i - e(i/*r+1)¿M/["+M](¿)

77=0 ^

n=0 n=0

_áfel._áí!L_a
z z

Therefore the left-hand side of (6.34) is equal to a constant, which is easily evaluated

by setting z = 0.    D

Obviously more identities of this type can be obtained in a similar manner.

Indeed, a beautiful theory can be developed. But unfortunately it seems that only

in Carlitz's special case, that is, f(z) = z/(l - z), can the fps /°(z) and /o(z) be

evaluted concretely. (There

^•»-(i-,)('i-./.)and Ä(2)=i^W'

A slight generalization of this example can be obtained from the same considerations

Gessel makes in order to expand his g-Lagrange inversion formula of [11] to the

inversion formula of [12]. (Riordan does the same in the opposite direction, when

he derives the inverse relations of Legendre type by those of the Chebyshev type

in [22, §2.5].) We only briefly state the result of this procedure, making use of the

terminology of [18], namely

(6.35) #(M) = ^£|^H)^
eq(z/(l-q))

zk,

which is a g-analogue for (1 — z)a. Let d be a natural number. Then for f(z)

z/p%)(l,zd)and/fc(z) = /[^1/d](z),

/°(*) = -7^—-—    and   fo(z)pSÍWl «-'*") 1-q'dzd'

(fk(z) of course is an analogue for z*/(l - zd)k^d.) The corresponding Lagrange

formulas appear in [12 and 19].
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7. The g-Lagrange inversion formula of Gessel and Stanton, a general-

ization by Carlitz. Let K be a field of characteristic zero. Gessel and Stanton's

[11] formula essentially is a ç-analogue of the inverse relations of Gould type [22,

p. 52]. As application of our operator method in connection with this Lagrange

formula has already been discussed by Hofbauer in [16]. We shall only state the

result and leave the details to the reader.

The sequence (/fc(z))jtez with

where A, p G K, satisfies the eigenvalue equation

(Z + l)£^fk(z) = qk(fk(z) + Az£^£^fk(z)).

The sequence (hk(z))k€Z, given by

satisfies the dual eigenvalue equation

eWq)(z + l)hk(z) = qk(hk(z) + AeWp)eWqhhk(z)).

Therefore the wanted sequence (fk(z))kez is, by (4.6),

(7.2) A«=£ {j^~itr)k-1-^ - v<,<x-i)-z-<.
Kfc iq,q)k-i

(Indeed Gessel and Stanton's notation differs from ours by the factor q(?) + ( 2 ), but

obviously both inverse relations are equivalent. Our choice of constants warrants

the condition fkk = 1 for all k.)
If q = pc~1, A= pa and p-*l, then this inverse relation turns into the classical

Gould-type relation if c ^ 1:

fa + n + ck — k — 1\
fnk={ n-k )

if and only if

Fkl = (-i)*-«« + d(« + cfc\
a + ck\ k — I )

(The factors (c- l)fc~" and (c- l)i_fc are negligible.) In [14] Gould and Hsu found

a generalization of this inverse relation, which can be written as

(7.3X1) Uk =
n"=fc+i(qj + fcfrj)

(n-k)\

if and only if

fc_, q,+1 + lbi+1 rij=i+i(aJ + kbi)
(7.3)(2) Fkl = (-1)

at+i + kbi+i (k-l)l

for arbitrary a3, bj G K.
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Carlitz [2] gave a g-extension of this generalized Gould-type inverse relation

which contains the above-stated formula of [11] as a special case. His viewpoint is

quite different, though. Whereas Carlitz restricts his interest to inverse relations,

Gessel and Stanton apply their formula to derive transformations of basic hyper-

geometric series, Rogers-Ramanujan identities, etc. The next theorem presents

Carlitz's inverse relation in a somewhat modified form.

THEOREM ll  (CARLITZ).   Let aj, bj be elements of K(q).  Then

7.4    1 /„* = xiJ-*+*Y 3,q(  2 )
(q,q)n-k

if and only if

(7.41(2, F»M-.)»^%|^.
ai+i+qbi+i       (q,q)k-i

PROOF. To apply Theorem 1 we let A = K(q). Set

= E n"=fc+1K+^)g(„_%w

nTk       («'«)»-*

Then

(£(1,0, (aj)jez)z + l)£{q)fk(z) = qk(fk(z) - £(1,0, {bj)jeZ)z£^fk(z)),

which we prove by comparing coefficients of zn. The dual equation for the aux-

iliary sequence (hk(z))keZ then becomes, from (4.10), (4.18), and because of Ï =

(z~k)kez,

e^^{z£(l,0,(a-j)jez) + l)hk{z)

= qk(hk(z)-e^z £(1,0, (b-j)jez)hk(z)).

Comparing coefficients of z~l leads to

ql(al+ihk<l+i + hkti) = qk(hkl - qlbl+ihktl+i)

or
al+1 + qkbl+i

hkl =-1-qk-l     Hk'l+U

from which we obtain

_, nfc_inJfc=i+i(Qi+<?%)
"kl - ("I) -7—-T-

(q,q)k-i

by setting hkk = 1. Then a short calculation shows that, by (4.6),

;m_Ví  uk-ia'+i + g'6'+i n?=i+i(oi + 9%)    ,
fk(z) - 2_^(-l)      -:—iTT--,-,-z    ,

Kfc ai+i+qkbi+i (q,q)k-l

which completes the proof.    □

Gessel and Stanton's formula arises from (7.4) by setting a, = 1 and bj =

-Ap3-1. Their method of proving their formula in [12] also suffices to show (7.4);
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moreover, (7.4) seems to be the most general inverse relation which can be proved

by this method.

In [4] Egorychev found two generalizations to several variables for the Gould-type

inverse relations for the case q = 1, namely

(7.5) /rt-(a+"^(* + «*-*')-1\

Fkl = {-i)^al^l:ia+p=\Ciki, ),
a + £,.=1 Ciki \ki-li--ks- lsJ

and

m *-n(x+-f)'
* - (-')"-" (i +1 fhi) n {"+"XX * - ') •

or equivalently

(7.7)    /„fc=nfaí+c#|+nr*í"1),

Ffc/-(-l)        ̂ -^——J^^J.

Here n, k, I are multi-indices. The multinomial coefficient

(      M      )

in (7.5) means
M!

Ni\---NS\(M-Ni-NS)Y

These relations are proved by the Lagrange-Good inversion treated in §5. For (7.5)

we have to observe that for the sequence

fk{z) = [n (i-E,i^)c^j (i - EU z»)°

the sequence fk(z) by (5.3) is

(7.7) corresponds to the pair

» z J

AW=jS(i-^ 1*1
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and
- «,-)0í+ejl*l

ta-(,+êA)iÈ kj
Z3

In (7.6) the roles of fnk and Ft; have to be exchanged. Then the relation corre-

sponds to the above pair with the expression (1 + J2i=i icizi/{l — z»))) shifted from

fk(z) to fk(z).
To find a ç-analogue for the first expression, one might try for fnk the expression

(Ap\k\qkr---qk>,p)]n-k

(9i.9i)ni-fci ■■■iqs,qs)n,-k,

times suitable powers of the o¿. It is not difficult to obtain the missing term either by

finding the "right" eigenvalue equations for fk(z) or by extending Gessel's original

proof (in [12]) of his one-variable inverse relation to s variables. Once having done

this it is easy to extend even the more general Theorem 11 to s variables. The

result is

THEOREM 12.   Let aj,bj be elements of K(qi,q2,...,qs). Then

„8)(1)   ,„,. nftr<*+rfi---*w n,r">-*s~>->'>
(çi.gijm-k! ■■■(qs,qs)ns-k. "

if and only if

(7.8X2)   FM = (-!)■*-'■ °'"" + <f -^ ng|,|+xK + rf' -^i) A.,
a\i\+i +Qi ••■qa'b\i\+1 (<7i,<7i)tci-Ii ■ • • (qs,qs)k,-i, fj[

t-1

where Ki = — fcj £(/cr — /r).

r=l

PROOF. To apply Theorem 1 we need to take A = K(oi,... ,qs). Set fk(z) =

£n>fc fnkz". For the linear operator £(1,0, {ay\)jeZ>) we write, for short, A and

for £(1,0, (b\j\)jeZA, we write *8. Then

(7.9)     (Aj2ziÁqi)---4q,)+Á9l)---4qA fk(z)

= if1 • • ■ qk9' (fkiz) - » £ ^ ■ • • e^Mz)) ,

which again is proved by comparing coefficients of zn. The dual equation for the

sequence (hk(z))keZa is then

(¿ 4:/,l) • ■ • e\lMZiA* + e[1/9l) • • • el1'*A hk(z)

= qî1 ■ ■ •«?' 6*(*) - £41/?l) • •  £l(1/,,)^t] M*)-
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Since by (4.18), A*z  l — a^\z  l and 93*z  '=61,12  ', comparing the coefficients of

z~l leads to a recursion relation for the coefficients of hk(z) which finally gives

(qi^Akt-h ■■■(qs,qs)k3-is f-=\

By (4.6) we get, after a short calculation,

mz) = £(-D'fc-" aw+fkl
■ql'b\i\+1

i<k aw+i + qi1 ■■■qk,b\i\+i

nf4i+1K + ̂ '--^MA K,z_,
(Cl^l^-h •••(&,&)*.-!. ¿*9*

for Ä, = — ki J2r=i(kr — lr), as desired.    D

REMARK. We did not mention specifically that it is not self-evident that appli-

cation of Theorem 1(A) to (7.9) is possible. What has to be checked is condition

(4.3). In this case this is qkl ■ ■ ■ qka = g"1 • • • g™3 if and only if n = k. A single

equation is enough information to compute fk(z) by Theorem 1, although fk(z)

is an s-variable fps. Normally when dealing with s variables we need s equations,

such as in §5 (yet it is not difficult to add to (7.9) (s — 1) similar equations).

The special case for bj = —Ap3 and aj = 1 is the g-analogue of (7.5).

COROLLARY 13.   The following inverse relation holds:

,7inun , (ApWqkr ■■■gk>,p)\n-k\      TT   K
(7-10Xi) /»* = („ „ \-Tzrzr\-11q*

(qi,qi)ni-k1 ■■(qs,qs)ns-k, £*

where

if and only if

^=(n,/')-fc.LK-M

(7.10)(2) Ffcí-(-l)l       (1_Ap|l|îfl...iî.)

(710) • (^'fc|-1^,-rfM'"1)i*-'i TTq*<

iquq\)kl-h---{qa,qa)k,-i. ïJi
□

By setting q% = pc< *-, A = pa and p —► 1, we get the inverse relation (7.5)

(again after deleting the factors (ci - l)fc"-ni ■ • ■ (cs - i)fc«-"« and (ci - l)^-k^ ■ ■ ■

(Cs-l)1'-"-).

Concluding, we remark that the inversion formulas of [12] are proved in a similar

manner.

8. The author's ç-analogue. This section deals with the ç-analogue given in

[15, 18, 19]. Here we do not have such an extensive theory as in §6, but there are

many examples, which yield ^-extensions of Riordan's inverse relations (see [19]),

special polynomials, etc. Let s = 1 and A = K(g) for a field K.
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The essential definition is

DEFINITION 14. The fps <pa(z), a G R, are called g-powers for a fixed fps <p(z)

if tpa (0) t¿ 0 for all a and

(8.1) Z>(,W*) = WMz)Pa(z).

Obviously in the case q = 1 the fps <pa (z) (save a constant) are powers of an fps

lp(z) with ip(z) —lp'(z)/'ip(z). If we write (8.1) as

(8.2) £{q)Va(z) = (1 + (qa - l)ztp(z))tpa(z),

we obtain, by successive use of this formula,

^^ = nr=o(i + (9a-iv^(^))'
or, by Garsia's notion of starring [7],

<8-3» l-w-(n-(.--i)M«))'-

A short evaluation shows that for a,b G R(C) and m G N,

EXAMPLE 15. e,jm((a[a] + b)zm)/eqm(bzm) are g-powers corresponding to

ip(z) = a[m]zm-V(l + (9TO - l)6zm).

This is the most general known example for g-powers in the sense of Definition 14,

but it suffices for the applications.

Let ipa(z) and 3>a(z) be g-powers for ip(z) and $(z), respectively.   Then we

consider the sequence f = (fk(z))kez, where

(8-4) MZ) =  W+A(flz)/*-fc-MW

By (8.2) we get for fk(z),

im >ifM-^ i + (g-*-" - l)z*Q)   f(.
(8.5) eWA(z) - q (1 + (9ha_1)wM)A(4

and, after a short calculation,

(8.6) (e«(l - z<p(z)) - q-»z*(z))fk(z) = qk(-qx£^zp(z) + 1 - z$(z))fk(z).

Thus the dual equation for the auxiliary sequence (hk(z))kez, by (4.4), is

(8.7) ((1 - z^z))^1/«) - q-"z^(z))hk(z) = qk(-qxz<p(z)£Wq) + 1 - z$(z))hk(z)

or, equivalently,

ed/9)hk(g) m J*1 + (*-"-*-!)**{*) h,z)£       hk(z)-q    1 + {qk+x_1)z(p{z) M*J.

then finally

Thus

(8-8)
,   ,,•, _ <Pk+\(qz)/$-k-p(qz)
hk(z) =--z-
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and, by (4.6),

(8.9)   fk(z) = (-qxz<p(z)£Wq) + 1 - z*(z))hk(z)

= (-qk+xz<p(z)(l + (g-*-" - l)z$(z))

+ (1 - z*(z))(l + (/+* - l)z^(z)))^±^^^M

= (1 - zV(z) - z*(z) + (1- f-»)z\(z)*{z)) V*+Áz)l*-k-p.(qz).
ZK

The necessary condition (fk(z),fk(z)) = 1 is easily verified.   Thus we get the

Lagrange formula

THEOREM 16.   The coefficients in the expansion

Ezk
Ck-7-T—-p-TT

fc6Z   >fc+A(9«)/*-fc-^(«)

with g(z) GLs(z), <pa(z) and$a(z) being q-powers for <p(z) and$(z), respectively,

are given by

(8.11) cn = /g(z), (1 - zV(z) - z*(z) + (1 - qx-»)z2<p(z)*(z))

tpn+x{z)l<b-n-p,{qz)\
Zn j

= (z°)g(z)(l - z<p(z) - z*(z) + (1 - qx-»)z2<p(zMz))

<Pn+\iz)/$-n-p.{qz)

zn

In [18] also an analogue of the first version (1.1) of the Lagrange formula is

obtained. This shall be generalized here. First recall the case q = 1. There the

expansion (8.10) corresponds to an expansion of the form

ckfk(z)
9(z) = £

if we assume limq-,i (pa(z) = pQ(z), lim9_i$Q(z) = $  (z), z/ïp(z)$(z) = f(z)

and $"(z)^A(z) = a(z). Then by (1.1),

c'n = -(z-l)(g(z) ■ a(z))Tn(z)   for n ¿ 0.
n

The rj-analogue of this formula is

THEOREM 17.   The coefficients in the expansion

zk

(8.12) ffW = £c*^-7
^)/*-*-„(*)'

with the assumptions of Theorem 1, for n/0 are given by

i(qz)

i{qz)(8.13) cn = Uz-W» (g-^$) ^TiZt{1r~t{[«] V  *-p.iz)  J    zn<px(z)/<í>_li(q
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PROOF. This time we start with the sequence f = (fk(z))kez, where

(R 14Ï                                    f (A -    zk(PÁz)l®-p.jz)
(8-14J *kW - ~z,-77775,-7~\-

<Pk+x{z)/9-k-p{Z)

By (8.2) we get, after a short calculation (analogous to that which yielded (8.6)),

(       *-*>(«)       c<* _ 9-ß**W_^ fk(z]
V1 + (qx - l)z<p(z) 1 + (g-M - l)z*0) /

q   \    l + (qx-l)z<p(z)£     ^ l + (q-»-l)z$(z))mZh

which is equivalent to

<s,5, *««., = H (-1 + (^U)'W + . + (r *%.(.)) "(2>'

Thus the dual equation for the sequence (hk(z))k€Z, remembering (4.10), is

(8.16)   --zD^^hk(z)

- [jfcl (   c(l/«) ^Z^Z) |   __^jHz)__\ h()
~[*H l + (qx-l)Zlp(z) + l + (q-»-l)z*(z))nk[Zh

which finally leads to (quite analogously to the considerations which proved (8.8))

,R17^ h (A- <Pk+Áz)l®-k-p.jqz) /
(8-17) hk(z) -    zkMz)/*-piqz)   ■

Therefore by Corollary 2 we get, by letting U = zD^q\ g(k) = [k], after having

compared (8.15) and (4.2):

The coefficients in the expansion

9(z) = £ cfc

kez

zk<px(z)l$-t(z)

<Pk+x(z)/$-k-p.(z)

are given by (for n / 0)

c   = — IzD^â(z) Vn+x(z)/$-k-p.(qz)\
cn      {n]^zD    g(z),   zn(px{z)^_Aqz)   )■

But after multiplying both sides of (8.12) by tpx(z)/$-p.(z), we see that this is

equivalent to (8.13).    D

REMARK. (1) In [18] only the special case A = p — 0 is proved.

(2) Indeed here we have analogues of both types of the Lagrange formula. For

lack of identities similar to (6.1)-(6.4) this theory seemingly cannot be further

developed. In particular we are not able to say something reasonable about the

inverse sequence 5 in contrast to Garsia's theory. (Via (8.15) and Theorem 5

we could get a recursive formula for the Fj(z). It is omitted here, because it is

usable only in special cases.) The reason is that the fps ip(z) seems to be the only

connection between the powers <pa(z).
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EXAMPLE  18.  This example should demonstrate use of our Theorem 16 and

17. It concerns the problem of finding ^-analogues of Euler's [5] formula

\7l-l

(8.18) ¿' = £ WV      (ze-'T.
M _ryb(b + n)

71 = 0

An equivalent form of (8.18) is

(8.I9) i = Et(t+f",2V
71=0

A reasonable analogue for enz, or better e(-b+n'z/ebz, in view of Example 15, is

ei/q({b + q~1[n\i/q)z)Iei/q{bz)- In Example 15 q has to be replaced by 1/q, and

a is set equal to rj_1. Then these fps turn out to be l/g-powers corresponding to

<p(z) = l/q(l + (q — l)bz). (The choice of the base 1/q instead of q will be explained

later.) Theorem 17 for A = p — 0, <£>(z) = 0 and q replaced by 1/q gives: If

V-» zk

ei/q(bz) = £ ck^{{b + q-i[k]i/q)z)/ei/q{bz),

then for n > 1,

1    u-i\n(i/Q)/„     (u^   ei/q((b + 9~1\n]i/q)z)/ei/q(bz)
Cn =

n
(z-1)D^q)(ei/q(bz))

i/q

1    , -ubei/g^b + q-^nji/^z)
^\Z       I-~n-

\n\i/q

=q®±(b+q-i[n}1/qr-1.

Of course Co = 1 and cn = 0 for n negative.   The desired analogue for (8.19) is

therefore

^ 0(ï) ,n

(8.20) 1 = Y ^-b(b + q'n[n])""1-—--¡-r-^.
1       ' ¿o H! ei/q((b + q-n[n]z))

77=0

The similar formula

(8
0T)

1 ~     q(    2    ) _n Z"

•21) l-z(l + (q- 1)6) = ¿J "RT*6 + q~n[n])n e1/q((b + q-»[n])z) '

which is easily proved by Theorem 16, is a «/-analogue for the well-known identity

Í8 22) l "(6 + n)"     z"

71 = 0

If we multiply (8.21) by 1 - z(l + (q - l)b) and then add to (8.20), we obtain

(")
2 = £ 7¿(6 + «""N)""1^1 - *) + *(* - «Wfo"6 + w) + v

r,— n   i   J'

oo
<7V

71=0

ei/q((b + q-"[n))zy
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which is valid in the sense of fps. In [1, identity (7.48)] Askey and Ismail evaluated

the right side of (8.23) if0<^<l,6>0 and z = 1. The result is a curious

(/-analogue for the special case of (8.19), where z = 1:

oo        (») ,

(8-24)       1 = £ qW»(t> + <T" W)-1(2 - «" + 6(1 - M)ei/q{h + rn[n]y
71=0

(ei/q(z) converges for all z G C if |g| < 1; therefore we took 1/q instead of q.) Since

the right sides of (8.20) and (8.21) turn out to be analytic functions for Rez > 0

because there the series uniformly converge, two questions arise:

(1) Is it possible to evaluate the right sides of (8.20) and (8.21) for 0 < q < 1 or

even |g| < 1? (Both (8.20) and (8.21) are wrong in this case.)

(2) What is the relationship between (8.24) and g-Lagrange inversion? (Askey

and Ismail obtain (8.24) in connection with an orthogonality relation for g-Carlitz-

Karlin-McGregor polynomials.)

What can be shown is that (8.20) and (8.21) (and therefore (8.23)) hold for q > 1

and |z| < l/\l+(q-l)b\ after e1/9((&-hTr>])z)-1 is replaced by eq(-(b+q-n[n])z).

(In the fps-sense both expressions are identical, but for q > 1 only the second

converges for all n € N and z G C.) This is proved by proving uniform convergence

of the right sides of (8.20) and (8.21) for |z| < r, r being fixed with 0 < r <

1/11 + (q — l)b[, and using Weierstrass's double series theorem.

For 0 < q < 1 this argument does not work, because there does not even exist a

neighborhood of 0 where for all n the functions zn/ei/q((b + q~n[n])z) are analytic.

After this excursion we turn to the problem of finding g-analogues of the s-

variable Lagrange-Good formula. At first sight this seems to be easily established

by suitable extensions of the g-powers <pa(z) to s variables. But even for s = 2

great difficulties arise. Still we succeed in establishing some special two-dimensional

formulas.

LEMMA 19. Let (pa(zi) and $a(z2) be q-powers for <p(zi) and$(z2), respec-

tively.  Then

(1)

fkuk2{zi,Z2) =

,fci ,k2
zl   z2

'Pk1-rk2+x{qZl)/^-k1-k2-n(z2)

satisfies the system

(I) (q-X(l-z2^(z2))-£{q)£{2q)Ziip(zi))fklM(zi,z2)

= q-k^x£{q)(l - zMzi) - z2$(z2) + zi<p(zi)z2$(z2)(l - gA""))

• fki,k2{Zl,Z2);

(II) (-<?-'iz2$(z2)+c(19)49)(l-z1^(z1)))/fcl,fc2(z1,z2)

= qk>£{q)(l - zMzi) - z2$(z2) + z1^(z1)z2$(z2)(l - g*""))

• fk¡,k2(zi,Z2).

(2)
,         .     , x      fk,+k2+\(qzi)/^-kl-k2-Mz^)
hkuk2(zi,z2) =--j—y2-

z,  z2
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satisfies the dual system

(T)    (q-x(l-z2S(z2))-Zi<p(zi)£y-'qh£/q))hklM(zi,z2)

= q-k>-x(l - zMzi) - z2$(z2) + zi<p(zi)z2*(z2)(l - (7a-"))

■e^,q)hkuk2{zi,z2);

(IP)      (-9-"*a#02) + (1 - zMzi))£[1/q)41/q))hkuk2(zi,z2)

= qk*(l - zMzi) - z2$(z2) + zi<p(zi)z2<í>(z2)(l - (7a-"))

■e[1/q)hklM(zi,z2).

(3) By (4.6),

fki,k2(zi,z2) = (1 - zitp(zi) - z2<p(z2) + zi<p(zi)z2$(z2)(l - qx~ß))

<Pk1+k2+x(zi)/$-kl-k2-n(qz2)
-fci Ai ■    u
zl   z2

The proof of this lemma is straightforward.

Equation (4.8) then gives

THEOREM 20. With the assumptions of Lemma 19 and g(zi,z2) G Ls(zi,z2),

the coefficients in the expansion

Efci   k2

Ck-1-m-7~^
kez2     <pkl+k2+x(qzi)/^-k1-k2-n(z2)

are computed by

cn = (zo)0(zi, z2)(l - zi^(zi) - z2$(z2) + zi<p(zi)z2$(z2)(l - gA_/1))

<Pn1+n2+x(Zl)/<t>-ni-n2-p.(qZ2)
_"i yn2 •      u
zl   z2

Obviously this theorem intimately corresponds to Theorem 16. Indeed the proof

of the orthogonality relation in [18, Lemma 1] is easily converted to obtain the

orthogonality relation which proves Theorem 20 by ^-differentiation with respect

to zi and z2 at the same time (meaning the operator DZ,\Z2 = (£q £2   — l)/(q— 1)).

EXAMPLE 21. This short application of Theorem 20 concerns the q-Catalan

numbers treated by MacMahon [20, p. 214; 21, pp. 1345, 1429] and Fiirlinger and

Hofbauer [6]. They are able to compute a generating function of those numbers

Cnq)(x):

(825) ,_f       g-ftJcfrW"
¿J (-q-nz,q)n(-qxz,q)n

If we write C„ (x) = Y^krnk(q)^k, the coefficients rnk(q) are g-Runyon numbers.

We compute them by Theorem 20. It is convenient to first set z = z2 and x — zi/z2.

Then (8.25) becomes, by (6.35),

q-^T.krnk(q)zkizrk
(8.26) z2 = £

[p{nq)(l,-q-nz2)piq)(l,-qzi)

qKrkl+k2,kl(q)zkrzk*
= £

krk2Pkq!+k2{h-qzi)pk^+k2(l,-q-k^z2)
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where

.--(";*).

According to Example 15, pa (1, —z) are g-powers for 1/(1 + z) if we set a = 1, b =

-l/(l-g) and m = 1. By setting y&'Oi) = pL''(l, -*i) and $Q(z) = pi?'(l, -z2)
and applying Theorem 20 to (8.26), we get (A = p — 0)

qKrk1+k2,ki(q) = («)« (^ ~ T~¡ ~ T^)

,<«) .(9)
P\q!+k2{h-zi)/pkq!+k2((l,-q-k^k^z2))

Ai ~k2
zi  z2

- I, \)±A1A±A7±
-\Z°'   ,*1,*2-1    „(«)

(l-ZiZ2) Pfcl+fca-^1'"?^)

«-^ff^a,-^-*»-^)'
After setting n = fci + k2, fc = fci, we obtain, by (6.35),

g-(s)rnfc((7) = f?(tr)+("it)-»(n-«=-i)

_(7(2)+(""2-1)-«(n-fc-2)

n-1

fc

n- 1

fc-1

n-1

n — k — 1

n-1

n-k-2

= g-(S)+fci+*

•([n-/c][fc

= 9-(;)+fc2+fc

[n-1]!2

[fc]![n-fc]![ifc + l]![n-/c-l]!

•([n-rc][fc+l]-g[fc][n-fc-l])

["-I]!2 |

[rc]![n-fc]![fc + l]![n-fc-l]!'

and finally

(8.27) rnk{q)
-nkz+k. n

k + 1

Two further two-dimensional rj-Lagrange formulas are stated below. The proofs

are quite similar to that of Theorem 20. A more detailed discussion of two-

dimensional g-Lagrange formulas is the object of another paper.

THEOREM 22. With <pa(z) and $a(z) being q-powers for ip(z) and$(z), the

coefficients in the expansion

9(z) = £ ck

yki   k2
z1   z2

k€Z2 <P(kl+k2)/2+xiqZlZ2)/<&-{kl+k2)/2-¡l{ziZ2)

are given by

cn - (z°)g{z)(l - ziz2<p(ziz2) - ziz2$(ziz2) + z2z2<p(ziz2)$(ziZ2)(l - 9A_")).

(P(m+n2)/2+x{ziZ2)l<b-(nl+n2)/2-p.(qZlZ2)
r»i   rt2

Z,    Z2
D
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THEOREM  23.   With the assumptions of Theorem 22, the coefficients in the
expansion

Ezklzk2

Ck-?-Vri-7-7
fc£Z2       ^1+A(9ZiZ2)/í>_fc2_li(ziZ2)

can be evaluated by

cn = (z°)g{z){l - ziz2tp(ziz2) - ZiZ2$(ziZ2)

+ Z2Z2^(Z1Z2)$(Z1Z2)(1 - gA-M+n.-n2))

ipni+x(ziz2)/^^n2-fl(qziz2)

,"1 _"2 •        UZl   z2
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