
F.LSS~CIF~ 

An International Joumal 
Available online at www.sciencedirect.com computers & 

.o , . .o .  ~ ) 0 , . - o . .  mathematics 
with applications 

Computers and Mathematics with Applications 51 (2006) 441-450 
www.elsevier.com/locate/camwa 

Convergence of the Summation Formulas 
Constructed by Using a 

Symbolic Operator Approach 

TIAN-XIAO HE* 
Depar tment  of Mathemat ics  and Computer  Science 

Illinois Wesleyan University 
Bloomington, IL 61702-2900, U.S.A. 

the@iwu, edu 

LEETSCH C.  H s u  
Depar tment  of Mathemat ics  

Dalian University of Technology 
Dalian 116024, P.R. China  
xulizhi63~hotmail, com 

P E T E R  J . - S .  SHIUE t 
Department of Mathematical Sciences 

University of Nevada, Las Vegas 
Las Vegas, NV 89154-4020, U.S.A. 

shiue©unlv, nevada, edu 

(Received February 2005; revised and accepted October 2005) 

A b s t r a c t - - T h i s  paper deals with the convergence of the summation of power series of the form 
~'~a<_k<_b f(k) xk, where 0 < a < b < oo, and {f(k)} is a given sequence of numbers with k E [a, b) or 
](t) a differentiable function defined on [a, b). Here, the summation is found by using the symbolic 
operator approach shown in [1]. We will give a different type of the remainder of the summation 
formulas. The convergence of the corresponding power series will be determined consequently. Several 
examples such as the generalized Euler's transformation series will also be given. In addition, we will 
compare the convergence of the given series transforms. (~) 2006 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - S y m b o l i c  summation operator, Power series, Generating function, Euler's series 
transform, Polya and Szeg5 identity. 

1.  I N T R O D U C T I O N  

In [1], we present a symbolic summation operator with its various expansions, and construct 
several summation formulas with estimable remainders for sb(f; x) = ~-]~a<k<b f(k) xk' with the 
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aid of some classical interpolation series at tr ibutable to Newton, Gauss and Everett,  where 0 <_ 
a < b _< oo, and {f(k)} is a given sequence of numbers with k E [a, b) or f ( t )  a differentiable 
function defined on [a, b). In order to discuss the convergence of the summation formulas, we will 
give a new type of remainders. We now start  from the following notations. It  is known that  the 
symbolic operations A (difference), E (displacement), and D (derivative) play important  roles in 
the calculus of finite differences as well as in certain topics of computat ional  methods. For various 
classical results, see e.g., [2,3], etc. Certainly, the theoretical basis of the symbolic methods could 
be found within the theory of formal power series, in as much as all the symbolic expressions 
treated are expressible as power series in A, E,  or D, and all the operations employed are just 
the same as those applied to formal power series. For some easily accessible references on formal 

series, we recommend [4-6]. 
Recall tha t  the operators A, E,  and D may be defined via the following relations, 

A f ( t )  = f ( t  + 1) - f ( t ) ,  E l ( t )  = f ( t  + 1), O f ( t )  = ~ f ( t ) .  

Using the number  1 as an identity operator, viz., l f ( t )  = f ( t ) ,  one can observe that  these 
operators satisfy the formal relations, 

E = 1 + A = e D, A = E - 1 = e D - 1, D = log(1 + A). 

Powers of these operators are defined in the usual way. In particular, one may define for any real 

number x, viz.,  EX f ( t )  = f ( t  + x). 
Note tha t  E k f ( o )  = [Ekf ( t )] t= o = f ( k ) ,  so that  any power series of the form ~-~°~= o f ( k ) x  k 

could be written symbolically as 

E f ( k ) x k  = E x k E k f ( O )  = E ( zE)k f (O)  = (1 - x E ) - l f ( O ) .  
k>O k>O k>_O 

This shows that  the symbolic operator (1 - x E )  -1 with parameter x can be applied to f ( t )  (at 
t = 0) to yield a power series or a generating function (GF) for {f(k)}.  We shall need several 
definitions as follows. 

DEFINITION 1.1. The expression f ( t )  • clam, b) (m _> 1) means that f ( t )  is a real function contin- 

uous together with its mth derivative on [a, b). 

DEFINITION 1.2. ak(x)  is called an Eulerian fraction and may  be expressed in the form (cf., [5]). 

A (x )  (x ~ 1), 
~ k ( x )  = (1 - z )  k+ l  

where Ak ( x ) is the k th degree Eulerian polynomial having the expression, 

k 

Ak(x)  = E A ( k , j ) x J ,  Ao(x)  =- 1, 
j = l  

with A(k ,  j )  being known as Eulerian numbers, expressible as 

A(k,j) -- Z ( - I ?  k + 1 i (J - i)k ( l _ < j  ___ k). 
~-----0 

DEFINITION 1.3. 6 is Sheppard central difference operator defined by the relation 6 f ( t )  = 

f it + 1 / 2 )  - f (t - 1 / 2 ) ,  so  that  (cf, [2]) 

= A E _ I / 2  = A ~2k = A 2 k E - k .  
E1/2 ' 
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DEFINITION 1.4. A sequence {xn } will be called a null sequence if  for any given positive (rational) 

number  e, there exists an integer no such that for every n > no [xn[ < e. 

For null sequences, we quote the following result from [7] (see Theorem 4 in Section 43). 

LEMMA 1.5. Let  {x0, x l , . . .  } be a null sequence and suppose the coefficients an.e of  the system 

A = {a~,3 : 0 <_ j <_ i; i = 0, 1, 2 . . . .  } satisfy the following two conditions. 

(i) Every  column contains a null sequence, i.e., for fixed p >_ O, an,p ~ 0 when n --* oc. 
(ii) There exists a constant K such tha t  the sum of  the absolute values of  the terms in any 

row, i.e., for every n, the sum [a~,o[ + la,~,l[ + ' . .  + [an,hi < K.  
! 

Then, the sequence {x~} formed by the numbers x~ = an,oxo + a,~,lxx + an,~x2 + ".. + a~.~x~ 
is also a null sequence. 

Obviously, Lemma  1.5 is a consequence of the Toeplitz theorem (cf., [7, p. 74]). 

D E F I N I T I O N  1 . 6 .  F o r  any real or complex series oo ~ k : o  ak, the so-called Cauchy root is defined 
by r 1-~mk-.oolakl wk. Clearly, oo = ~ k = 0  ak converges absolutely whenever r < 1. 

In [1], we have shown in Section 3 tha t  ( 1 - x E )  -1 could be expanded into series in various ways 
to derive various symbolic operat ional  formulas as well as summat ion  formulas for Y~k>_0 f ( k )  xk. 
For completeness of the paper,  we now cite the result as follows. 

PROPOSITION 1.7. Let  {f (k)}  be a given sequence of  (real or complex) numbers, and let g(t ) be 
infinitely differentiable a t  t = 0. Then, we have formally, 

oo ~ ::)k+1 Ak f = ( i  (01, 

E f ( k ) x k  = (1 -- x) 2 
k = l  k = 0  

f ( k ) x k  = (I -- x) 2 
k = l  k = 0  

o o  o o  

k .  ~ 
k = 0  k = 0  

(62k f (1 )  -- x62k f(O)) , 

(X-162kf(O) -- 62k f ( - - l ) )  , 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

where we Mways assume that x ~ O, 1. 

REMARK 1.1. We may  write (cf., [8,9]) the Eulerian fractions ak(x )  as 

k Xj 
ak(X) = E J ! S ( k , j )  (1 _-~) j+l  ' 

j = 0  

(1.5) 

where S ( k , j )  are Stirling numbers  of the second kind. Substi tut ing equation (1.5) into equa- 
tion (1.4) and noting j!  ~'~=j S ( k , j ) ( D k / k ! )  = (e D - 1) j = AJ (cf., [1,4]) yields 

c~ c~ oc k . 

k=O k=O ' k=Oj=O -~'S(k'J) (l ---X)J+lDk9(O) 

=Z(l: p+i J!F-,s(k,J)-K g(o) 
j=o k=j 
oo x j  

= E (1 -- '7)9+1AJg(0),  
j = 0  
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which is the series expansion (1.1). Therefore, in this paper, we only discuss the convergence of 
(1.1)-(1.3). 

We shall give a new type of remainder in Section 2 for each of the summation formulas shown 
in the series transforms in Proposition 1.7. In Section 3, we shall discuss the convergence of the 
summation formulas by using the established remainders. Some examples such as the generalized 
Euler's transformation series will also be given. In addition, we will compare the convergence of 
the given series transforms. 

2. S U M M A T I O N  F O R M U L A S  W I T H  R E M A I N D E R S  

In this section, we will establish three summation formulas with remainders. 

THEOREM 2.1. Let {f(k)} be a given sequence of numbers (tea] or complex). Then, we have 
[ormally, 

f ( k ) ~  ~ = 

k=O 
O 0  

S(k )~  k = 
k=l 

O 0  

Z f ( k ) ~  ~ = 
k=l 

OO 

n-~ ~k ~n S':~x~A'f(e), (2.1) 
k=OE (1 - x) k+l Akf(o) + (1 - x) " - - - ' ' ~  e=o 

n - l (  )k+l  ( X . ~ ) n  ~ 
~_, ~q~ny(e), (2.2) ( i  _-~)2 ( ~ k : ( l )  - x ~ l ( 0 ) )  + (1 - 

k=0 t=l 
n - - l (  X ) k + l  
E (1 " x )  2 (X-152kf(O) -- 52ky(--1)) 
k=0 (2.3) 

+ (I - z )  2 z ~ 2 n f ( e ) '  
t=0 

where we always assume that x # O. 

PROOF. From equation (1.1), we obtain 

(1 - x E )  - 1  = 
-1 x 

x = - A ( 1 - - - x A )  -1 ( 1 - x ) - l ( 1  1_--~ ) 

= ( 1  - x) -1 ~ + 1 - ( ( z / ( 1  - x))h)  
k t=O 

n-1 Xt m t ( x ) n m n  

= E ( l - x )  t+l + ~ 1 - x E  
t=0 
n-1 / X \ n  oo 

x t At  ( - - ~  ~ ' x e E e A  n. 
= ~t=o (I -~)t+~ + \i - x /  

Since EtAnf (o )  = AnEef(O) = Anf(g), applying operator (1 -xE)  -1 and the rightmost operator 
shown in the above equalities to f(t)lt=o yields equation (2.1). 

Similarly, we can derive formula (2.2) formally as follows. From equation (1.2), we have 

n-l(  )k+l 
X ((~2kf(1) _ x~2kf(o) ) 

I(k)xk = ~ (1 : x)~ kffil k=l 

k~n 
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Applying A = E - 1 to the last series yields 

~-~ ((1 ~_---.X)2)k+li2ks-k(s--x)f(O) 
k=n 

= k=o (1 - z )  2 (E - x):(O) 

- ((1 

- ((1 

- x) 2 ) 1 - (x/(1 - x)2)(A2/E) f(O) 

- z )  2 (1 - x) 2 - x(A2/E)f(O) 

x ) '~ ( A___.~ ) n Ex(E - x) 
- -x )  2 (1 - x)2E - x(E - 1) 21(0) 

n 

_z 
X)2 xk6a'~f(k), 

k = l  

which implies equation (2.2). Equation (2.3) can be derived by using a similar argument. 

REMARK 2.1. In equation (2.1), if we assume x = - 1 ,  then we have the following Euler 's series 
transform, 

oc n - 1  oo 

Z + 
k = 0  k = 0  £ = 0  

Hence, we may call (2.1) the generalized Euler's series transform, which can be used to accelerate 
the series convergence. 

We now use Theorem 2.1 to discuss the convergence of the t ransformation series (2.1)-(2.3). 

THEOREM 2.2. Let {f(k)} be a given sequence of numbers (in R or C), and let 0 = lqmmk-~o~ 
]f(k)[ 1/k. Then, for any given x with x # O, we have the convergent expressions (2.1), (2.2), 
and (2.3), provided that 0 < 1/[x[. 

PROOF. Suppose tha t  the condition 0 < 1/[x[ (x # 0) is fulfilled, so tha t  O[x I < 1. Hence, the 
convergence of the series on the left-hand side of (2.1)-(2.3) is obvious in accordance with the 
Cauchy's  root test. 

To prove the convergence of the right-hand side of equation (2.1), it is sufficient to show that  
~°~_o x~Anf(~) is absolutely convergent. Choose p > 0, such tha t  

elxl < plxl < 1. 

Thus, for large k we have If(k)[ 1/k < p, i.e., If(k)[ < pk. Consequently we have, for large 

as g ~ o¢. Thus, 

i/~ 

= p ( l + p )  ~/e ~ p ,  

so tha t  the series on the right-hand side of (2.1) is also convergent absolutely. 
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The absolute convergence of the right-hand side series in (2.2) and (2.3) can be proved similarly. 
The only difference is to estimate [52nf(g)ll/e which can be done as follows under the same 
condition 0 < 1/Ix [. 

I a~n:(e) t x/~ = I~x~:(e-  n)l ~/~ 

= pl-n/e(1 + p)n/e ~ p 

as g --* oc. It  follows that  
l'ime-~oo I xe52n f (£ ) l  1/~ <_ p l x  I < 1, 

which implies the absolute convergence of the right-hand side series of both (2.2) and (2.3). 

The argument in Theorem 2.2 applies to negative values of x with x > -1 .  Thus, for x = -1 ,  
we have the following corollary. 

COROLLARY 2.3. Let limk_..,~ If(k)[1/k < 1. Then, we have the convergent series 

n--1 
2k+-------- T -  + ( -1)eAnf(g)  (2.5) 

k = 0  £=0 

~ D  

E ( - - 1 ) k f ( k )  = 
k = 0  

oc n - 1  oo 

E(- t )k f (k )=E(-1)  k+152kf(1)+52kf(O) ~ -~( - : )e52" f (e )  (2.6) 
4k+1 + 

k = 0  k=O £=1 
n - 1  c~ 

E ( - 1 ) k f ( k )  = E ( - 1 )  k 52kf(O) + 52k/(--1) ~ E(--1)e52 '~/(g)  (2.7) 
4 k + l  -~- 

k = 0  k = 0  ~=0 

The condition shown in Theorem 2.2 can be replaced by the following weaker condition. 

THEOREM 2.4. Let {f(k)} be a given sequence of numbers (real or complex) such that ~k~=o 
f (k)x  k is convergent. Then, we have convergent expressions (2.1), (2.2), and (2.3) for every 
x < 0 .  

PROOF. We write the remainder of expression (2.1) as follows, 

Xr  ~ o¢ 
/% (1 - z)---------~ ~L m ~ 

( 1  - x)  n 

_ (-~)~ 

_ (-~)~ 
( ~ - ~  

- ( ~ - E ~  

" C) - -  ~ ( - 1 ) ~ - J x  ~ f ( j  + e) 
t = 0  j = 0  " " 

- -  y - ~ ( - 1 ) ~ x  ~ y ( j  + e) 
j = 0  ~=0 

C) - -  ~ ( _ ~ ) - J  ~ x ~ S ( e )  
j=0 e=j 

() Z ( _ x ) _  ~ n 
- -  X j ,  

j=o J 

where xj = ~ = j  xefl(e) (0 <__ j <_ n). Since ~ = o  xef(~) converges, xj is the term of a null 
sequence (see Definition 1.4). To apply Lemrna 1.5 here, we consider the coefficients, 

. -  (-x) ~ 
a~,j ( g = ~ ( - x ) - ,  C ) .  
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Hence, i f j  is fixed, for every x E [ - 1 , 0 )  we have and -'* 0 as n --* oo because of 

(;) l a n a i  = (1 - x )~  < (1 - x )  - - - - - - 7  

and 1/(1 - x) < 1, and for every x < - 1  we also have and ~ 0 when n --* c¢, seeing tha t  it is 

I z l ~ - J  lan,jl - ( ~ - ~ n  ( ~ )  < (llX~_lx) nn j  

and Ix~(1 - x)l < 1. In addi t ion,  for every n and for every x < 0, we have 

n 1 n n _ j ( n , ~ = l .  
la~,jl - (1 :~)"  Z (-~) ~ 

d=0 j=0 - - 

Therefore,  from Lemma 1.5, we find tha t  Rn is also the  t e rm of a null sequence, so the  series on 

the r ight -hand side of (2.5) converges for every x < 0. Using the  same argument ,  we can show 
the convergence of the  series on the r ight -hand side of equat ions (2.6) and (2.7) for every x < 0. 

REMARK 2.2. If  X < 0, the  convergence ra te  of the  r ight -hand side series of ei ther  (2.2) or (2.3) 
is faster t han  the  convergence ra te  of the  r ight -hand series of (2.1) because the  ra te  of the  
former two series are O((x/(1 - x)2) n) while the  ra te  of the  la t te r  is O((x/(1 - x))'~), where 

j~/(1 -~ )~ l  < I~/(1 - x ) l  < 1. 
I t  is easy to see t ha t  the  convergence of the  series shown in (2.1)-(2.3) depends  on both  the 

p roper ty  of f and the range of x (i.e., the  convergence interval).  From Theorems 2.2 and 2.4, we 

find t ha t  to  ensure the  convergence, more s t r ingent  requirements  on f allow for weaker demands  
on the range of x, and the  reverse is also true.  However, the  expressions of (2.1)-(2.3) show 

tha t  the  largest  possible convergence interval  for x is x < 1/2. To prove it, we need an a l ternate  

approach t ha t  will be shown in the  next  section. 

3. A N  A L T E R N A T E  A P P R O A C H  F O R  T H E  C O N V E R G E N C E  

We will give other  convergence condit ions for series (2.1)-(2.3).  The  series can be derived with 
the  aid of the  symbolic  computa t ion  or more formally wi th  the  use of some identit ies,  in which 
the largest  possible convergence intervals for x can be shown. 

THEOREM 3.1. Let {f (k )}  be a given sequence of numbers (real or complex). Then, we have 
formally equation (2.1) for every z < 1/2, equation (2.2) for every x > 3 + 2 v ~  or x < 3 - 2v~,  

and equation (2.3) for every x > 3 + 2 v ~  or x < 3 -  2 v ~  and x ~ O. 
PROOF. From equat ion (1.1), we obta in  

oo ~ xk n-1 xk ~ xk 
E x k f ( k )  = (1 -fix) k+lAkf(O) = E (1 --x3 k+lAkf(O) q- (1 - - x )  k+l Akf(O) '  
k=O k=O k=O k=n 

Noting A = E - 1, we wri te  the  last  summat ion  as 

xk 
k=n (1 - -  x ) k + l  Akf(o) = k=0  

k=0  

m X ~  

(1 - z)~+l 

- -  X n 

(1 - x )  n+l 

_ _  X n 

(1 - z)~+! 

xn+k 
(1 _ ' - ~ % k + l  A n ( ( E  - 1)kf(0))  

xn+k n 

E E  (1 ~_ x)k ( - 1 ) k - e  A " f ( g )  
k=O e=O 

~=0 k=l ( ~ - - ~ k  

(3.1) 
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By using the well-known summation formula (see e.g., [10, (1.3)]) 

E z  k k+£ 1 
g = (1 - z )  k+l '  IZl < 1, 

£=0 

we change the last series in (3.1) to be 

(1-~-)-+1 }--~A'~I(e) ~ (l_(-x/(l-~))) ~÷1' 
t=0 

for x < 1/2, which is equivalent to the remainder shown in (2.1). 
We now derive formula (2.2). From equation (1.2), we have 

E f(k)xk ----- E (I -- x) 2) (52kf(1) --  X ~ 2 k f ( O ) )  
k=l k=l 

+~ (<, :~,~)~+'~ ~_~o~ 
k = n  

Applying A _-- E - 1 to the last series yields 

~ (1 - x ) 2  A2kE-k(E - x ) l (0 )  
k=n 

k=o (1 - ~ ) 2  

= E  x A 2 n E - n ( E - x )  EU-k(-1) u f(O) 
k=o ( I  --'-x) 2 \u=0 

k=0 t = - k  

We split the last summation of the rightmost equality and obtain 

~ ( ) k+l 
x A2kE-k(E-- X)f(O) = e l ( f )  + ¢2(f ) ,  

k=n 
where 

+l(f) := k=O~-'~ ( (1E-x )2 ) n+k+l A2nE-n (E - x ) ( ~-~,=-k (O~ 2k+ k ] ~ E~" (- i )'+k'~ f(O)) 

and 

-- ((l__-Xx)2) n+l 

-- ( ( l X x ) 2 )  n+l 

(3.2) 

o = ( 2 k )  ( x ) k  
(-1)e52nE~(E-x)f(O) E k+t  (--1)k (1 ---Z) 2 

t = - o o  k = - t  

( - 1 ) t 5 2 a E t ( E  - x)f(O) ~ (1 _ ~ ) 2  
t = - o o  k=O 

+~<~' := k=o ~ (<, ;x,~) n+k+l ~2n~-n~- x' ( ~ 2 k  ,=, ~ + k~', ,,,+~ ~<o~ 

-x)2] Z(-1)~52nEe(E-x)f(O)Ee=l k=e k e (-1)k (1 ---x) 2 x  

= ~ ( - 1 ) ~ 2 n ( f ( z  + 1) - xZ(~)) ~ 2k + 2~ - x  k+~ 
t=l k=0 k (1 --- x) 2 
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We now apply  the Polya and Szeg6 identity (see e.g., [10, (1.120)]) 

(I - x) '~+1 

k=O 

to e l ( f )  and ¢2( f )  with z = -x/(1 - x )  b, b = 2, and a = 2e and -2g ,  respectively, where 
Izl < I(b - 1 ) b - 1 / b b ]  = 1/4 or equivalently x > 3 - 2x/2 or x < 3 - 2x/2. Here, we need x # - 1 .  
However, this l imitation will be omit ted  after we combine the resulting expressions of ¢1 ( f )  
and ¢2( f )  later. 

Subst i tut ing the Polya and Szeg6 identity into the last expressions of ¢1( f )  and ¢2( f )  yields, 
respectively, 

( ¢ 1 ( f ) =  (1 " x )  2 ~ (-1)t62n(f(g+l)-xf(g)) ( l - - -x )  2 l + x  

_ x ~ ( - 1 y ~ 2 ~ ( / ( - e  + 1) - x / ( - t ) ) ( 1  - x l ( - z y  
(1 ---x) 2 1 + x 

£=0 

and 

¢2( f )  = ._X ,~ n+l 
x) 21 ~'~(-1)t62n(f(g+l)-xf(e)) ( l - - x )  2 l + x  

t = l  

_ ( o~ _ ~)(_~1~ 
x ~ n + l  Z ( - 1 ) t 8 2 n ( f ( / +  1) - xf(g))(1 1 + x 
-~1~) ~=, 

Therefore, 
~ (  z ) k+l 

(1 --- x)2 k=n 
xn+l I £  

= (1 -I- Z ) - ~  Z) ~-n-I'l xg (~2n( f ( - - e  
t t=0 

t = l  

z z z ~°2'~'''-°o U t  ~ 
1 - x  2 (1 - - x )  2 

g=O 

X X 
-- 1 --x '2 x) 2 zt+lg2nf(-e) 

k ~=0 

} + ~ xg--l~2nf(t) -- ~ Xt"l-l~2nf(~+) 
t = l  g=O 

( _ _  X 

(1 " x )  2 Xe62nf(t)" 
t = l  

A2kE-k(E - x)f(O) = e l ( f )  + ¢2( f )  

+ 1) - z f ( - e ) )  

+ 1) - x f ( - e ) )  

o ~  

~-~ xt+l ~'n f ( - t )  
~=1 

(3.3) 

The  r ightmost  equality shows tha t  the l imitation x # - 1  is no longer needed. Hence, we ob- 
tain (2.2), which holds for all x tha t  satisfies either x > 3 + 2 v ~  or x < 3 - 2vr2. Similarly, we 
can derive (2.3) and it completes the proof of Theorem 3.1. 

To give a compressed form of the remainders of the t ransform series shown as (2.1)-(2.3), the 
following l emma is needed (see also in [1]). 
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LEMMA 3.2. MEAN VALUE THEOREM. Let  ~-'~=o anX n with an > 0 be a convergent series 

for x e (0, 1). Suppose that ¢(t) is a bounded continuous function on ( - co ,  co), and {tn} is a 
sequence of real numbers, then there is a number ~ E ( -co ,  co) such that 

E an¢(tn)xn = ¢(~) E anxn" 
n ~ O  r t = O  

THEOREM 3.3. 

n-1 xk  X n 
f(kl k : (1 : ¥ ) k + 1  + (1 -  )n+x 

k=O k=O 

Let f ( t )  be a bounded continuous function on ( -co ,  co). Then, for x < 1/2 

(3.4) 

~n+l 
(1 - z )  2 n + l h 2 n f ( ~ ) '  ( 3 . 5 )  

X n 

( 1 - x )  2n+1~ rz~o2njkq), (3.6) 

where ~ 6 ( -co ,  co). 
For x > 3 + 2 v / 2  or x < 3 -  2v~  

n - l (  X ~k+ l  
Y(k)xk = ~ (1 - - ~ ) ~ J  ( 5 ~ k f ( 1 ) -  X h ~ f ( 0 ) )  + 

k=l k=0 

where ~ E ( -co ,  co). 
Finally, for x > 3 + 2vf2 or x < 3 - 2v/2 and x ¢ 0, we have 

X (x_l~2kf (O)  _ o~2kf(_l)) + = (1 : 
k=l k=O 

where ~ E (-co,  co). 
PROOF. Clearly, (3.4), (3.5), and (3.6) are merely consequences of Theorem 3.1 and Lemma 3.2. 

COROLLARY 3.4. Let f ( t )  be a uniformly bounded continuous function on ( - co ,  co). Then for 
x < 1/2 

oo ~ X_~kX ) k + f A k f E f ( k ) x k  ---- (1 (0). (3.7) 
k=O k=O -- ' 

For x > 3 + 21/~ or x < 3 - 2v/'2 and x # - 1  

Y(k) k = (1 ( 2kf(1)- (3.8) 
k=l 

Finally, for x > 3 + 2vf2 or x < 3 - 21/2 and x ~ -1 ,  O, we have 

x (x_l~2kf(O) _ 52kf (_1)  ) E f ( k ) x k  = (1 --- X) 2 
k=l k=O 

PROOF. 

(3.9) 

Taking l imit  n -~ co in equations (3.4)-(3.6) yields equat ions (3.7)-(3.9),  respectively. 
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